package ppx_repr
PPX deriver for type representations
Install
Dune Dependency
Authors
Maintainers
Sources
repr-fuzz-0.4.0.tbz
sha256=1791765a495981cc69c0d591ef06831ca158d85192c6631b4838b3ee997dfcce
sha512=09fac16a9d4df87bf68b275b032407ddd281beadd2881f848fc2e58d5205538b2a9c3ad6743de268ce70838defcc72de49c1f7e3b02ac590f2ff187fcf0abfab
doc/src/ppx_repr.lib/algebraic.ml.html
Source file algebraic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
(* * Copyright (c) 2019-2020 Craig Ferguson <me@craigfe.io> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) include Algebraic_intf open Typ open Ppxlib module Located (A : Ast_builder.S) (M : Monad.S) : S with module M = M = struct module M = M open Utils open Utils.Make (A) open A let generate_identifiers n = List.init n (fun i -> Printf.sprintf "x%d" (i + 1)) let dsl ~lib = (function | `field -> "field" | `case1 -> "case1" | `case0 -> "case0" | `add_case -> "|~" | `add_field -> "|+" | `sealr -> "sealr" | `sealv -> "sealv" | `record -> "record" | `variant -> "variant") >> (match lib with Some l -> ( ^ ) (l ^ ".") | None -> fun x -> x) >> evar (** {1 Helper functions for various subfragments} *) let construct ~polymorphic ?body name = if polymorphic then pexp_variant name body else pexp_construct (Located.lident name) body (** {[ |~ case0 "cons_name" (`)Cons_name ]} *) let variant_case0 ~lib ~polymorphic ~cons_name e = [%expr [%e dsl ~lib `add_case] [%e e] ([%e dsl ~lib `case0] [%e estring cons_name] [%e construct ~polymorphic cons_name])] (** {[ |~ case1 "cons_name" component_type (fun (x1, ..., xN) -> (`)Cons_name (x1, ..., xN)) ]} *) let variant_case1 ~lib ~polymorphic ~cons_name ~component_type ~idents e = let tuple_pat = idents >|= pvar |> ppat_tuple in let tuple_exp = idents >|= evar |> pexp_tuple in [%expr [%e dsl ~lib `add_case] [%e e] ([%e dsl ~lib `case1] [%e estring cons_name] [%e component_type] (fun [%p tuple_pat] -> [%e construct ~polymorphic ~body:tuple_exp cons_name]))] (** Wrapper for {!variant_case0} and {!variant_case1} *) let variant_case ~polymorphic { case_name; case_cons } = match case_cons with | None -> variant_case0 ~polymorphic ~cons_name:case_name | Some (component_type, n) -> let idents = generate_identifiers n in variant_case1 ~polymorphic ~cons_name:case_name ~component_type ~idents (** [|+ field "field_name" (field_type) (fun t -> t.field_name)] *) let record_field ~lib { field_name; field_repr } e = [%expr [%e dsl ~lib `add_field] [%e e] ([%e dsl ~lib `field] [%e estring field_name] [%e field_repr] (fun t -> [%e pexp_field (evar "t") (Located.lident field_name)]))] (** Record composites are encoded as a constructor function {[ fun field1 field2 ... fieldN -> { field1; field2; ...; fieldN }) ]} *) let record_composite fields = let fields = fields >|= fun l -> l.pld_name.txt in let record = let rfields = fields >|= fun s -> (Located.lident s, evar s) in pexp_record rfields None in lambda fields record (** {[ | Cons_name (x1, x2, x3) -> cons_name x1 x2 x3 ] ]} *) let variant_pattern cons_name pattern n = let fparam_of_name name = String.lowercase_ascii name in match n with | 0 -> let lhs = pattern None in let rhs = evar (fparam_of_name cons_name) in case ~lhs ~guard:None ~rhs | n -> let idents = generate_identifiers n in let lhs = idents >|= pvar |> ppat_tuple |> fun x -> pattern (Some x) in let rhs = idents >|= evar |> pexp_tuple |> fun x -> [%expr [%e evar (fparam_of_name cons_name)] [%e x]] in case ~lhs ~guard:None ~rhs (** Variant composites are encoded as a destructor function: {[ fun case1 case2 ... caseN -> function | Case1 x -> case1 c | Case2 (x1, x2) -> case2 x1 x2 ... | CaseN -> casen ]} *) let variant_composite cs = let fparam_of_cdecl c = c.pcd_name.txt |> String.lowercase_ascii in let pattern_of_cdecl c = let pattern = ppat_construct (Located.map_lident c.pcd_name) in let n = match c.pcd_args with | Pcstr_tuple args -> List.length args | Pcstr_record _ -> invalid_arg "Inline record types unsupported" in variant_pattern c.pcd_name.txt pattern n in cs >|= pattern_of_cdecl |> pexp_function |> lambda (cs >|= fparam_of_cdecl) (** Analogous to {!variant_composite} but using AST fragments for polymorphic variants. *) let polyvariant_composite fs = let fparam_of_rowfield f = match f.prf_desc with | Rtag (label, _, _) -> String.lowercase_ascii label.txt | Rinherit _ -> assert false in let pattern_case_of_rowfield f = match f.prf_desc with | Rtag ({ txt; _ }, _, typs) -> let pattern = ppat_variant txt in let n = List.length typs in variant_pattern txt pattern n | Rinherit _ -> assert false in fs >|= pattern_case_of_rowfield |> pexp_function |> lambda (fs >|= fparam_of_rowfield) (** {1 Functional encodings of composite types} The functional encodings have a standard form: {[ <combinator> <type_name> <composite> |> <augment> <subcomponent_1> |> <augment> <subcomponent_2> |> <augment> <subcomponent_3> |> <sealer> ]} That is, they initially construct an 'open' representation of the composite, then add each of the subcomponents to the open representation using an 'augmenter', and finally 'seal' the representation. The following function extracts the necessary terms for each algebraic type. *) type ('a, 'b) dsl_terms = { combinator : expression; composite : 'a list -> expression; augment : 'b -> expression -> expression; sealer : expression; } let terms_of_typ : type a b. lib:string option -> (a, b) Typ.t -> (a, b) dsl_terms = fun ~lib typ -> let dsl = dsl ~lib in let combinator = dsl (match typ with | Record -> `record | Variant -> `variant | Polyvariant -> `variant) and composite : a list -> expression = match typ with | Record -> record_composite | Variant -> variant_composite | Polyvariant -> polyvariant_composite and augment : b -> expression -> expression = match typ with | Record -> record_field ~lib | Variant -> variant_case ~lib ~polymorphic:false | Polyvariant -> variant_case ~lib ~polymorphic:true and sealer = dsl (match typ with | Record -> `sealr | Variant -> `sealv | Polyvariant -> `sealv) in { combinator; composite; augment; sealer } let encode : type a b e. (a, b) Typ.t -> subderive:(a -> (b, e) M.t) -> lib:string option -> type_name:string -> a list -> (expression, e) M.t = fun typ ~subderive ~lib ~type_name ts -> let open M.Syntax in let dsl = terms_of_typ ~lib typ in let composite = dsl.composite ts in let+ apply_augments = ts >|= (subderive >> M.map dsl.augment) |> M.sequence |> M.map (List.rev >> compose_all) in let open_repr = [%expr [%e dsl.combinator] [%e estring type_name] [%e composite]] |> apply_augments in [%expr [%e dsl.sealer] [%e open_repr]] end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>