package ppx_repr
PPX deriver for type representations
Install
Dune Dependency
Authors
Maintainers
Sources
repr-fuzz-0.3.0.tbz
sha256=d9bd2fe51c2eb6fca27731034c46f9a77dc8bc9fb7b76216f8a571603d6e7d74
sha512=7b4ad2cbcd92f6647a1abe1d82557f02e4955c5f37f02089388c752e23b865af0f55fdd6bc63a1d2a00962baf96ccd99ccd9b8ecd8898dcc2a0cd17302f067c3
doc/src/ppx_repr.lib/algebraic_intf.ml.html
Source file algebraic_intf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
(* * Copyright (c) 2019-2020 Craig Ferguson <me@craigfe.io> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open Ppxlib module Typ = struct type nonrec record_field_repr = { field_name : string; field_repr : expression; } and variant_case_repr = { case_name : string; case_cons : (expression * int) option; } (** The algebraic datatypes supported by this module, parameterised by: - ['a]: the subcomponent type of the algebraic type - ['b]: a generic representation of the subcomponent type necessary to derive the {i composite} type representation *) type (_, _) t = | Record : (label_declaration, record_field_repr) t | Variant : (constructor_declaration, variant_case_repr) t | Polyvariant : (row_field, variant_case_repr) t end module type S = sig module M : Monad.S val encode : ('a, 'b) Typ.t -> subderive:('a -> ('b, 'e) M.t) -> lib:string option -> type_name:string -> 'a list -> (expression, 'e) M.t (** Build the functional encoding of a composite type. Combine the various elements necessary for a functional encoding of a composite type [('a, 'b) {!typ}], in terms its components of type ['a list] and the name of the composite type [type_name]. This requires a function [subderive] for deriving the type representation of the subcomponents, which may run in a monadic context [M.t]. *) end module type Algebraic = sig module Typ = Typ module type S = S module Located (S : Ast_builder.S) (M : Monad.S) : S with module M = M end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>