package plebeia

  1. Overview
  2. Docs
Functional storage using Merkle Patricia tree

Install

Dune Dependency

Authors

Maintainers

Sources

plebeia-2.2.0.tar.gz
md5=7191dbbd3057df0a78032b560039bb59
sha512=f09790dfa65a6c8dc0da9618123d93f145c16c3b5be719dad04114bbe95a7e94697cacf2c6fb5b50c14408f864954dbf8d47e5994093623eb77f488bdf5c4205

doc/src/plebeia/fs_impl.ml.html

Source file fs_impl.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2022 DaiLambda, Inc. <contact@dailambda.jp>                 *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(* Separated from fs.mli so that some internal functions can be used
   in fs_tree.ml *)

open Result_lwt.Syntax
open Result_lwt.Infix
open Fs_types

module Name = Name

type name = Name.t

module Path = Path

module FsError = FsError

type cursor =
  { cur : Cursor.t;
    rev_path : Name.t list; (* position of the cur *)
    enc : Fs_nameenc.t
  }

type error = FsError.t

type view = Node_type.view

type raw_cursor = Cursor.t

type hash = Hash.Prefix.t
(* Hash.Prefix.t since Extender is never exposed *)

let make cur enc path = { cur; rev_path= List.rev path; enc }

let empty context enc = make (Cursor.empty context) enc []

let get_raw_cursor c = c.cur

let get_view c =
  let cur, v = Cursor.view c.cur in
  { c with cur }, v

let context c = Cursor.context c.cur

let index c = Cursor.index @@ get_raw_cursor c

let forget_info c = { c with cur = Cursor.forget_info c.cur }

let top_cursor c = make (Cursor.go_top c.cur) c.enc []

let compute_hash c =
  let cur, h = Cursor.compute_hash c.cur in
  { c with cur }, h

let write_top_cursor { cur; enc; _ } =
  let cur = Cursor.go_top cur in
  let+? cur, idx, hp = Cursor.Cursor_storage.write_top_cursor cur in
  ({ cur; rev_path= []; enc }, (idx, hp))

let may_forget c =
  match Cursor.may_forget c.cur with
  | Some cur -> { c with cur }
  | None -> c

(* split the last element of the list *)
let split xs =
  let rec f st = function
    | [] -> assert false
    | [x] -> List.rev st, x
    | x::xs -> f (x::st) xs
  in
  f [] xs

module Op = struct
  module Monad = Monad.Make1(struct
      type 'a t = cursor -> (cursor * 'a, Error.t) result

      let return a c = Ok (c, a)

      let bind (aop : 'a t) (f : 'a -> 'b t) : 'b t =
        fun c ->
        match aop c with
        | Error e ->
            Error e
        | Ok (c, a) ->
            f a c
    end)

  include Monad

  let lift_result = fun r c -> Result.map (fun x -> (c, x)) r

  let check_cursor_invariant ({ cur; rev_path; enc } as c) =
    let p = Cursor.path_of_cursor cur in
    match Option.mapM (Fs_nameenc.of_segment enc) p with
    | None -> assert false
    | Some path ->
        assert (path = List.rev rev_path);
        Ok (c, ())

  let fail e : 'a t = fun _ -> FsError.error e
  let raw_cursor : Cursor.t t = fun c -> Ok (c, c.cur)
  let path : Path.t t = fun c -> Ok (c, List.rev c.rev_path)
  let view : view t = fun c -> Ok (get_view c)

  let chdir_parent c =
    (* if [c] is at the root, NOP *)
    match c.rev_path with
    | [] -> Ok (c, ())
    | path::rev_path ->
        let cur, v = Cursor.view c.cur in
        (* remove the directory if it is empty *)
        let remove_it =
          match v with
          | Bud (None, _, _) -> true
          | _ -> false
        in
        Cursor.go_up_to_bud cur >>? fun cur ->
        if remove_it then
          Cursor.delete' cur (Fs_nameenc.to_segment c.enc path) >>? fun cur ->
          Ok ({ c with cur; rev_path }, ())
        else
          Ok ({ c with cur; rev_path }, ())

  let rec chdir_root c =
    match c.rev_path with
    | [] -> Ok (c, ())
    | _ ->
        chdir_parent c >>? fun (c, ()) ->
        chdir_root c

  (* If [dig=true], creates subdirectories if necessary. *)
  let chdir ?(dig=false) path0 : unit t = fun c ->
    let rec seek path ({ cur; rev_path; _ } as c) =
      match path with
      | [] ->
          let _cur, v = Cursor.view cur in
          begin match v with
            | Bud _ -> Ok (c, ())
            | Leaf _ -> FsError.error (Is_file ("chdir", List.rev rev_path))
            | _ -> Format.eprintf "chdir path0=%a cwd=%a %a@." Path.pp path0 Path.pp (List.rev rev_path) Node_type.pp (View v); assert false
          end
      | p :: path ->
          let cur, v = Cursor.view cur in
          match v with
          | Bud _ ->
              let seg = Fs_nameenc.to_segment c.enc p in
              Cursor.access_gen cur seg
              >>? (function
                  | Reached (_cur, Leaf _) ->
                      FsError.error (Is_file ("chdir", List.rev rev_path))
                  | Reached (cur, Bud _) ->
                      seek path { c with cur; rev_path= p::rev_path }
                  | Empty_bud | Middle_of_extender _ when dig ->
                      let cur = Result.from_Ok @@ Cursor.subtree_or_create cur seg in
                      seek path { c with cur; rev_path= p::rev_path }
                  | Empty_bud | Middle_of_extender _ ->
                      FsError.error (No_such_file_or_directory ("chdir", List.rev (p::rev_path)))
                  | Collide _ | Reached _ ->
                      assert false (* it indicates fs inconsistency *)
                  (* error_fs (No_such_file_or_directory ("seek", path0)) *)
                  | HashOnly _ -> assert false (* XXX *)
                )
          | Leaf _ ->
              FsError.error (Is_file ("chdir", List.rev rev_path))
          | Internal _ | Extender _ ->
              assert false (* it indicates fs inconsistency *)
              (* error_fs (No_such_file_or_directory ("seek", path0)) *)
    in
    seek path0 c

  (* Functions in Loose module does not preserve the cwd.
     Not good to write apps since it is hard to predict where the cwd is.
  *)
  module Loose = struct
    (* Access the path *)
    let seek path0 : (cursor * view) t = fun c ->
      let rec seek path { cur; rev_path; enc } =
        match path with
        | [] ->
            let (cur, v) = Cursor.view cur in
            begin match v with
              | Leaf _ | Bud _ ->
                  let c = { c with cur; rev_path } in
                  Ok (c, (c, v))
              | Internal _ | Extender _ ->
                  assert false (* it indicates fs inconsistency *)
                  (* error_fs (No_such_file_or_directory ("seek", path0)) *)
            end
        | p :: path ->
            let seg = Fs_nameenc.to_segment enc p in
            let cur, v = Cursor.view cur in
            match v with
            | Bud _ ->
                Cursor.access_gen cur seg
                >>? (function
                    | Reached (cur, (Bud _ | Leaf _)) ->
                        seek path { c with cur; rev_path= p::rev_path }
                    | Empty_bud | Middle_of_extender _ ->
                        FsError.error (No_such_file_or_directory ("seek", path0))
                    | Collide _ | Reached _ ->
                        assert false (* it indicates fs inconsistency *)
                    (* error_fs (No_such_file_or_directory ("seek", path0)) *)
                    | HashOnly _ -> assert false (* XXX *)
                  )
            | Leaf _ ->
                FsError.error (Is_file ("seek", List.rev rev_path))
            | Internal _ | Extender _ ->
                assert false (* it indicates fs inconsistency *)
                (* error_fs (No_such_file_or_directory ("seek", path0)) *)
      in
      seek path0 c

    (* Seeking a directory.  Stops seeking when it finds no directory
       and returns the path postfix not found.
    *)
    let seek' path0 : Path.t t = fun c ->
      let rec seek path ({ cur; rev_path; enc } as c) =
        match path with
        | [] -> Ok (c, [])
        | p :: path ->
            let cur, v = Cursor.view cur in
            match v with
            | Bud _ ->
                let seg = Fs_nameenc.to_segment enc p in
                Cursor.access_gen cur seg
                >>? (function
                    | Reached (cur, (Bud _ | Leaf _)) ->
                        seek path { c with cur; rev_path= p::rev_path }
                    | Empty_bud | Middle_of_extender _ ->
                        Ok (c, (p::path))
                    | Collide _ | Reached _ ->
                        assert false (* it indicates fs inconsistency *)
                    (* error_fs (No_such_file_or_directory ("seek", path0)) *)
                    | HashOnly _ -> assert false (* XXX *)
                  )
            | Leaf _ ->
                FsError.error (Is_file ("seek'", List.rev rev_path))
            | Internal _ | Extender _ ->
                assert false (* it indicates fs inconsistency *)
                (* error_fs (No_such_file_or_directory ("seek", path0)) *)
      in
      seek path0 c

    let get = seek

    let cat path c =
      seek path c >>? function
      | (c, (_, Leaf (v, _, _))) -> Ok (c, v)
      | (_, (_, Bud _)) -> FsError.error (Is_directory ("cat", path))
      | (_, (_, (Internal _ | Extender _))) -> assert false

    let write path0 value c =
      let d,n = split path0 in
      chdir ~dig:true d c >>? fun (c, ()) ->
      view c >>? fun (c,v) ->
      match v with
      | Bud _ ->
          Cursor.upsert c.cur (Fs_nameenc.to_segment c.enc n) value
          >|? fun cur -> { c with cur }, ()
      | Leaf _ | Internal _ | Extender _ -> assert false

    let unlink path check c =
      let d,n = split path in
      seek' d c >>? fun (c, p) ->
      match p with
      | _::_ ->
          (* target does not exist *)
          Ok (c, false)
      | [] ->
          let seg = Fs_nameenc.to_segment c.enc n in
          Cursor.access_gen c.cur seg
          >>? function
          | Empty_bud | Middle_of_extender _ ->
              (* target does not exist *)
              Ok (c, false)
          | Collide _ | Reached (_, (Extender _ | Internal _)) ->
              assert false (* it indicates fs inconsistency *)
          | HashOnly _ ->
              (* error_fs (No_such_file_or_directory ("seek", path0)) *)
              assert false (* XXX *)
          | Reached (_cur, (Bud _ | Leaf _ as v)) ->
              let k = match v with
                | Bud _ -> `Bud v
                | Leaf _ -> `Leaf v
                | Internal _ | Extender _ -> assert false
              in
              check k >>? fun () ->
              Cursor.delete c.cur seg
              >>? fun cur ->
              let c = { c with cur } in
              let rec loop c =
                match c.rev_path with
                | [] -> Ok (c, true) (* allow Bud (None) at the root *)
                | n::rev_path ->
                    view c >>? fun (c,v) ->
                    match v with
                    | Bud (Some _, _, _) -> Ok (c, true)
                    | Bud (None, _, _) ->
                        Cursor.go_up_to_bud c.cur >>? fun cur ->
                        Cursor.delete cur (Fs_nameenc.to_segment c.enc n) >>? fun cur ->
                        loop { c with cur; rev_path }
                    | Leaf _ | Internal _ | Extender _ -> assert false
              in
              loop c

    let set path c' c =
      if c.enc != c'.enc then
        FsError.error (Other ("set", "Conflicting name encoders"))
      else
        view c' >>? fun (_, v) ->
        match v with
        | Bud (None, _, _) ->
            unlink path (fun _ -> Ok ()) c >|? fun (c,_) -> (c, ())
        | Bud _ | Leaf _ ->
            let d,n = split path in
            seek' d c >>? fun (c, p) ->
            Deep.alter c.cur (Fs_nameenc.to_segments c.enc (p@[n])) (fun _ -> Ok (View v))
            >|? fun cur -> ({c with cur= cur}, ())
        | Internal _ | Extender _ -> assert false

    let rm ?(recursive=false) ?(ignore_error=false) path c =
      let check = function
        | `Bud _ when not recursive -> FsError.error (Is_directory ("rm", path))
        | `Bud _ | `Leaf _ -> Ok ()
      in
      match unlink path check c with
      | Ok (c, true) -> Ok (c,true)
      | Ok (c, false) when ignore_error -> Ok (c,false)
      | Ok (_, false) -> FsError.error (No_such_file_or_directory ("rm", path))
      | Error _ when ignore_error -> Ok (c,false)
      | Error _ as e -> e

    let rmdir ?(ignore_error=false) path c =
      let check = function
        | `Leaf _ -> FsError.error (Is_file ("rmdir", path))
        | `Bud _ -> Ok ()
      in
      match unlink path check c with
      | Ok (c, true) -> Ok (c,true)
      | Ok (c, false) when ignore_error -> Ok (c,false)
      | Ok (_, false) -> FsError.error (No_such_file_or_directory ("rmdir", path))
      | Error _ when ignore_error -> Ok (c,false)
      | Error _ as e -> e
  end

  (* Perform [f] then recover the original place of the current cursor.
     Unspecified if [chdir_parent] or [chdir_root] are called inside [f].
  *)
  let with_pushd f c =
    let path0 = List.rev c.rev_path in
    f c >>? fun (c,res) ->
    match Path.is_prefix_of path0 (List.rev c.rev_path) with
    | None -> assert false
    | Some p ->
        let rec loop c = function
          | 0 -> Ok (c, res)
          | n -> chdir_parent c >>? fun (c, ()) -> loop c (n-1)
        in
        loop c @@ List.length p

  let get path = with_pushd @@ Loose.get path

  let cat path = with_pushd @@ Loose.cat path

  let write path value = with_pushd @@ Loose.write path value

  let unlink path check = with_pushd @@ Loose.unlink path check

  let set path c' = with_pushd @@ Loose.set path c'

  let copy from to_ : unit t = fun c ->
    get from c >>? fun (c, (c_from, _v_from)) ->
    set to_ c_from c

  let rm ?recursive ?ignore_error path =
    with_pushd @@ Loose.rm ?recursive ?ignore_error path

  let rmdir ?ignore_error path =
    with_pushd @@ Loose.rmdir ?ignore_error path

  let do_then f (g : 'a t) = fun c -> f c; g c

  let run c op = op c

  let compute_hash ({ cur; _ } as c) =
    let cur, h = Cursor.compute_hash cur in
    let hp = fst h in
    assert (snd h = "");
    Ok ({c with cur}, hp)

  (* XXX Things almost always not forgotten, since cur points a Bud *)
  let may_forget ({ cur; _ } as c) =
    let cur =
      match Cursor.may_forget cur with
      | Some cur -> cur
      | None -> cur
    in
    Ok ({c with cur}, ())
end

module Op_lwt = struct
  module Monad = Monad.Make1(struct
      type 'a t = cursor -> (cursor * 'a, Error.t) result Lwt.t

      let return a c = Lwt.return_ok (c, a)

      let bind (aop : 'a t) (f : 'a -> 'b t) : 'b t =
        fun c ->
        Lwt.bind (aop c) (function
            | Error _ as e -> Lwt.return e
            | Ok (c, a) -> f a c)
    end)

  include Monad

  let lift : 'a Op.t -> 'a t = fun op c -> Lwt.return @@ op c
  let lift_op = lift
  let lift_lwt : 'a Lwt.t -> 'a t = fun l c -> Lwt.map (fun x -> Ok (c, x)) l
  let lift_result : ('a, Error.t) Result.t -> 'a t = fun r c -> Lwt.return @@ Result.map (fun x -> (c, x)) r
  let lift_result_lwt : ('a, Error.t) Result_lwt.t -> 'a t = fun rl c -> Result_lwt.map (fun x -> (c, x)) rl

  let fail e = lift (Op.fail e)
  let raw_cursor = lift Op.raw_cursor
  let chdir_parent = lift Op.chdir_parent
  let chdir_root = lift Op.chdir_root
  let chdir ?dig path0 = lift (Op.chdir ?dig path0)
  let path = lift Op.path
  let get path = lift (Op.get path)
  let set path c = lift (Op.set path c)
  let copy from to_ = lift (Op.copy from to_)
  let cat path = lift (Op.cat path)
  let write path value = lift (Op.write path value)
  let rm ?recursive ?ignore_error path = lift (Op.rm ?recursive ?ignore_error path)
  let rmdir ?ignore_error path = lift (Op.rmdir ?ignore_error path)
  let compute_hash = lift Op.compute_hash
  let may_forget = lift Op.may_forget
  let do_then f g c = f c;g c

  let with_pushd_lwt f c =
    let path0 = List.rev c.rev_path in
    f c >>=? fun (c,res) ->
    match Path.is_prefix_of path0 (List.rev c.rev_path) with
    | None -> assert false
    | Some p ->
        let rec loop c = function
          | 0 -> Lwt.return_ok (c, res)
          | n ->
              match Op.chdir_parent c with
              | Error e -> Lwt.return_error e
              | Ok (c, ()) -> loop c (n-1)
        in
        loop c @@ List.length p

  module Segs = Segment.Segs

(*
         'a * job_stack * Plebeia__Segment.Segs.t * raw_cursor ->
         ('a ->
          Plebeia__Segment.Segs.t ->
          raw_cursor ->
          ([< `Continue | `Exit | `Up ] * 'a, Plebeia__Error.t) result Lwt.t) ->
         ('a * job_stack * Segs.t * raw_cursor, Plebeia__Error.t) result Lwt.t
*)

  (* From here, functions preserve the current position of the cursor *)

  type job_stack = [ `Exit | `Right of job_stack | `Up of Segs.t * job_stack ]

  type 'acc traverse_stat =
    { acc : 'acc
    ; dests : job_stack
    ; segs : Segs.t
    ; c :raw_cursor
    }

  type 'acc folder =
    'acc -> Segs.t -> raw_cursor -> ([`Continue | `Exit | `Up] * 'acc, Error.t) result Lwt.t

  (* The result is unspecified or unpredictable if the tree is modified
     during the traverse *)
  let traverse { acc; dests; segs; c } (f : 'acc folder)
    : ('acc traverse_stat, Error.t) result Lwt.t =
    let rec next {acc; dests; segs; c} = match dests with
      | `Exit -> Ok {acc; dests= `Exit; segs; c}
      | `Up (segs, dests) ->
          Cursor.go_up c >>? fun c ->
          next {acc; dests; segs; c}
      | `Right dests ->
          Cursor.go_side Right c >|? fun c ->
          {acc; dests= `Up (segs, dests); segs= Segs.add_side segs Right; c}
    in
    let rec exit {acc; dests; segs; c} = match dests with
      | `Exit -> Ok {acc; dests= `Exit; segs; c}
      | `Up (segs, dests) ->
          Cursor.go_up c >>? fun c -> exit {acc; dests; segs; c}
      | `Right dests -> exit {acc; dests; segs; c}
    in
    let c, v = Cursor.view c in
    Lwt.bind (f acc segs c) @@ function
    | Error _ as e -> Lwt.return e
    | Ok (`Exit, acc) -> Lwt.return @@ exit {acc; dests; segs; c}
    | Ok (`Up, acc) -> Lwt.return @@ next {acc; dests; segs; c}
    | Ok (`Continue, acc) ->
        match v with
        | Leaf _ | Bud (None, _, _) ->
            Lwt.return @@ next {acc; dests; segs; c}
        | Bud (Some _, _, _) ->
            Lwt.return begin
              Cursor.go_below_bud c >>? function
              | None -> assert false
              | Some c -> Ok {acc; dests= `Up (segs, dests); segs= Segs.push_bud segs; c}
            end
        | Internal (_, _, _, _) ->
            Lwt.return begin
              Cursor.go_side Left c >>? fun c ->
              Ok {acc; dests= `Up (segs, `Right dests); segs= Segs.add_side segs Left; c}
            end
        | Extender (seg, _, _, _) ->
            Lwt.return begin
              Cursor.go_down_extender c >>? fun c ->
              Ok {acc; dests= `Up (segs, dests); segs= Segs.append_seg segs seg; c}
            end

  let raw_fold (init : 'acc) (c : raw_cursor) (f : 'acc folder) =
    let rec loop x =
      Lwt.bind (traverse x f) @@ function
      | Error e -> Lwt.return_error e
      | Ok {acc; dests= `Exit; segs=_; c} -> Lwt.return_ok (c, acc)
      | Ok x -> Lwt.(pause () >>= fun () -> loop x)
    in
    loop {acc=init; dests=`Exit; segs= Segs.empty; c}

  let fold_here
      (init : 'acc)
      (f : 'acc -> Path.t -> cursor -> ([ `Continue | `Exit | `Up ] * 'acc, Error.t) result Lwt.t)
      { cur; rev_path; enc } =
    Result_lwt.map (fun (c,a) -> { cur=c; rev_path; enc }, a)
      (raw_fold init cur (fun acc segs c ->
           let c, v = Cursor.view c in
           match v with
           | Internal _ | Extender _ ->
               Lwt.return @@ Ok (`Continue, acc)
           | Leaf _ | Bud _ ->
               let segs = Segs.to_segments segs in
               (* XXX path decoding each time... *)
               (* XXX error report *)
               let path = Utils.from_Some @@ Fs_nameenc.of_segments enc segs in
               f acc path { cur=c; rev_path= List.rev_append path rev_path; enc }))

  let fold'_here ?depth
      (init : 'acc)
      (f : 'acc -> Path.t -> cursor -> ('acc, Error.t) result Lwt.t) : 'acc t = fun c ->
    let check =
      match depth with
      | None -> fun _ -> true, true
      | Some (`Eq n) -> fun x -> x < n, x = n
      | Some (`Le n) -> fun x -> x < n, x <= n
      | Some (`Lt n) -> fun x -> x < n-1, x < n
      | Some (`Ge n) -> fun x -> true, x >= n
      | Some (`Gt n) -> fun x -> true, x > n
    in
    let f = fun acc path c ->
      match Cursor.view c.cur with
      | _, (Internal _ | Extender _) -> assert false
      | _, (Leaf _ | Bud _) ->
          let depth = Path.length path in
          let deeper, callf = check depth in
          let command = if deeper then `Continue else `Up in
          Result_lwt.map (fun acc -> (command, acc))
            (if callf then f acc path c else Lwt.return (Ok acc))
    in
    fold_here init f c

  let at_dir name path0 (f : _ t) : _ t = fun c ->
    with_pushd_lwt (fun c ->
        match Op.Loose.seek path0 c with
        | Error _ as e -> Lwt.return e
        | Ok (c, (_c, v)) ->
            match v with
            | Leaf _ ->
                Lwt.return @@ FsError.error (Is_file (name, path0))
            | Bud _ -> f c
            | Internal _ | Extender _ -> assert false) c

  let fold init path0 f : _ t = at_dir "fold" path0 (fold_here init f)

  let fold' ?depth init path0 f = at_dir "fold" path0 (fold'_here ?depth init f)

  (* We assume that Buds and directories correspond with each other *)
  let ls : Path.t -> (Name.t * cursor) list t = fun path0 c ->
    let f a path tree =
      match path with
      | [] | _::_::_ -> assert false
      | [name] -> Lwt.return @@ Ok ((name, tree) :: a)
    in
    (* XXX we can traverse in the opposite order *)
    Result_lwt.map (fun (c,xs) -> c, List.rev xs)
    @@ fold' ~depth:(`Eq 1) [] path0 f c

  let count : Path.t -> int option t = fun path0 ->
    at_dir "count" path0 @@ fun c ->
    match Cursor.count c.cur with
    | None -> Lwt.return_ok (c, None)
    | Some (cnt, cur) -> Lwt.return_ok ({ c with cur }, Some cnt)

  (* The result is unspecified or unpredictable if the tree is modified
     during the traverse *)
    (*
               (offset, length)
                      o (has cnt)    Skip offset+length-1 < 0 || cnt < offset

               (offset, length)
               [offset, offset+length-1]
                      o (has cnt)    Skip offset+length-1 < 0 || cnt < offset
                     / \
         (has cntl) o                Skip offset+length-1 < 0 || cntl < offset
                                       (max 0 offset), (min cntl (max 0 (offset + length - 1)))
                        x            new offset = offset - cntl
                                     new length = max 0 (length - (cntl - offset))
    *)
  let rev_ls2_raw ~offset ~length c =
    let {rev_path; cur; enc} = c in
    if not (Cursor.context cur).with_count then
      Lwt.return @@ FsError.error No_pagination_count
    else
      let rec f ~offset ~length acc segs cur =
        assert (length >= 0);
        if length = 0 then Lwt.return acc
        else
          let cnt, cur = Option.from_Some @@ Cursor.count cur in
          if offset+length-1 < 0 || cnt < offset then Lwt.return acc
          else
            let open Result in
            let open Option in
            let cur, v = Cursor.view cur in
            match v with
            | Bud (None, _, _) when segs = Segs.empty -> Lwt.return acc
            | Bud (Some _, _, _) when segs = Segs.empty ->
                let cur = from_Some @@ from_Ok @@ Cursor.go_below_bud cur in
                f ~offset ~length acc (Segs.push_bud segs) cur
            | Leaf _ | Bud _ ->
                let segs = Segs.to_segments segs in
                (* XXX path decoding each time... *)
                (* XXX error report *)
                let name =
                  match Utils.from_Some @@ Fs_nameenc.of_segments enc segs with
                  | [name] -> name
                  | [] -> assert false
                  | _ -> assert false
                in
                Lwt.return ((name, {cur; rev_path= name :: rev_path; enc})::acc)
            | Extender (seg, _, _, _) ->
                let cur = from_Ok @@ Cursor.go_down_extender cur in
                f ~offset ~length acc (Segs.append_seg segs seg) cur
            | Internal _ ->
                let curl = from_Ok @@ Cursor.go_side Left cur in
                let cntl, _ = Option.from_Some @@ Cursor.count curl in
                let curr = from_Ok @@ Cursor.go_side Right cur in
                let skipl = offset+length-1 < 0 || cntl <= offset in
                let offset' = max 0 (offset - cntl) in
                let length' = max 0 (length - (max 0 (cntl - (max 0 offset)))) in
                let*= acc =
                  if skipl then Lwt.return acc
                  else f ~offset ~length:(min cntl length) acc (Segs.add_side segs Left) curl
                in
                (* force Lwt context switch *)
                let*= () = Lwt.pause () in
                f ~offset:offset' ~length:length' acc (Segs.add_side segs Right) curr
      in
      (* XXX we can traverse in the opposite order *)
      let+= res = f ~offset ~length [] Segs.empty cur in
      Ok (c, res)

  let ls2 ~offset ~length path =
    let open Syntax in
    let+ res = at_dir "ls2" path @@ rev_ls2_raw ~offset ~length in
    List.rev res

  let run c op_lwt = op_lwt c
end

module Vc = struct
  open Result_lwt.Syntax

  type t =
    { vc : Vc.t
    ; enc : Fs_nameenc.t
    }

  let create ?hashcons ?node_cache ?lock ?resize_step_bytes
      ?auto_flush_seconds config enc path_prefix =
    let+=? vc =
      Vc.create ?hashcons ?node_cache ?lock ?resize_step_bytes
        ?auto_flush_seconds config path_prefix
    in
    { vc; enc }

  let open_existing_for_read ?hashcons ?node_cache config enc name =
    let+=? vc =
      Vc.open_existing_for_read ?hashcons ?node_cache config name
    in
    { vc; enc }

  let open_for_write ?hashcons ?node_cache ?resize_step_bytes
      ?auto_flush_seconds config enc name =
    let+=? vc =
      Vc.open_for_write ?hashcons ?node_cache ?resize_step_bytes
        ?auto_flush_seconds config name
    in
    { vc; enc }

  let close { vc; _ } = Vc.close vc

  let commit_db { vc; _ } = Vc.commit_db vc

  let context { vc; _ } = Vc.context vc

  let empty { vc; enc } = make (Vc.empty vc) enc []

  let of_value { vc; enc } v =
    let ctxt = Vc.context vc in
    let c = Cursor._Cursor (Cursor._Top, Node.new_leaf v, ctxt, Info.empty) in
    make c enc []

  let checkout { vc; enc } ch =
    let+= co = Vc.checkout vc ch in
    Option.map (fun c -> make c enc []) co

  let checkout' { vc; enc } ch =
    let+= cco = Vc.checkout' vc ch in
    Option.map (fun (commit, c) -> (commit, make c enc [])) cco

  let compute_commit_hash { vc; enc } ~parent c =
    let cur, ch = Vc.compute_commit_hash vc ~parent c.cur in
    (make cur enc [], ch)

  let commit ?allow_missing_parent { vc; enc } ~parent ~hash_override c =
    let+=? (cur,h,com) =
      Vc.commit ?allow_missing_parent vc ~parent ~hash_override c.cur
    in
    make cur enc [], (h, com)

  let flush { vc; _ } = Vc.flush vc

  let mem { vc; _ } = Vc.mem vc
end

module Merkle_proof = struct
  type t = Merkle_proof.t
  type detail = Path.t * Segment.segment list * Node_type.node option

  let encoding vc = Merkle_proof.encoding (Vc.context vc)

  let pp = Merkle_proof.pp

  let convert_details conv details =
    Result.mapM (fun (p, no) ->
        let segs = Plebeia__Path.to_segments p in
        match Fs_nameenc.of_segments conv segs with
        | Some path -> Ok (path, segs, no)
        | None -> FsError.error (Other ("merkle_proof", "invalid segment")))
      details

  let make paths ({ cur; enc; _ } as c) =
    let Cursor.Cursor (_, n, ctxt, _) = cur in
    let proof, details =
      Merkle_proof.make ctxt n (List.map (Fs_nameenc.to_segments enc) paths)
    in
    let+? details = convert_details enc details in
    (c, (proof, details))

  let check vc proof =
    let hasher = (Vc.context vc).hash in
    let (hp, seg), details = Merkle_proof.check hasher proof in
    (* cursor points to either Bud or Leaf, therefore seg must be empty *)
    if seg <> "" then FsError.error (Other ("Merkle_proof.check", "invalid long hash"))
    else
      let+? details = convert_details vc.enc details in
      (hp, details)
end
OCaml

Innovation. Community. Security.