package plebeia
Functional storage using Merkle Patricia tree
Install
Dune Dependency
Authors
Maintainers
Sources
plebeia-2.0.2.tar.gz
md5=aecc184507170faed53e543195687233
sha512=9799144ea7ebc997681353136393815ac73040e2ae5227f2787c1331bb393dbd318b1fa3ae8d075b383cda4fe7584b80f7f32a4aa99c870a0bd2d76e91024bf5
doc/src/plebeia.test_utils/dumb.ml.html
Source file dumb.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
module P = Plebeia open P.Result.Infix (* for >>= *) (* unoptimized tree *) type t = | Null | Leaf of P.Value.t | Tree of t | Node of t * t type trail = Root | Treed of trail | Left of t * trail | Right of t * trail type segment = P.Segment.t type error = string type value = P.Value.t type context = unit type cursor = t * trail let get_node (t, _) = t let rec of_plebeia_node : P.Context.t -> P.Node.node -> t = fun context -> function | Hash _ -> assert false | Disk (i, wit) -> of_plebeia_node context (View (P.Node.read_node context i wit)) | View n -> match n with | Bud (None, _, _) -> Tree Null | Bud (Some n, _, _) -> Tree (of_plebeia_node context n) | Internal (l, r, _, _) -> Node (of_plebeia_node context l, of_plebeia_node context r) | Leaf (v, _, _) -> Leaf v | Extender (seg, n, _, _) -> let rec aux n seg = match P.Segment.cut seg with | None -> n | Some (P.Segment.Left, seg) -> Node (aux n seg, Null) | Some (P.Segment.Right, seg) -> Node (Null, aux n seg) in aux (of_plebeia_node context n) seg let empty () = (Tree Null, Root) (* not just Null *) let check_node (n, trail) = match n with | Tree n -> Ok (n, Treed trail) | _ -> Error "Start node is not Tree" let subtree ntrail seg = let rec aux ((n, trail) as cur) = function | [] -> begin match n with | Tree _ -> Ok cur | _ -> Error "Reached to non Tree" end | P.Segment.Left :: seg' -> begin match n with | Null -> Error "Null" | Leaf _ -> Error "Leaf" | Tree _ -> Error "Tree in middle" | Node (l, r) -> aux (l, Left (r, trail)) seg' end | P.Segment.Right :: seg' -> begin match n with | Null -> Error "Null" | Leaf _ -> Error "Leaf" | Tree _ -> Error "Tree in middle" | Node (l, r) -> aux (r, Right (l, trail)) seg' end in check_node ntrail >>= fun ntrail -> aux ntrail (P.Segment.to_sides seg) (* Find the Tree above, cleaning Node (Null, Null) *) let rec go_up_tree (n, trail) = let trim_null = function | Node (Null, Null) -> Null | t -> t in match trail with | Treed trail -> Ok (Tree n, trail) | Root -> Error "Root" | Left (r, trail) -> go_up_tree (trim_null (Node (n,r)), trail) | Right (l, trail) -> go_up_tree (trim_null (Node (l, n)), trail) let parent ((n, _) as ntrail) = match n with | Tree _ -> go_up_tree ntrail | _ -> Error "not Tree" let get_node_seg ntrail seg = let rec aux ((n, trail) as ntrail) = function | [] -> Ok ntrail | P.Segment.Left :: seg' -> begin match n with | Null -> Error "Null" | Leaf _ -> Error "Leaf" | Tree _ -> Error "Tree in middle" | Node (l, r) -> aux (l, Left (r, trail)) seg' end | P.Segment.Right :: seg' -> begin match n with | Null -> Error "Null" | Leaf _ -> Error "Leaf" | Tree _ -> Error "Tree in middle" | Node (l, r) -> aux (r, Right (l, trail)) seg' end in check_node ntrail >>= fun ntrail -> aux ntrail seg let get_value ntrail seg = let seg = P.Segment.to_sides seg in get_node_seg ntrail seg >>= function | (Leaf v, _) -> Ok v | _ -> Error "Not Leaf" let alter ntrail seg f = let seg = P.Segment.to_sides seg in let rec aux (n, trail) = function | [] -> f n >>= fun v -> Ok (v, trail) | P.Segment.Left :: seg' -> begin match n with | Null -> aux (Null, Left (Null, trail)) seg' | Leaf _ -> Error "Leaf" | Tree _ -> Error "Tree in middle" | Node (l, r) -> aux (l, Left (r, trail)) seg' end | P.Segment.Right :: seg' -> begin match n with | Null -> aux (Null, Right (Null, trail)) seg' | Leaf _ -> Error "Leaf" | Tree _ -> Error "Tree in middle" | Node (l, r) -> aux (r, Right (l, trail)) seg' end in check_node ntrail >>= fun ntrail -> aux ntrail seg >>= go_up_tree let insert ntrail seg v = let f = function | Null -> Ok (Leaf v) | _ -> Error "not Null" in alter ntrail seg f let upsert ntrail seg v = let f = function | Null | Leaf _ -> Ok (Leaf v) | _ -> Error "not Null nor Leaf" in alter ntrail seg f let create_subtree ntrail seg = let f = function | Null -> Ok (Tree Null) | _ -> Error "not Null" in alter ntrail seg f let delete ntrail seg = let seg = P.Segment.to_sides seg in get_node_seg ntrail seg >>= function | ((Leaf _ | Tree _), trail) -> go_up_tree (Null, trail) | _ -> Error "Not Leaf nor Tree" (* Graphviz's dot file format *) let link ?label n1 n2 = match label with | None -> Printf.sprintf "%s -> %s;" n1 n2 | Some l -> Printf.sprintf "%s -> %s [label=\"%s\"];" n1 n2 l let null n = Printf.sprintf "%s [shape=point];" n let leaf n value = Printf.sprintf "%s [label=%S];" n (P.Value.to_string value) let tree n = Printf.sprintf "%s [shape=diamond, label=\"\"];" n let node n = Printf.sprintf "%s [shape=circle, label=\"\"];" n let of_node_aux cntr root = let rec aux : int -> t -> (string * string list * int) = fun cntr -> function | Null -> let n = Printf.sprintf "Null%d\n" cntr in (n, [null n], cntr+1) | Leaf value -> let n = Printf.sprintf "Leaf%d\n" cntr in (n, [leaf n value], cntr+1) | Tree node -> let n', s, cntr = aux cntr node in let n = Printf.sprintf "Tree%d" cntr in (n, [tree n; link n n' ] @ s, cntr + 1) | Node (left, right) -> let ln, ls, cntr = aux cntr left in let rn, rs, cntr = aux cntr right in let n = Printf.sprintf "Node%d" cntr in (n, [ node n; link n ln ~label:"L"; link n rn ~label:"R" ] @ ls @ rs, cntr + 1) in aux cntr root let rec of_trail dst cntr = function | Root -> ([], cntr) | Left (r, trail) -> let n = Printf.sprintf "Node%d" cntr in let cntr = cntr + 1 in let r, ss, cntr = of_node_aux cntr r in let (ss', cntr) = of_trail n cntr trail in ([ node n; link n dst ~label:"L"; link n r ~label:"R" ] @ ss @ ss', cntr) | Right (l, trail) -> let n = Printf.sprintf "Node%d" cntr in let cntr = cntr + 1 in let l, ss, cntr = of_node_aux cntr l in let (ss', cntr) = of_trail n cntr trail in ([ node n; link n l ~label:"L"; link n dst ~label:"R" ] @ ss @ ss', cntr) | Treed trail -> let n = Printf.sprintf "Tree%d" cntr in let cntr = cntr + 1 in let (ss, cntr) = of_trail n cntr trail in ([ tree n; link n dst ] @ ss, cntr) let make_digraph ss = "digraph G {\n" ^ String.concat "\n" ss ^ "\n}\n" let dot_of_node root = let (_name, ss, _cntr) = of_node_aux 0 root in make_digraph ss let dot_of_cursor (node, trail) = let (n, ss, cntr) = of_node_aux 0 node in let ss', _ = of_trail n cntr trail in let s = Printf.sprintf "cursor [shape=point, label=\"\"]; cursor -> %s [style=bold];" n in make_digraph (s :: ss @ ss')
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>