package picos_aux
Auxiliary libraries for Picos
Install
Dune Dependency
Authors
Maintainers
Sources
picos-0.6.0.tbz
sha256=3f5a08199cf65c2dae2f7d68f3877178f1da8eabf5376e15114e5a8958087dfa
sha512=ad24910c47ce614268c4268874bb918da7f8b5f03b3ad706bbf30323635262e94ddab6be24eaebbca706bfa82c0a517d4272b396459e020c185942125c9bdb7b
doc/src/picos_aux.htbl/picos_aux_htbl.ml.html
Source file picos_aux_htbl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
let[@inline never] impossible () = failwith "impossible" let ceil_pow_2_minus_1 n = let n = Nativeint.of_int n in let n = Nativeint.logor n (Nativeint.shift_right_logical n 1) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 2) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 4) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 8) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 16) in Nativeint.to_int (if Sys.int_size > 32 then Nativeint.logor n (Nativeint.shift_right_logical n 32) else n) module Atomic = Multicore_magic.Transparent_atomic module Atomic_array = Multicore_magic.Atomic_array type 'k hashed_type = (module Stdlib.Hashtbl.HashedType with type t = 'k) type ('k, 'v, _) tdt = | Nil : ('k, 'v, [> `Nil ]) tdt | Cons : { key : 'k; value : 'v; rest : ('k, 'v, [ `Nil | `Cons ]) tdt; } -> ('k, 'v, [> `Cons ]) tdt | Resize : { spine : ('k, 'v, [ `Nil | `Cons ]) tdt; } -> ('k, 'v, [> `Resize ]) tdt (** During resizing and snapshotting target buckets will be initialized with a physically unique [Resize] value and the source buckets will then be gradually updated to [Resize] values and the target buckets updated with data from the source buckets. *) type ('k, 'v) bucket = | B : ('k, 'v, [< `Nil | `Cons | `Resize ]) tdt -> ('k, 'v) bucket [@@unboxed] type ('k, 'v) pending = | Nothing | Resize of { buckets : ('k, 'v) bucket Atomic_array.t; non_linearizable_size : int Atomic.t array; } type ('k, 'v) state = { hash : 'k -> int; buckets : ('k, 'v) bucket Atomic_array.t; equal : 'k -> 'k -> bool; non_linearizable_size : int Atomic.t array; pending : ('k, 'v) pending; min_buckets : int; max_buckets : int; } (** This record is [7 + 1] words and should be aligned on such a boundary on the second generation heap. It is probably not worth it to pad it further. *) type ('k, 'v) t = ('k, 'v) state Atomic.t (* *) let lo_buckets = 1 lsl 3 and hi_buckets = (* floor_pow_2 *) let mask = ceil_pow_2_minus_1 Sys.max_array_length in mask lxor (mask lsr 1) let min_buckets_default = 1 lsl 4 and max_buckets_default = Int.min hi_buckets (1 lsl 30 (* Limit of [hash] *)) let create (type k) ?hashed_type ?min_buckets ?max_buckets () = let min_buckets = match min_buckets with | None -> min_buckets_default | Some n -> let n = Int.max lo_buckets n |> Int.min hi_buckets in ceil_pow_2_minus_1 (n - 1) + 1 in let max_buckets = match max_buckets with | None -> Int.max min_buckets max_buckets_default | Some n -> let n = Int.max min_buckets n |> Int.min hi_buckets in ceil_pow_2_minus_1 (n - 1) + 1 in let equal, hash = match hashed_type with | None -> (( = ), Stdlib.Hashtbl.seeded_hash (Int64.to_int (Random.bits64 ()))) | Some ((module Hashed_type) : k hashed_type) -> (Hashed_type.equal, Hashed_type.hash) in { hash; buckets = Atomic_array.make min_buckets (B Nil); equal; non_linearizable_size = Array.init (ceil_pow_2_minus_1 (Multicore_magic.instantaneous_domain_index () lor 1) (* Calling [...index ()] helps to ensure [at_exit] processing does not raise. This also potentially adjusts the counter width for the number of domains. *)) (fun _ -> Atomic.make_contended 0); pending = Nothing; min_buckets; max_buckets; } |> Atomic.make_contended (* *) let hashed_type_of (type k) (t : (k, _) t) : k hashed_type = let r = Atomic.get t in (module struct type t = k let hash = r.hash and equal = r.equal end) let min_buckets_of t = (Atomic.get t).min_buckets let max_buckets_of t = (Atomic.get t).max_buckets (* *) let rec take_at backoff bs i = match Atomic_array.unsafe_fenceless_get bs i with | B ((Nil | Cons _) as spine) -> if Atomic_array.unsafe_compare_and_set bs i (B spine) (B (Resize { spine })) then spine else take_at (Backoff.once backoff) bs i | B (Resize spine_r) -> spine_r.spine let rec copy_all r target i t step = let i = (i + step) land (Atomic_array.length target - 1) in let spine = take_at Backoff.default r.buckets i in let (B before) = Atomic_array.unsafe_fenceless_get target i in (* The [before] value is physically different for each resize and so checking that the resize has not finished is sufficient to ensure that the [compare_and_set] below does not disrupt the next resize. *) Atomic.get t == r && begin begin match before with | Resize _ -> Atomic_array.unsafe_compare_and_set target i (B before) (B spine) |> ignore | Nil | Cons _ -> () end; i = 0 || copy_all r target i t step end (* *) let rec split_all r target i t step = let i = (i + step) land (Atomic_array.length r.buckets - 1) in let spine = take_at Backoff.default r.buckets i in let high = Atomic_array.length r.buckets in let[@tail_mod_cons] rec filter t msk chk = function | Nil -> Nil | Cons r -> if t r.key land msk = chk then Cons { r with rest = filter t msk chk r.rest } else filter t msk chk r.rest in let after_lo = filter r.hash high 0 spine in let after_hi = filter r.hash high high spine in let (B before_lo) = Atomic_array.unsafe_fenceless_get target i in let (B before_hi) = Atomic_array.unsafe_fenceless_get target (i + high) in (* The [before_lo] and [before_hi] values are physically different for each resize and so checking that the resize has not finished is sufficient to ensure that the [compare_and_set] below does not disrupt the next resize. *) Atomic.get t == r && begin begin match before_lo with | Resize _ -> Atomic_array.unsafe_compare_and_set target i (B before_lo) (B after_lo) |> ignore | Nil | Cons _ -> () end; begin match before_hi with | Resize _ -> Atomic_array.unsafe_compare_and_set target (i + high) (B before_hi) (B after_hi) |> ignore | Nil | Cons _ -> () end; i = 0 || split_all r target i t step end (* *) let rec merge_all r target i t step = let i = (i + step) land (Atomic_array.length target - 1) in let spine_lo = take_at Backoff.default r.buckets i in let spine_hi = take_at Backoff.default r.buckets (i + Atomic_array.length target) in let[@tail_mod_cons] rec merge rest = function | Nil -> rest | Cons r -> Cons { r with rest = merge rest r.rest } in let ((Nil | Cons _) as after) = merge spine_lo spine_hi in let (B before) = Atomic_array.unsafe_fenceless_get target i in (* The [before] value is physically different for each resize and so checking that the resize has not finished is sufficient to ensure that the [compare_and_set] below does not disrupt the next resize. *) Atomic.get t == r && begin begin match before with | Resize _ -> Atomic_array.unsafe_compare_and_set target i (B before) (B after) |> ignore | Nil | Cons _ -> () end; i = 0 || merge_all r target i t step end (* *) let[@inline never] rec finish t r = match r.pending with | Nothing -> r | Resize { buckets; non_linearizable_size } -> let high_source = Atomic_array.length r.buckets in let high_target = Atomic_array.length buckets in (* We step by random amount to better allow cores to work in parallel. The number of buckets is always a power of two, so any odd number is relatively prime or coprime. *) let step = Int64.to_int (Random.bits64 ()) lor 1 in if if high_source < high_target then begin (* We are growing the table. *) split_all r buckets 0 t step end else if high_target < high_source then begin (* We are shrinking the table. *) merge_all r buckets 0 t step end else begin (* We are snaphotting the table. *) copy_all r buckets 0 t step end then let new_r = { r with buckets; non_linearizable_size; pending = Nothing } in if Atomic.compare_and_set t r new_r then new_r else finish t (Atomic.get t) else finish t (Atomic.get t) (* *) (** This must be called with [r.pending == Nothing]. *) let[@inline never] try_resize t r new_capacity ~clear = (* We must make sure that on every resize we use a physically different [Resize _] value to indicate unprocessed target buckets. The use of [Sys.opaque_identity] below ensures that a new value is allocated. *) let resize_avoid_aba = if clear then B Nil else B (Resize { spine = Sys.opaque_identity Nil }) in let buckets = Atomic_array.make new_capacity resize_avoid_aba in let non_linearizable_size = if clear then Array.init (Array.length r.non_linearizable_size) @@ fun _ -> Atomic.make_contended 0 else r.non_linearizable_size in let new_r = { r with pending = Resize { buckets; non_linearizable_size } } in Atomic.compare_and_set t r new_r && begin finish t new_r |> ignore; true end let rec adjust_estimated_size t r mask delta result = let i = Multicore_magic.instantaneous_domain_index () in let n = Array.length r.non_linearizable_size in if i < n then begin Atomic.fetch_and_add (Array.unsafe_get r.non_linearizable_size i) delta |> ignore; (* Reading the size is potentially expensive, so we only check it occasionally. The bigger the table the less frequently we should need to resize. *) if r.pending == Nothing && Int64.to_int (Random.bits64 ()) land mask = 0 && Atomic.get t == r then begin (* This only gives an "estimate" of the size, which can be off by one or more and even be negative, so this must be used with care. *) let estimated_size r = let cs = r.non_linearizable_size in let n = Array.length cs - 1 in let rec estimated_size cs n sum = let n = n - 1 in if 0 <= n then estimated_size cs n (sum + Atomic.get (Array.unsafe_get cs n)) else sum in estimated_size cs n (Atomic.get (Array.unsafe_get cs n)) in let estimated_size = estimated_size r in let capacity = Atomic_array.length r.buckets in if capacity < estimated_size && capacity < r.max_buckets then try_resize t r (capacity + capacity) ~clear:false |> ignore else if r.min_buckets < capacity && estimated_size + estimated_size + estimated_size < capacity then try_resize t r (capacity lsr 1) ~clear:false |> ignore end; result end else let new_cs = (* We use [n + n + 1] as it keeps the length of the array as a power of 2 minus 1 and so the size of the array/block including header word will be a power of 2. *) Array.init (n + n + 1) @@ fun i -> if i < n then Array.unsafe_get r.non_linearizable_size i else Atomic.make_contended 0 in let new_r = { r with non_linearizable_size = new_cs } in let r = if Atomic.compare_and_set t r new_r then new_r else Atomic.get t in adjust_estimated_size t r mask delta result (* *) (** [get] only returns with a state where [pending = Nothing]. *) let[@inline] get t = let r = Atomic.get t in if r.pending == Nothing then r else finish t r (* *) let rec exists t key = function | Nil -> false | Cons r -> let result = t r.key key in if result then result else exists t key r.rest let mem t key = (* Reads can proceed in parallel with writes. *) let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> false | B (Cons cons_r) -> let result = r.equal cons_r.key key in if result then result else exists r.equal key cons_r.rest | B (Resize resize_r) -> (* A resize is in progress. The spine of the resize still holds what was in the bucket before resize reached that bucket. *) exists r.equal key resize_r.spine (* *) let rec assoc t key = function | Nil -> raise_notrace Not_found | Cons r -> if t r.key key then r.value else assoc t key r.rest let find_exn t key = (* Reads can proceed in parallel with writes. *) let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> raise_notrace Not_found | B (Cons cons_r) -> if r.equal cons_r.key key then cons_r.value else assoc r.equal key cons_r.rest | B (Resize resize_r) -> (* A resize is in progress. The spine of the resize still holds what was in the bucket before resize reached that bucket. *) assoc r.equal key resize_r.spine (* *) let rec try_add t key value backoff = let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> let after = Cons { key; value; rest = Nil } in if Atomic_array.unsafe_compare_and_set r.buckets i (B Nil) (B after) then adjust_estimated_size t r mask 1 true else try_add t key value (Backoff.once backoff) | B (Cons _ as before) -> if exists r.equal key before then false else let after = Cons { key; value; rest = before } in if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B after) then adjust_estimated_size t r mask 1 true else try_add t key value (Backoff.once backoff) | B (Resize _) -> let _ = finish t (Atomic.get t) in try_add t key value Backoff.default (* *) type ('v, _, _) op = | Compare : ('v, 'v, bool) op | Exists : ('v, _, bool) op | Return : ('v, _, 'v) op let rec try_reassoc : type v c r. (_, v) t -> _ -> c -> v -> (v, c, r) op -> _ -> r = fun t key present future op backoff -> let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in let not_found (type v c r) (op : (v, c, r) op) : r = match op with | Compare -> false | Exists -> false | Return -> raise_notrace Not_found in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> not_found op | B (Cons cons_r as before) -> begin if r.equal cons_r.key key then if match op with | Exists | Return -> true | Compare -> cons_r.value == present then let after = Cons { key; value = future; rest = cons_r.rest } in if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B after) then match op with | Compare -> true | Exists -> true | Return -> cons_r.value else try_reassoc t key present future op (Backoff.once backoff) else not_found op else let[@tail_mod_cons] rec reassoc : type v c r. _ -> _ -> c -> v -> (v, c, r) op -> (_, v, 't) tdt -> (_, v, 't) tdt = fun t key present future op -> function | Nil -> raise_notrace Not_found | Cons r -> if t key r.key then match op with | Exists | Return -> Cons { r with value = future } | Compare -> if r.value == present then Cons { r with value = future } else raise_notrace Not_found else Cons { r with rest = reassoc t key present future op r.rest } in match reassoc r.equal key present future op cons_r.rest with | rest -> let after = Cons { cons_r with rest } in if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B after) then match op with | Compare -> true | Exists -> true | Return -> assoc r.equal key cons_r.rest else try_reassoc t key present future op (Backoff.once backoff) | exception Not_found -> not_found op end | B (Resize _) -> let _ = finish t (Atomic.get t) in try_reassoc t key present future op Backoff.default (* *) let rec try_dissoc : type v c r. (_, v) t -> _ -> c -> (v, c, r) op -> _ -> r = fun t key present op backoff -> let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in let not_found (type v c r) (op : (v, c, r) op) : r = match op with | Compare -> false | Exists -> false | Return -> raise_notrace Not_found in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> not_found op | B (Cons cons_r as before) -> begin if r.equal cons_r.key key then if match op with | Exists | Return -> true | Compare -> cons_r.value == present then if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B cons_r.rest) then let res : r = match op with | Compare -> true | Exists -> true | Return -> cons_r.value in adjust_estimated_size t r mask (-1) res else try_dissoc t key present op (Backoff.once backoff) else not_found op else let[@tail_mod_cons] rec dissoc : type v c r. _ -> _ -> c -> (v, c, r) op -> (_, v, 't) tdt -> (_, v, 't) tdt = fun t key present op -> function | Nil -> raise_notrace Not_found | Cons r -> if t key r.key then match op with | Exists | Return -> r.rest | Compare -> if r.value == present then r.rest else raise_notrace Not_found else Cons { r with rest = dissoc t key present op r.rest } in match dissoc r.equal key present op cons_r.rest with | (Nil | Cons _) as rest -> if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B (Cons { cons_r with rest })) then let res : r = match op with | Compare -> true | Exists -> true | Return -> assoc r.equal key cons_r.rest in adjust_estimated_size t r mask (-1) res else try_dissoc t key present op (Backoff.once backoff) | exception Not_found -> not_found op end | B (Resize _) -> let _ = finish t (Atomic.get t) in try_dissoc t key present op Backoff.default (* *) let rec snapshot t ~clear backoff = let r = get t in if try_resize t r (Atomic_array.length r.buckets) ~clear then begin (* At this point the resize has been completed and a new array is used for buckets and [r.buckets] now has an immutable copy of what was in the hash table. *) let snapshot = r.buckets in let rec loop i kvs () = match kvs with | Nil -> if i = Atomic_array.length snapshot then Seq.Nil else loop (i + 1) (match Atomic_array.unsafe_fenceless_get snapshot i with | B (Resize spine_r) -> spine_r.spine | B (Nil | Cons _) -> (* After resize only [Resize] values should be left in the old buckets. *) assert false) () | Cons r -> Seq.Cons ((r.key, r.value), loop i r.rest) in loop 0 Nil end else snapshot t ~clear (Backoff.once backoff) let to_seq t = snapshot t ~clear:false Backoff.default let remove_all t = snapshot t ~clear:true Backoff.default (* *) let find_random_exn t = let try_find_random_non_empty_bucket t = let buckets = (Atomic.get t).buckets in let seed = Int64.to_int (Random.bits64 ()) in let rec try_find_random_non_empty_bucket buckets seed i = match Atomic_array.unsafe_fenceless_get buckets i with | B Nil | B (Resize { spine = Nil }) -> let mask = Atomic_array.length buckets - 1 in let i = (i + 1) land mask in if i <> seed land mask then try_find_random_non_empty_bucket buckets seed i else Nil | B (Cons cons_r) | B (Resize { spine = Cons cons_r }) -> Cons cons_r in try_find_random_non_empty_bucket buckets seed (seed land (Atomic_array.length buckets - 1)) in match try_find_random_non_empty_bucket t with | (Cons cons_r as spine : (_, _, [< `Nil | `Cons ]) tdt) -> (* We found a non-empty bucket - the fast way. *) if cons_r.rest == Nil then cons_r.key else let rec length spine n = match spine with Nil -> n | Cons r -> length r.rest (n + 1) in let n = length cons_r.rest 1 in let rec nth spine i = match spine with | Nil -> impossible () | Cons r -> if i <= 0 then r.key else nth r.rest (i - 1) in nth spine (Random.int n) | Nil -> (* We couldn't find a non-empty bucket - the slow way. *) let bindings = to_seq t |> Array.of_seq in let n = Array.length bindings in if n <> 0 then fst (Array.unsafe_get bindings (Random.int n)) else raise_notrace Not_found (* *) let[@inline] try_add t key value = try_add t key value Backoff.default (* *) let[@inline] try_set t key future = try_reassoc t key future future Exists Backoff.default let[@inline] try_compare_and_set t key present future = try_reassoc t key present future Compare Backoff.default let[@inline] set_exn t key value = try_reassoc t key key value Return Backoff.default (* *) let[@inline] try_remove t key = try_dissoc t key key Exists Backoff.default let[@inline] try_compare_and_remove t key present = try_dissoc t key present Compare Backoff.default let[@inline] remove_exn t key = try_dissoc t key key Return Backoff.default
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>