package picos
Pico scheduler interface
Install
Dune Dependency
Authors
Maintainers
Sources
picos-0.4.0.tbz
sha256=343a8b4759239ca0c107145b8e2cc94c14625fecc0b0887d3c40a9ab7537b8da
sha512=db22b0a5b3adc603c0e815c9011c779f892b9ace76be018b2198d3e24a7d96727c999701025fe5a5fd07d0b452cb7286fc50c939aba0e4dce809941e9ebc12a6
doc/src/picos.htbl/picos_htbl.ml.html
Source file picos_htbl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
let[@inline never] impossible () = failwith "impossible" let ceil_pow_2_minus_1 n = let n = Nativeint.of_int n in let n = Nativeint.logor n (Nativeint.shift_right_logical n 1) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 2) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 4) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 8) in let n = Nativeint.logor n (Nativeint.shift_right_logical n 16) in Nativeint.to_int (if Sys.int_size > 32 then Nativeint.logor n (Nativeint.shift_right_logical n 32) else n) module Atomic = Multicore_magic.Transparent_atomic module Atomic_array = Multicore_magic.Atomic_array type 'k hashed_type = (module Stdlib.Hashtbl.HashedType with type t = 'k) type ('k, 'v, _) tdt = | Nil : ('k, 'v, [> `Nil ]) tdt | Cons : { key : 'k; value : 'v; rest : ('k, 'v, [ `Nil | `Cons ]) tdt; } -> ('k, 'v, [> `Cons ]) tdt | Resize : { spine : ('k, 'v, [ `Nil | `Cons ]) tdt; } -> ('k, 'v, [> `Resize ]) tdt (** During resizing and snapshotting target buckets will be initialized with a physically unique [Resize] value and the source buckets will then be gradually updated to [Resize] values and the target buckets updated with data from the source buckets. *) type ('k, 'v) bucket = | B : ('k, 'v, [< `Nil | `Cons | `Resize ]) tdt -> ('k, 'v) bucket [@@unboxed] type ('k, 'v) pending = | Nothing | Resize of { buckets : ('k, 'v) bucket Atomic_array.t; non_linearizable_size : int Atomic.t array; } type ('k, 'v) state = { hash : 'k -> int; buckets : ('k, 'v) bucket Atomic_array.t; equal : 'k -> 'k -> bool; non_linearizable_size : int Atomic.t array; pending : ('k, 'v) pending; min_buckets : int; max_buckets : int; } (** This record is [7 + 1] words and should be aligned on such a boundary on the second generation heap. It is probably not worth it to pad it further. *) type ('k, 'v) t = ('k, 'v) state Atomic.t (* *) let lo_buckets = 1 lsl 3 and hi_buckets = (* floor_pow_2 *) let mask = ceil_pow_2_minus_1 Sys.max_array_length in mask lxor (mask lsr 1) let min_buckets_default = 1 lsl 4 and max_buckets_default = Int.min hi_buckets (1 lsl 30 (* Limit of [hash] *)) let create (type k) ?hashed_type ?min_buckets ?max_buckets () = let min_buckets = match min_buckets with | None -> min_buckets_default | Some n -> let n = Int.max lo_buckets n |> Int.min hi_buckets in ceil_pow_2_minus_1 (n - 1) + 1 in let max_buckets = match max_buckets with | None -> Int.max min_buckets max_buckets_default | Some n -> let n = Int.max min_buckets n |> Int.min hi_buckets in ceil_pow_2_minus_1 (n - 1) + 1 in let equal, hash = match hashed_type with | None -> (( = ), Stdlib.Hashtbl.seeded_hash (Int64.to_int (Random.bits64 ()))) | Some ((module Hashed_type) : k hashed_type) -> (Hashed_type.equal, Hashed_type.hash) in { hash; buckets = Atomic_array.make min_buckets (B Nil); equal; non_linearizable_size = Array.init (ceil_pow_2_minus_1 (Multicore_magic.instantaneous_domain_index () lor 1) (* Calling [...index ()] helps to ensure [at_exit] processing does not raise. This also potentially adjusts the counter width for the number of domains. *)) (fun _ -> Atomic.make_contended 0); pending = Nothing; min_buckets; max_buckets; } |> Atomic.make_contended (* *) let hashed_type_of (type k) (t : (k, _) t) : k hashed_type = let r = Atomic.get t in (module struct type t = k let hash = r.hash and equal = r.equal end) let min_buckets_of t = (Atomic.get t).min_buckets let max_buckets_of t = (Atomic.get t).max_buckets (* *) let rec take_at backoff bs i = match Atomic_array.unsafe_fenceless_get bs i with | B ((Nil | Cons _) as spine) -> if Atomic_array.unsafe_compare_and_set bs i (B spine) (B (Resize { spine })) then spine else take_at (Backoff.once backoff) bs i | B (Resize spine_r) -> spine_r.spine let rec copy_all r target i t step = let i = (i + step) land (Atomic_array.length target - 1) in let spine = take_at Backoff.default r.buckets i in let (B before) = Atomic_array.unsafe_fenceless_get target i in (* The [before] value is physically different for each resize and so checking that the resize has not finished is sufficient to ensure that the [compare_and_set] below does not disrupt the next resize. *) Atomic.get t == r && begin begin match before with | Resize _ -> Atomic_array.unsafe_compare_and_set target i (B before) (B spine) |> ignore | Nil | Cons _ -> () end; i = 0 || copy_all r target i t step end (* *) let[@tail_mod_cons] rec filter t msk chk = function | Nil -> Nil | Cons r -> if t r.key land msk = chk then Cons { r with rest = filter t msk chk r.rest } else filter t msk chk r.rest let rec split_all r target i t step = let i = (i + step) land (Atomic_array.length r.buckets - 1) in let spine = take_at Backoff.default r.buckets i in let high = Atomic_array.length r.buckets in let after_lo = filter r.hash high 0 spine in let after_hi = filter r.hash high high spine in let (B before_lo) = Atomic_array.unsafe_fenceless_get target i in let (B before_hi) = Atomic_array.unsafe_fenceless_get target (i + high) in (* The [before_lo] and [before_hi] values are physically different for each resize and so checking that the resize has not finished is sufficient to ensure that the [compare_and_set] below does not disrupt the next resize. *) Atomic.get t == r && begin begin match before_lo with | Resize _ -> Atomic_array.unsafe_compare_and_set target i (B before_lo) (B after_lo) |> ignore | Nil | Cons _ -> () end; begin match before_hi with | Resize _ -> Atomic_array.unsafe_compare_and_set target (i + high) (B before_hi) (B after_hi) |> ignore | Nil | Cons _ -> () end; i = 0 || split_all r target i t step end (* *) let[@tail_mod_cons] rec merge rest = function | Nil -> rest | Cons r -> Cons { r with rest = merge rest r.rest } let rec merge_all r target i t step = let i = (i + step) land (Atomic_array.length target - 1) in let spine_lo = take_at Backoff.default r.buckets i in let spine_hi = take_at Backoff.default r.buckets (i + Atomic_array.length target) in let ((Nil | Cons _) as after) = merge spine_lo spine_hi in let (B before) = Atomic_array.unsafe_fenceless_get target i in (* The [before] value is physically different for each resize and so checking that the resize has not finished is sufficient to ensure that the [compare_and_set] below does not disrupt the next resize. *) Atomic.get t == r && begin begin match before with | Resize _ -> Atomic_array.unsafe_compare_and_set target i (B before) (B after) |> ignore | Nil | Cons _ -> () end; i = 0 || merge_all r target i t step end (* *) let[@inline never] rec finish t r = match r.pending with | Nothing -> r | Resize { buckets; non_linearizable_size } -> let high_source = Atomic_array.length r.buckets in let high_target = Atomic_array.length buckets in (* We step by random amount to better allow cores to work in parallel. The number of buckets is always a power of two, so any odd number is relatively prime or coprime. *) let step = Int64.to_int (Random.bits64 ()) lor 1 in if if high_source < high_target then begin (* We are growing the table. *) split_all r buckets 0 t step end else if high_target < high_source then begin (* We are shrinking the table. *) merge_all r buckets 0 t step end else begin (* We are snaphotting the table. *) copy_all r buckets 0 t step end then let new_r = { r with buckets; non_linearizable_size; pending = Nothing } in if Atomic.compare_and_set t r new_r then new_r else finish t (Atomic.get t) else finish t (Atomic.get t) (* *) let rec estimated_size cs n sum = let n = n - 1 in if 0 <= n then estimated_size cs n (sum + Atomic.get (Array.unsafe_get cs n)) else sum (** This only gives an "estimate" of the size, which can be off by one or more and even be negative, so this must be used with care. *) let estimated_size r = let cs = r.non_linearizable_size in let n = Array.length cs - 1 in estimated_size cs n (Atomic.get (Array.unsafe_get cs n)) (** This must be called with [r.pending == Nothing]. *) let[@inline never] try_resize t r new_capacity ~clear = (* We must make sure that on every resize we use a physically different [Resize _] value to indicate unprocessed target buckets. The use of [Sys.opaque_identity] below ensures that a new value is allocated. *) let resize_avoid_aba = if clear then B Nil else B (Resize { spine = Sys.opaque_identity Nil }) in let buckets = Atomic_array.make new_capacity resize_avoid_aba in let non_linearizable_size = if clear then Array.init (Array.length r.non_linearizable_size) @@ fun _ -> Atomic.make_contended 0 else r.non_linearizable_size in let new_r = { r with pending = Resize { buckets; non_linearizable_size } } in Atomic.compare_and_set t r new_r && begin finish t new_r |> ignore; true end let rec adjust_estimated_size t r mask delta result = let i = Multicore_magic.instantaneous_domain_index () in let n = Array.length r.non_linearizable_size in if i < n then begin Atomic.fetch_and_add (Array.unsafe_get r.non_linearizable_size i) delta |> ignore; (* Reading the size is potentially expensive, so we only check it occasionally. The bigger the table the less frequently we should need to resize. *) if r.pending == Nothing && Int64.to_int (Random.bits64 ()) land mask = 0 && Atomic.get t == r then begin let estimated_size = estimated_size r in let capacity = Atomic_array.length r.buckets in if capacity < estimated_size && capacity < r.max_buckets then try_resize t r (capacity + capacity) ~clear:false |> ignore else if r.min_buckets < capacity && estimated_size + estimated_size + estimated_size < capacity then try_resize t r (capacity lsr 1) ~clear:false |> ignore end; result end else let new_cs = (* We use [n + n + 1] as it keeps the length of the array as a power of 2 minus 1 and so the size of the array/block including header word will be a power of 2. *) Array.init (n + n + 1) @@ fun i -> if i < n then Array.unsafe_get r.non_linearizable_size i else Atomic.make_contended 0 in let new_r = { r with non_linearizable_size = new_cs } in let r = if Atomic.compare_and_set t r new_r then new_r else Atomic.get t in adjust_estimated_size t r mask delta result (* *) (** [get] only returns with a state where [pending = Nothing]. *) let[@inline] get t = let r = Atomic.get t in if r.pending == Nothing then r else finish t r (* *) let rec assoc_node t key = function | Nil -> (Nil : (_, _, [< `Nil | `Cons ]) tdt) | Cons r as cons -> if t r.key key then cons else assoc_node t key r.rest let find_node t key = (* Reads can proceed in parallel with writes. *) let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> Nil | B (Cons cons_r as cons) -> if r.equal cons_r.key key then cons else assoc_node r.equal key cons_r.rest | B (Resize resize_r) -> (* A resize is in progress. The spine of the resize still holds what was in the bucket before resize reached that bucket. *) assoc_node r.equal key resize_r.spine (* *) let find_exn t key = match find_node t key with | Nil -> raise_notrace Not_found | Cons r -> r.value let mem t key = find_node t key != Nil (* *) let rec try_add t key value backoff = let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> let after = Cons { key; value; rest = Nil } in if Atomic_array.unsafe_compare_and_set r.buckets i (B Nil) (B after) then adjust_estimated_size t r mask 1 true else try_add t key value (Backoff.once backoff) | B (Cons _ as before) -> if assoc_node r.equal key before != Nil then false else let after = Cons { key; value; rest = before } in if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B after) then adjust_estimated_size t r mask 1 true else try_add t key value (Backoff.once backoff) | B (Resize _) -> let _ = finish t (Atomic.get t) in try_add t key value Backoff.default let[@inline] try_add t key value = try_add t key value Backoff.default (* *) let[@tail_mod_cons] rec dissoc t key = function | Nil -> raise_notrace Not_found | Cons r -> if t key r.key then r.rest else Cons { r with rest = dissoc t key r.rest } let rec remove_node t key backoff = let r = Atomic.get t in let h = r.hash key in let mask = Atomic_array.length r.buckets - 1 in let i = h land mask in match Atomic_array.unsafe_fenceless_get r.buckets i with | B Nil -> Nil | B (Cons cons_r as before) -> begin if r.equal cons_r.key key then if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B cons_r.rest) then adjust_estimated_size t r mask (-1) before else remove_node t key (Backoff.once backoff) else match dissoc r.equal key cons_r.rest with | (Nil | Cons _) as rest -> if Atomic_array.unsafe_compare_and_set r.buckets i (B before) (B (Cons { cons_r with rest })) then assoc_node r.equal key cons_r.rest |> adjust_estimated_size t r mask (-1) else remove_node t key (Backoff.once backoff) | exception Not_found -> Nil end | B (Resize _) -> let _ = finish t (Atomic.get t) in remove_node t key Backoff.default let try_remove t key = remove_node t key Backoff.default != Nil let remove_exn t key = match remove_node t key Backoff.default with | Nil -> raise_notrace Not_found | Cons r -> r.value (* *) let rec snapshot t ~clear backoff = let r = get t in if try_resize t r (Atomic_array.length r.buckets) ~clear then begin (* At this point the resize has been completed and a new array is used for buckets and [r.buckets] now has an immutable copy of what was in the hash table. *) let snapshot = r.buckets in let rec loop i kvs () = match kvs with | Nil -> if i = Atomic_array.length snapshot then Seq.Nil else loop (i + 1) (match Atomic_array.unsafe_fenceless_get snapshot i with | B (Resize spine_r) -> spine_r.spine | B (Nil | Cons _) -> (* After resize only [Resize] values should be left in the old buckets. *) assert false) () | Cons r -> Seq.Cons ((r.key, r.value), loop i r.rest) in loop 0 Nil end else snapshot t ~clear (Backoff.once backoff) let to_seq t = snapshot t ~clear:false Backoff.default let remove_all t = snapshot t ~clear:true Backoff.default (* *) let rec try_find_random_non_empty_bucket buckets seed i = match Atomic_array.unsafe_fenceless_get buckets i with | B Nil | B (Resize { spine = Nil }) -> let mask = Atomic_array.length buckets - 1 in let i = (i + 1) land mask in if i <> seed land mask then try_find_random_non_empty_bucket buckets seed i else Nil | B (Cons cons_r) | B (Resize { spine = Cons cons_r }) -> Cons cons_r let try_find_random_non_empty_bucket t = let buckets = (Atomic.get t).buckets in let seed = Int64.to_int (Random.bits64 ()) in try_find_random_non_empty_bucket buckets seed (seed land (Atomic_array.length buckets - 1)) let rec length spine n = match spine with Nil -> n | Cons r -> length r.rest (n + 1) let length spine = length spine 0 let rec nth spine i = match spine with | Nil -> impossible () | Cons r -> if i <= 0 then r.key else nth r.rest (i - 1) let find_random_exn t = match try_find_random_non_empty_bucket t with | (Cons cons_r as spine : (_, _, [< `Nil | `Cons ]) tdt) -> (* We found a non-empty bucket - the fast way. *) if cons_r.rest == Nil then cons_r.key else let n = length spine in nth spine (Random.int n) | Nil -> (* We couldn't find a non-empty bucket - the slow way. *) let bindings = to_seq t |> Array.of_seq in let n = Array.length bindings in if n <> 0 then fst (Array.unsafe_get bindings (Random.int n)) else raise_notrace Not_found
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>