package piaf
An HTTP library with HTTP/2 support written entirely in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
piaf-0.2.0.tbz
sha256=07fa9009a52faeaae6d86116e75007f5279b185c7bc7c95aab9455f2107370fb
sha512=dfde4bd0a5c8a3b795a8e3d6f6e1f9f1864a9eb0a1b96763c17515d771566af7623ca64db671a8dce2c7838dad08d8465db98f5e4f8dcf5e1a386ef5b29da56c
doc/src/piaf.multipart_form/multipart_form.ml.html
Source file multipart_form.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
let src = Logs.Src.create "multipart-form" module Log = (val Logs.src_log src : Logs.LOG) module Field_name = Field_name module Field = Field module Header = Header module Content_type = Content_type module Content_encoding = Content_encoding module Content_disposition = Content_disposition module IOVec = struct type 'a t = 'a Faraday.iovec = { buffer : 'a; off : int; len : int } let make buffer ~off ~len = { Faraday.buffer; off; len } let substring { Faraday.buffer; off; len } = Bigstringaf.substring buffer ~off ~len let copy buf ~off ~len = let buffer = Bigstringaf.copy buf ~off ~len in make buffer ~off:0 ~len let with_push ?(end_of_line = "\n") push = let eol_len = String.length end_of_line in (* TODO(anmonteiro): optimize *) let write_data s = let len = String.length s in let buffer = Bigstringaf.create len in Bigstringaf.blit_from_string s ~src_off:0 buffer ~dst_off:0 ~len ; push (Some (make buffer ~off:0 ~len)) in let write_line s = let strlen = String.length s in let len = strlen + eol_len in let buffer = Bigstringaf.create len in Bigstringaf.blit_from_string s ~src_off:0 buffer ~dst_off:0 ~len:strlen ; Bigstringaf.blit_from_string end_of_line ~src_off:0 buffer ~dst_off:strlen ~len:eol_len ; push (Some (make buffer ~off:0 ~len)) in (write_data, write_line) end type 'a stream = unit -> 'a option module B64 = struct open Angstrom let parser ~write_data end_of_body = let dec = Base64_rfc2045.decoder `Manual in let check_end_of_body = let expected_len = String.length end_of_body in Unsafe.peek expected_len (fun ba ~off ~len -> let raw = Bigstringaf.substring ba ~off ~len in String.equal raw end_of_body) in let trailer () = let rec finish () = match Base64_rfc2045.decode dec with | `Await -> assert false | `Flush data -> write_data data ; commit >>= finish | `Malformed err -> commit *> fail err | `Wrong_padding -> commit *> fail "wrong padding" | `End -> commit and go () = match Base64_rfc2045.decode dec with | `Await -> Base64_rfc2045.src dec Bytes.empty 0 0 ; commit >>= finish | `Flush data -> write_data data ; commit >>= go | `Malformed err -> commit *> fail err | `Wrong_padding -> commit *> fail "wrong padding" | `End -> commit in go () in fix @@ fun m -> let choose chunk = function | true -> let chunk = Bytes.sub chunk 0 (Bytes.length chunk - 1) in Base64_rfc2045.src dec chunk 0 (Bytes.length chunk) ; commit *> trailer () | false -> Bytes.set chunk (Bytes.length chunk - 1) end_of_body.[0] ; Base64_rfc2045.src dec chunk 0 (Bytes.length chunk) ; advance 1 *> commit *> m in Unsafe.take_while (( <> ) end_of_body.[0]) Bigstringaf.substring >>= fun chunk -> let rec go () = match Base64_rfc2045.decode dec with | `End -> commit | `Await -> let chunk' = Bytes.create (String.length chunk + 1) in Bytes.blit_string chunk 0 chunk' 0 (String.length chunk) ; check_end_of_body >>= choose chunk' | `Flush data -> write_data data ; commit >>= go | `Malformed err -> commit *> fail err | `Wrong_padding -> commit *> fail "wrong padding" in go () let with_emitter ~emitter end_of_body = let write_data, _ = IOVec.with_push emitter in parser ~write_data end_of_body let to_end_of_input ~write_data = let dec = Base64_rfc2045.decoder `Manual in fix @@ fun m -> match Base64_rfc2045.decode dec with | `End -> commit | `Await -> ( peek_char >>= function | None -> Base64_rfc2045.src dec Bytes.empty 0 0 ; commit *> return () | Some _ -> available >>= fun n -> Unsafe.take n (fun ba ~off ~len -> let chunk = Bytes.create len in Bigstringaf.blit_to_bytes ba ~src_off:off chunk ~dst_off:0 ~len ; Base64_rfc2045.src dec chunk 0 len) >>= fun () -> commit *> m) | `Flush data -> write_data data ; commit *> m | `Malformed err -> commit *> fail err | `Wrong_padding -> commit *> fail "wrong padding" let to_end_of_input_with_push push = let write_data, _ = IOVec.with_push push in to_end_of_input ~write_data end module RAW = struct open Angstrom type chunks = { length : int ref; mutable chunks : Bigstringaf.t IOVec.t list; } (* let rec index v max idx chr = if idx >= max then raise Not_found else if Bigstringaf.get v idx = chr then idx else index v max (succ idx) chr let index v chr = index v (Bigstringaf.length v) 0 chr *) let bounded_end_of_body ~max_chunk_size end_of_body_discriminant current_chunk_size c = let cur_size = !current_chunk_size in (* leave space for the `\r` char *) let big_enough = cur_size + 1 >= max_chunk_size in let result = Char.equal end_of_body_discriminant c in let result = big_enough || result in if not result then incr current_chunk_size ; result let iovec_from_chunks { chunks; length } = let len = !length in let result_buffer = Bigstringaf.create len in (* This is a rev list, so we walk the chunks backwards. *) let final_len = List.fold_left (fun prev_off { IOVec.buffer; off; len } -> let cur_off = prev_off - len in Bigstringaf.unsafe_blit buffer ~src_off:off result_buffer ~dst_off:cur_off ~len ; cur_off) len chunks in assert (final_len = 0) ; IOVec.make result_buffer ~off:0 ~len:(Bigstringaf.length result_buffer) let parser ~max_chunk_size ~write_data ~pred ~check_end = let current_chunks = { length = ref 0; chunks = [] } in let pred = pred current_chunks.length in fix (fun m -> Unsafe.take_till pred IOVec.copy >>= fun chunk -> check_end >>= function | true -> (* XXX(dinosaure): if it returns [true], we have in front * of us the end of the part. We need to **delete** the * character which helped us to recognize the begin of * [end_of_body]. *) current_chunks.chunks <- chunk :: current_chunks.chunks ; let iovec = iovec_from_chunks current_chunks in current_chunks.length := 0 ; current_chunks.chunks <- [] ; if iovec.len <> 0 then write_data iovec ; commit | false -> (* [\r] *) (* XXX(dinosaure): otherwise, we restore the end of our chunk * with the first character of [end_of_body] and pass it to * [write_data]. Then we redo the compuation. *) (* Bytes.set chunk (Bytes.length chunk - 1) end_of_body.[0] ; *) Unsafe.take 1 IOVec.copy >>= fun cr -> incr current_chunks.length ; current_chunks.chunks <- cr :: chunk :: current_chunks.chunks ; if !(current_chunks.length) >= max_chunk_size then ( let iovec = iovec_from_chunks current_chunks in current_chunks.length := 0 ; current_chunks.chunks <- [] ; write_data iovec ; commit *> m) else (* XXX(anmonteiro): not sure about this? *) commit *> m) let multipart_parser ~max_chunk_size ~write_data end_of_body = let check_end_of_body = let expected_len = String.length end_of_body in Unsafe.peek expected_len (fun ba ~off ~len -> let raw = Bigstringaf.substring ba ~off ~len in String.equal raw end_of_body) in let bounded_end_of_body = bounded_end_of_body ~max_chunk_size end_of_body.[0] in parser ~max_chunk_size ~write_data ~pred:bounded_end_of_body ~check_end:check_end_of_body let with_emitter ~max_chunk_size ~emitter end_of_body = let write_data x = emitter (Some x) in multipart_parser ~max_chunk_size ~write_data end_of_body let to_end_of_input ~max_chunk_size ~write_data = parser ~max_chunk_size ~write_data ~check_end:at_end_of_input ~pred:(fun current_chunk_size _ -> let cur_size = !current_chunk_size in (* leave space for an additional character *) let big_enough = cur_size + 1 >= max_chunk_size in if not big_enough then incr current_chunk_size ; big_enough) let to_end_of_input_with_push ~max_chunk_size push = let write_data x = push (Some x) in to_end_of_input ~max_chunk_size ~write_data end module QP = struct open Angstrom let parser ~write_data ~write_line end_of_body = let dec = Pecu.decoder `Manual in let check_end_of_body = let expected_len = String.length end_of_body in Unsafe.peek expected_len (fun ba ~off ~len -> let raw = Bigstringaf.substring ba ~off ~len in String.equal raw end_of_body) in let trailer () = let rec finish () = match Pecu.decode dec with | `Await -> assert false (* on [pecu], because [finish] was called just before [Pecu.src dec Bytes.empty 0 0] (so, when [len = 0]), semantically, it's impossible to retrieve this case. If [pecu] expects more inputs and we noticed end of input, it will return [`Malformed]. *) | `Data data -> write_data data ; commit >>= finish | `Line line -> write_line line ; commit >>= finish | `End -> commit | `Malformed err -> commit *> fail err and go () = match Pecu.decode dec with | `Await -> (* definitely [end_of_body]. *) Pecu.src dec Bytes.empty 0 0 ; commit >>= finish | `Data data -> write_data data ; commit >>= go | `Line line -> write_line line ; commit >>= go | `End -> commit | `Malformed err -> commit *> fail err in go () in fix @@ fun m -> let choose chunk = function | true -> (* at this stage, we are at the end of body. We came from [`Await] case, so it's safe to notice to [pecu] the last [chunk]. [trailer] will unroll all outputs availables on [pecu]. *) let chunk = Bytes.sub chunk 0 (Bytes.length chunk - 1) in Pecu.src dec chunk 0 (Bytes.length chunk) ; commit >>= trailer | false -> (* at this stage, byte after [chunk] is NOT a part of [end_of_body]. We can notice to [pecu] [chunk + end_of_body.[0]], advance on the Angstrom's input to one byte, and recall fixpoint until [`Await] case (see below). *) Bytes.set chunk (Bytes.length chunk - 1) end_of_body.[0] ; Pecu.src dec chunk 0 (Bytes.length chunk) ; advance 1 *> commit *> m in (* take while we did not discover the first byte of [end_of_body]. *) Unsafe.take_while (( <> ) end_of_body.[0]) Bigstringaf.substring >>= fun chunk -> (* start to know what we need to do with [pecu]. *) let rec go () = match Pecu.decode dec with | `End -> commit | `Await -> (* [pecu] expects inputs. At this stage, we know that after [chunk], we have the first byte of [end_of_body] - but we don't know if we have [end_of_body] or a part of it. [check_end_of_body] will advance to see if we really have [end_of_body]. The result will be sended to [choose]. *) let chunk' = Bytes.create (String.length chunk + 1) in Bytes.blit_string chunk 0 chunk' 0 (String.length chunk) ; check_end_of_body <* commit >>= choose chunk' | `Data data -> write_data data ; commit >>= go | `Line line -> write_line line ; commit >>= go | `Malformed err -> commit *> fail err in go () let to_end_of_input ~write_data ~write_line = let dec = Pecu.decoder `Manual in fix @@ fun m -> match Pecu.decode dec with | `End -> commit | `Await -> ( peek_char >>= function | None -> Pecu.src dec Bytes.empty 0 0 ; commit | Some _ -> available >>= fun n -> Unsafe.take n (fun ba ~off ~len -> let chunk = Bytes.create len in Bigstringaf.blit_to_bytes ba ~src_off:off chunk ~dst_off:0 ~len ; Pecu.src dec chunk 0 len) *> commit *> m) | `Data data -> write_data data ; commit *> m | `Line line -> write_line line ; commit *> m | `Malformed err -> commit *> fail err let with_push ~push end_of_body = let write_data, write_line = IOVec.with_push push in parser ~write_data ~write_line end_of_body let to_end_of_input_with_push ?end_of_line push = let write_data, write_line = IOVec.with_push ?end_of_line push in to_end_of_input ~write_data ~write_line end type 'a elt = { header : Header.t; body : 'a } type 'a t = Leaf of 'a elt | Multipart of 'a t option list elt let rec map f = function | Leaf { header; body } -> Leaf { header; body = f body } | Multipart { header; body } -> Multipart { header; body = List.map (Option.map (map f)) body } let rec flatten = function | Leaf elt -> [ elt ] | Multipart { header = _; body } -> List.flatten @@ List.filter_map (Option.map flatten) body let iter ~f buf ~off ~len = for i = off to len - 1 do f buf.[i] done let to_quoted_printable : ?length:int -> (string * int * int) stream -> (string * int * int) stream = fun ?length:(chunk_length = 4096) stream -> let chunk = Bytes.create chunk_length in let encoder = Pecu.encoder `Manual in let queue = Ke.Rke.create ~capacity:128 Bigarray.Int in let rec emit () = Ke.Rke.cons queue 256 ; let len = chunk_length - Pecu.dst_rem encoder in Some (Bytes.unsafe_to_string chunk, 0, len) and pending = function | `Ok -> go () | `Partial -> let len = chunk_length - Pecu.dst_rem encoder in Some (Bytes.unsafe_to_string chunk, 0, len) and go () = match Ke.Rke.pop_exn queue with | 256 (* Await *) -> ( Pecu.dst encoder chunk 0 chunk_length ; match Pecu.encode encoder `Await with | `Ok -> (go [@tailcall]) () | `Partial -> (emit [@tailcall]) ()) | 257 (* Line_break *) -> ( (* XXX(dinosaure): we encode, in any case, a last CRLF to ensure that any line emitted by [to_quoted_printable] finish with a [CRLF]. TODO: may be this behavior is strictly under [Pecu] impl. *) Ke.Rke.cons queue 258 ; match Pecu.encode encoder `Line_break with | `Ok -> go () | `Partial -> (emit [@tailcall]) ()) | 258 (* End *) -> Ke.Rke.cons queue 259 ; (pending [@tailcall]) (Pecu.encode encoder `End) | 259 -> assert (Pecu.encode encoder `Await = `Ok) ; Ke.Rke.cons queue 259 ; None | chr -> ( match Pecu.encode encoder (`Char (Char.chr chr)) with | `Ok -> (go [@tailcall]) () | `Partial -> (emit [@tailcall]) ()) | exception Ke.Rke.Empty -> match stream () with | Some (buf, off, len) -> iter ~f:(fun chr -> Ke.Rke.push queue (Char.code chr)) buf ~off ~len ; (go [@tailcall]) () | None -> Ke.Rke.push queue 257 ; (go [@tailcall]) () in Pecu.dst encoder chunk 0 chunk_length ; go let to_base64 : ?length:int -> (string * int * int) stream -> (string * int * int) stream = fun ?length:(chunk_length = 4096) stream -> let chunk = Bytes.create chunk_length in let encoder = Base64_rfc2045.encoder `Manual in let queue = Ke.Rke.create ~capacity:128 Bigarray.Int in let rec emit () = Ke.Rke.cons queue 256 ; let len = chunk_length - Base64_rfc2045.dst_rem encoder in Some (Bytes.unsafe_to_string chunk, 0, len) and pending = function | `Ok -> (go [@tailcall]) () | `Partial -> let len = chunk_length - Base64_rfc2045.dst_rem encoder in Some (Bytes.unsafe_to_string chunk, 0, len) and go () = match Ke.Rke.pop_exn queue with | 256 (* Await *) -> ( Base64_rfc2045.dst encoder chunk 0 chunk_length ; match Base64_rfc2045.encode encoder `Await with | `Ok -> (go [@tailcall]) () | `Partial -> (emit [@tailcall]) ()) | 257 (* End *) -> Ke.Rke.cons queue 258 ; (pending [@tailcall]) (Base64_rfc2045.encode encoder `End) | 258 -> assert (Base64_rfc2045.encode encoder `Await = `Ok) ; Ke.Rke.cons queue 258 ; None | chr -> ( match Base64_rfc2045.encode encoder (`Char (Char.chr chr)) with | `Ok -> (go [@tailcall]) () | `Partial -> (emit [@tailcall]) ()) | exception Ke.Rke.Empty -> match stream () with | Some (buf, off, len) -> iter ~f:(fun chr -> Ke.Rke.push queue (Char.code chr)) buf ~off ~len ; (go [@tailcall]) () | None -> Ke.Rke.push queue 257 ; (go [@tailcall]) () in Base64_rfc2045.dst encoder chunk 0 chunk_length ; go let content_encoding fields = let encoding : Content_encoding.t ref = ref `Bit7 in let exception Found in try List.iter (function | Field.Field (_, Content_encoding, v) -> encoding := v ; raise Found | _ -> ()) fields ; !encoding with Found -> !encoding let failf fmt = Fmt.kstr Angstrom.fail fmt let octet ~max_chunk_size ~emitter boundary header = let open Angstrom in match boundary with | None -> (match content_encoding header with | `Quoted_printable -> Log.debug (fun m -> m "Decode the quoted-printable final part.") ; QP.to_end_of_input_with_push emitter | `Base64 -> Log.debug (fun m -> m "Decode the base64 final part.") ; B64.to_end_of_input_with_push emitter | `Bit7 | `Bit8 | `Binary -> Log.debug (fun m -> m "Decode the 8-bit final part.") ; RAW.to_end_of_input_with_push ~max_chunk_size emitter | `Ietf_token v | `X_token v -> failf "Invalid Content-Transfer-Encoding value (%s)" v) >>= fun () -> emitter None ; return () | Some boundary -> let end_of_body = Rfc2046.make_delimiter boundary in (match content_encoding header with | `Quoted_printable -> Log.debug (fun m -> m "Decode a quoted-printable part.") ; QP.with_push ~push:emitter end_of_body | `Base64 -> Log.debug (fun m -> m "Decode a base64 part.") ; B64.with_emitter ~emitter end_of_body | `Bit7 | `Bit8 | `Binary -> Log.debug (fun m -> m "Decode a 8-bit part.") ; RAW.with_emitter ~max_chunk_size ~emitter end_of_body | `Ietf_token v | `X_token v -> failf "Invalid Content-Transfer-Encoding value (%s)" v) >>= fun () -> emitter None ; return () type 'id emitters = Header.t -> (Bigstringaf.t Faraday.iovec option -> unit) * 'id type discrete = [ `Text | `Image | `Audio | `Video | `Application ] let boundary header = let content_type = Header.content_type header in match List.assoc_opt "boundary" (Content_type.parameters content_type) with | Some (Token boundary) | Some (String boundary) -> Some boundary | None -> None let parser : max_chunk_size:int -> emitters:'id emitters -> Field.field list -> 'id t Angstrom.t = fun ~max_chunk_size ~emitters header -> let open Angstrom in let rec body parent header = match Content_type.ty (Header.content_type header) with | `Ietf_token v | `X_token v -> failf "Invalid Content-Transfer-Encoding value (%s)" v | #discrete -> let emitter, id = emitters header in octet ~max_chunk_size ~emitter parent header >>| fun () -> Leaf { header; body = id } | `Multipart -> match boundary header with | Some boundary -> Rfc2046.multipart_body ?parent boundary (body (Option.some boundary)) >>| List.map (fun (_header, contents) -> contents) >>| fun parts -> Multipart { header; body = parts } | None -> failf "Invalid Content-Type, missing boundary" in body None header let parser ~max_chunk_size ~emitters content_type = parser ~max_chunk_size ~emitters [ Field.Field (Field_name.content_type, Field.Content_type, content_type) ] let blit src src_off dst dst_off len = Bigstringaf.blit_from_string src ~src_off dst ~dst_off ~len let parse : max_chunk_size:int -> emitters:'id emitters -> Content_type.t -> [ `String of string | `Eof ] -> [ `Continue | `Done of 'id t | `Fail of string ] = fun ~max_chunk_size ~emitters content_type -> let parser = parser ~emitters ~max_chunk_size content_type in let state = ref (Angstrom.Unbuffered.parse parser) in let ke = Ke.Rke.create ~capacity:0x1000 Bigarray.char in fun data -> match !state with | Angstrom.Unbuffered.Done (_, tree) -> `Done tree | Fail (_, _, msg) -> `Fail msg | Partial { committed; continue } -> Ke.Rke.N.shift_exn ke committed ; if committed = 0 then Ke.Rke.compress ke ; Log.debug (fun m -> m "Partial state of the multipart/form stream.") ; (match data with | `String "" -> () | `String str -> Log.debug (fun m -> m "Capacity of the internal queue: %d byte(s)." (Ke.Rke.capacity ke)) ; Log.debug (fun m -> m "Length of the internal queue: %d byte(s)." (Ke.Rke.length ke)) ; Ke.Rke.N.push ke ~blit ~length:String.length ~off:0 ~len:(String.length str) str ; let[@warning "-8"] (slice :: _) = Ke.Rke.N.peek ke in state := continue slice ~off:0 ~len:(Bigstringaf.length slice) Incomplete | `Eof -> ( Log.debug (fun m -> m "End of input.") ; match Ke.Rke.N.peek ke with | [] -> Log.debug (fun m -> m "No more payloads.") ; state := continue Bigstringaf.empty ~off:0 ~len:0 Complete | [ slice ] -> Log.debug (fun m -> m "Remain one payload: %S" (Bigstringaf.to_string slice)) ; state := continue slice ~off:0 ~len:(Bigstringaf.length slice) Complete | slice :: _ -> Log.debug (fun m -> m "Remain multiple payloads") ; state := continue slice ~off:0 ~len:(Bigstringaf.length slice) Incomplete)) ; `Continue let of_stream_tbl stream content_type = let gen = let v = ref (-1) in fun () -> incr v ; !v in let tbl = Hashtbl.create 0x10 in let emitters _header = let idx = gen () in let buf = Buffer.create 0x100 in Hashtbl.add tbl idx buf ; ( (function | Some iovec -> let str = IOVec.substring iovec in Buffer.add_string buf str | None -> ()), idx ) in let parse = parse ~emitters ~max_chunk_size:0x100 content_type in let rec go () = let data = match stream () with None -> `Eof | Some str -> `String str in match parse data with | `Continue -> go () | `Done m -> Ok (m, tbl) | `Fail _msg -> Error (`Msg "Invalid input") in go () let of_stream_to_list stream content_type = match of_stream_tbl stream content_type with | Ok (m, tbl) -> let assoc = Hashtbl.fold (fun k b a -> (k, Buffer.contents b) :: a) tbl [] in Ok (m, assoc) | Error e -> Error e let of_stream_to_tree stream content_type = match of_stream_tbl stream content_type with | Ok (m, tbl) -> let m' = map (fun k -> Buffer.contents (Hashtbl.find tbl k)) m in Ok m' | Error e -> Error e let stream_of_string str = let consumed = ref false in fun () -> if !consumed then None else ( consumed := true ; Some str) let of_string_to_list str content_type = of_stream_to_list (stream_of_string str) content_type let of_string_to_tree str content_type = of_stream_to_tree (stream_of_string str) content_type type part = { header : Header.t; body : (string * int * int) stream } type multipart = { header : Header.t; parts : part list } let part ?(header = Header.empty) ?disposition ?encoding stream = let header = match disposition with | Some v -> Header.add Field_name.content_disposition (Field.Content_disposition, v) header | None -> header in let header = match encoding with | Some v -> Header.add Field_name.content_transfer_encoding (Field.Content_encoding, v) header | None -> header in let content_type = Header.content_type header in let encoding = content_encoding header in if not (Content_type.is_discrete content_type) then Fmt.invalid_arg "Content-type MUST be discrete type to a make a part" ; let stream = match encoding with | `Quoted_printable -> to_quoted_printable stream | `Base64 -> to_base64 stream | `Bit8 | `Binary | `Bit7 -> stream | `Ietf_token _ | `X_token _ -> assert false in { header; body = stream } let multipart_content_default = let open Content_type in make `Multipart (Subtype.v "form-data") Parameters.empty let multipart ~rng ?g ?(header = Header.empty) ?boundary parts = let boundary = match boundary with Some boundary -> boundary | None -> rng ?g 8 in let boundary = Content_type.Parameters.v boundary in let content_type = if Header.exists Field_name.content_type header then Header.content_type header else multipart_content_default in let content_type = Content_type.with_parameter content_type ("boundary", boundary) in let header = Header.replace Field_name.content_type (Field.Content_type, content_type) header in { header; parts } (* stream helpers *) module Stream = struct let none () = None let map f stream = let go () = match stream () with Some v -> Some (f v) | None -> None in go let of_string x = let once = ref false in let go () = if !once then None else ( once := true ; Some (x, 0, String.length x)) in go let crlf () = of_string "\r\n" let concat s0 s1 = let c = ref s0 in let rec go () = match !c () with | Some x -> Some x | None -> if !c == s0 then ( c := s1 ; go ()) else None in go let ( @ ) a b = concat a b let of_part { header; body } = let content_stream = map (fun s -> (s, 0, String.length s)) (Prettym.to_stream Header.Encoder.header header) in content_stream @ crlf () @ body end let to_stream : multipart -> Header.t * (string * int * int) stream = fun { header; parts } -> let boundary = match Content_type.boundary (Header.content_type header) with | Some v -> v | None -> Fmt.failwith "Multipart MUST have a boundary" (* XXX(dinosaure): should never occur! *) in let beginner = Rfc2046.make_dash_boundary boundary ^ "\r\n" in let inner = Rfc2046.make_delimiter boundary ^ "\r\n" in let closer = Rfc2046.make_close_delimiter boundary ^ "\r\n" in let rec go stream = function | [] -> Stream.none | [ x ] -> Stream.(stream @ of_part x @ of_string closer) | x :: r -> let stream = Stream.(stream @ of_part x @ of_string inner) in go stream r in (header, go (Stream.of_string beginner) parts)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>