package patricia-tree
Patricia Tree data structure in OCaml for maps and sets. Supports generic key-value pairs
Install
Dune Dependency
Authors
Maintainers
Sources
patricia-tree-0.11.0.tbz
sha256=18fcde5d35d65c9bb2f9ec4ff732ecdd8969ba6fc2cf51d29ecb3be66e2fe664
sha512=da038d5096deb4bf3c02efd694e962ecf9b2571d140fa1fef17cce474f628ec070b93a44fd742748b9d3ba0e51041f864623d83e9cb0c72214abb0fb4a043625
doc/src/patricia-tree/functors.ml.html
Source file functors.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
(**************************************************************************) (* This file is part of the Codex semantics library *) (* (patricia-tree sub-component). *) (* *) (* Copyright (C) 2024-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file LICENSE). *) (**************************************************************************) open Ints open Signatures open Key_value open Nodes (** [match_prefix k p m] returns [true] if and only if the key [k] has prefix [p] up to bit [m]. *) let match_prefix k p m = mask k m = p (** Returns true if the branch caracterized by the two first arguments would contain the branch caracterized by the second (as right or left subtree) *) let [@inline always] branches_before l_prefix (l_mask : mask) (r_prefix : intkey) (r_mask : mask) = unsigned_lt (r_mask :> int) (l_mask :> int) && match_prefix (r_prefix :> int) l_prefix l_mask module MakeCustomHeterogeneousMap (Key:HETEROGENEOUS_KEY) (Value:HETEROGENEOUS_VALUE) (NODE:NODE with type 'a key = 'a Key.t and type ('key,'map) value = ('key,'map) Value.t) : HETEROGENEOUS_MAP with type 'a key = 'a Key.t and type ('key,'map) value = ('key,'map) Value.t and type 'a t = 'a NODE.t = struct module Core = struct include NODE let rec findint: type a map. a Key.t -> int -> map t -> (a,map) value = fun witness searched m -> match NODE.view m with | Leaf{key;value} -> begin match Key.polyeq key witness with | Eq -> value | Diff -> raise Not_found end | Branch{branching_bit;tree0;tree1;_} -> (* Optional if not (match_prefix searched prefix branching_bit) then raise Not_found else *) if ((branching_bit :> int) land searched == 0) then findint witness searched tree0 else findint witness searched tree1 | Empty -> raise Not_found let find searched m = findint searched (Key.to_int searched) m let find_opt searched m = match find searched m with | x -> Some x | exception Not_found -> None end include Core type 'map key_value_pair = KeyValue: 'a Key.t * ('a,'map) value -> 'map key_value_pair (* Merge trees whose prefix disagree. *) let join pa treea pb treeb = (* Printf.printf "join %d %d\n" pa pb; *) let m = branching_bit (pa :> int) (pb :> int) in let p = mask (pa :> int) (* for instance *) m in if ((pa :> int) land (m :> int)) = 0 then branch ~prefix:p ~branching_bit:m ~tree0:treea ~tree1:treeb else branch ~prefix:p ~branching_bit:m ~tree0:treeb ~tree1:treea let singleton = leaf let rec cardinal m = match NODE.view m with | Empty -> 0 | Leaf _ -> 1 | Branch{tree0; tree1; _ } -> cardinal tree0 + cardinal tree1 let is_singleton m = match NODE.view m with | Leaf{key;value} -> Some (KeyValue(key,value)) | _ -> None let rec split: type a map. a key -> int -> map t -> map t * ((a,map) value) option * map t = fun split_key split_key_int m -> match NODE.view m with | Leaf{key;value} -> begin match Key.polyeq key split_key with | Eq -> NODE.empty, Some value, NODE.empty | Diff -> if unsigned_lt (Key.to_int key) split_key_int then m, None, NODE.empty else NODE.empty, None, m end | Branch{prefix;branching_bit;tree0;tree1} -> if not (match_prefix split_key_int prefix branching_bit) then if unsigned_lt (prefix :> int) split_key_int then m, None, NODE.empty else NODE.empty, None, m else if ((branching_bit :> int) land split_key_int == 0) then let left, found, right = split split_key split_key_int tree0 in left, found, NODE.branch ~prefix ~branching_bit ~tree0:right ~tree1 else let left, found, right = split split_key split_key_int tree1 in NODE.branch ~prefix ~branching_bit ~tree0 ~tree1:left, found, right | Empty -> NODE.empty, None, NODE.empty let split k m = split k (Key.to_int k) m let mem searched m = match findint searched (Key.to_int searched) m with | exception Not_found -> false | _ -> true let insert: type a map. a Key.t -> ((a,map) Value.t option -> (a,map) Value.t) -> map t -> map t = fun thekey f t -> let thekeyint = Key.to_int thekey in (* Preserve physical equality whenever possible. *) let exception Unmodified in try let rec loop t = match NODE.view t with | Empty -> leaf thekey (f None) | Leaf{key;value=old} -> begin match Key.polyeq key thekey with | Eq -> let newv = f (Some old) in if newv == old then raise Unmodified else leaf key newv | Diff -> let keyint = (Key.to_int key) in join thekeyint (leaf thekey (f None)) keyint t end | Branch{prefix;branching_bit;tree0;tree1} -> if match_prefix thekeyint prefix branching_bit then if ((branching_bit :> int) land thekeyint) == 0 then branch ~prefix ~branching_bit ~tree0:(loop tree0) ~tree1 else branch ~prefix ~branching_bit ~tree0 ~tree1:(loop tree1) else join thekeyint (leaf thekey (f None)) (prefix :> int) t in loop t with Unmodified -> t (* XXXX: This is a better update, that can also remove element, depending on how the join between the old and new values goes. Can be useful (e.g. when join is top), I should export that, maybe replace insert with it. *) (* TODO: Test. *) let update: type a map. a Key.t -> ((a,map) Value.t option -> (a,map) Value.t option) -> map t -> map t = fun thekey f t -> let thekeyint = Key.to_int thekey in (* Preserve physical equality whenever possible. *) let exception Unmodified in try let rec loop t = match NODE.view t with | Empty -> begin match (f None) with | None -> raise Unmodified | Some v -> leaf thekey v end | Leaf{key;value=old} -> begin match Key.polyeq key thekey with | Eq -> let newv = f (Some old) in begin match newv with | None -> empty | Some newv when newv == old -> raise Unmodified | Some newv -> leaf key newv end | Diff -> let keyint = (Key.to_int key) in begin match f None with | None -> raise Unmodified | Some value -> join thekeyint (leaf thekey value) keyint t end end | Branch{prefix;branching_bit;tree0;tree1} -> if match_prefix thekeyint prefix branching_bit then if (thekeyint land (branching_bit :> int)) == 0 then branch ~prefix ~branching_bit ~tree0:(loop tree0) ~tree1 else branch ~prefix ~branching_bit ~tree0 ~tree1:(loop tree1) else begin match f None with | None -> raise Unmodified | Some value -> join thekeyint (leaf thekey value) (prefix :> int) t end in loop t with Unmodified -> t let rec removeint to_remove m = match NODE.view m with | Leaf{key;_} when (Key.to_int key) == to_remove -> empty | (Empty | Leaf _) -> m | Branch{prefix;branching_bit;tree0;tree1} -> if ((branching_bit :> int) land to_remove) == 0 then begin let tree0' = removeint to_remove tree0 in if tree0' == empty then tree1 else if tree0' == tree0 then m else branch ~prefix ~branching_bit ~tree0:tree0' ~tree1 end else begin let tree1' = removeint to_remove tree1 in if tree1' == empty then tree0 else if tree1' == tree1 then m else branch ~prefix ~branching_bit ~tree0 ~tree1:tree1' end let add key value t = insert key (fun _ -> value) t let remove to_remove m = removeint (Key.to_int to_remove) m module WithForeign(Map2:NODE_WITH_FIND with type 'a key = 'a key) = struct (* Intersects the first map with the values of the second map, trying to preserve physical equality of the first map whenever possible. *) type ('map1,'map2) polyinter_foreign = { f: 'a. 'a key -> ('a,'map1) value -> ('a,'map2) Map2.value -> ('a,'map1) value } [@@unboxed] let rec nonidempotent_inter f ta tb = match NODE.view ta,Map2.view tb with | Empty, _ | _, Empty -> NODE.empty | Leaf{key;value},_ -> (try let res = Map2.find key tb in let newval = (f.f key value res) in if newval == value then ta else NODE.leaf key newval with Not_found -> NODE.empty) | _,Leaf{key;value} -> (try let res = find key ta in NODE.leaf key (f.f key res value) with Not_found -> NODE.empty) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = (nonidempotent_inter f ta0 tb0) in let tree1 = (nonidempotent_inter f ta1 tb1) in if(ta0 == tree0 && ta1 == tree1) then ta else NODE.branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then nonidempotent_inter f ta0 tb else nonidempotent_inter f ta1 tb else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then nonidempotent_inter f ta tb0 else nonidempotent_inter f ta tb1 else NODE.empty type ('map2,'map1) polyfilter_map = { f: 'a. 'a Key.t -> ('a,'map2) Map2.value -> ('a,'map1) value option } [@@unboxed] let rec (f:('b,'c) polyfilter_map) m = match Map2.view m with | Empty -> empty | Leaf{key;value} -> (match (f.f key value) with Some v -> leaf key v | None -> empty) | Branch{prefix;branching_bit;tree0;tree1} -> let tree0 = filter_map_no_share f tree0 in let tree1 = filter_map_no_share f tree1 in branch ~prefix ~branching_bit ~tree0 ~tree1 (** Add all the bindings in tb to ta (after transformation). *) type ('map1,'map2) polyupdate_multiple = { f: 'a. 'a Key.t -> ('a,'map1) value option -> ('a,'map2) Map2.value -> ('a,'map1) value option } [@@unboxed] let rec update_multiple_from_foreign (tb:'map2 Map2.t) f (ta:'map1 t) = let upd_tb tb = filter_map_no_share {f=fun key value -> f.f key None value} tb in match NODE.view ta,Map2.view tb with | Empty, _ -> upd_tb tb | _, Empty -> ta | _,Leaf{key;value} -> update key (fun maybeval -> f.f key maybeval value) ta | Leaf{key;value},_ -> let found = ref false in let f: type a. a key -> (a,'map2) Map2.value -> (a,'map1) value option = fun curkey curvalue -> match Key.polyeq key curkey with | Eq -> found := true; f.f curkey (Some value) curvalue | Diff -> f.f curkey None curvalue in let res = filter_map_no_share {f} tb in if !found then res else add key value res | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = update_multiple_from_foreign tb0 f ta0 in let tree1 = update_multiple_from_foreign tb1 f ta1 in if tree0 == ta0 && tree1 == ta1 then ta else branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then let ta0' = update_multiple_from_foreign tb f ta0 in if ta0' == ta0 then ta else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0' ~tree1:ta1 else let ta1' = update_multiple_from_foreign tb f ta1 in if ta1' == ta1 then ta else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:ta1' else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then let tree0 = update_multiple_from_foreign tb0 f ta in let tree1 = upd_tb tb1 in branch ~prefix:pb ~branching_bit:mb ~tree0 ~tree1 else let tree0 = upd_tb tb0 in let tree1 = update_multiple_from_foreign tb1 f ta in branch ~prefix:pb ~branching_bit:mb ~tree0 ~tree1 else join (pa :> int) ta (pb :> int) (upd_tb tb) (* Map difference: (possibly) remove from ta elements that are in tb, the other are preserved, no element is added. *) type ('map1,'map2,'map3) polyupdate_multiple_inter = { f: 'a. 'a Key.t -> ('a,'map1) value -> ('a,'map2) Map2.value -> ('a,'map3) value option } [@@unboxed] let rec update_multiple_from_inter_with_foreign tb f ta = match NODE.view ta, Map2.view tb with | Empty, _ -> ta | _, Empty -> ta | Leaf{key;value},_ -> begin match Map2.find key tb with | exception Not_found -> ta | foundv -> begin match f.f key value foundv with | None -> empty | Some v when v == value -> ta | Some v -> leaf key v end end | _,Leaf{key;value} -> update key (fun v -> match v with None -> None | Some v -> f.f key v value) ta | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = update_multiple_from_inter_with_foreign tb0 f ta0 in let tree1 = update_multiple_from_inter_with_foreign tb1 f ta1 in if tree0 == ta0 && tree1 == ta1 then ta else branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then let ta0' = update_multiple_from_inter_with_foreign tb f ta0 in if ta0' == ta0 then ta else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0' ~tree1:ta1 else let ta1' = update_multiple_from_inter_with_foreign tb f ta1 in if ta1' == ta1 then ta else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:ta1' else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then update_multiple_from_inter_with_foreign tb0 f ta else update_multiple_from_inter_with_foreign tb1 f ta else ta type ('map1, 'map2) polydifference = ('map1,'map2,'map1) polyupdate_multiple_inter let rec difference f ta tb = match NODE.view ta, Map2.view tb with | Empty, _ | _, Empty -> ta | Leaf{key;value=va},_ -> (try let vb = Map2.find key tb in match f.f key va vb with | None -> empty | Some v -> if v == va then ta else leaf key v with Not_found -> ta) | _,Leaf{key;value} -> update key (function None -> None | Some v -> f.f key v value) ta | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb then let tree0 = difference f ta0 tb0 in let tree1 = difference f ta1 tb1 in branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then branch ~prefix:pa ~branching_bit:ma ~tree0:(difference f ta0 tb) ~tree1:ta1 else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:(difference f ta1 tb) else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then difference f ta tb0 else difference f ta tb1 else ta type ('a, 'b) key_value_value = KeyValueValue: 'k key * ('k, 'a) value * ('k, 'b) Map2.value -> ('a,'b) key_value_value let rec min_binding_inter ta tb = match NODE.view ta,Map2.view tb with | Empty, _ | _, Empty -> None | Leaf{key;value},_ -> (try Some (KeyValueValue(key,value,Map2.find key tb)) with Not_found -> None) | _,Leaf{key;value} -> (try Some (KeyValueValue(key,find key ta,value)) with Not_found -> None) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: iterate on subtrees *) then match min_binding_inter ta0 tb0 with | None -> min_binding_inter ta1 tb1 | some -> some else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then min_binding_inter ta0 tb else min_binding_inter ta1 tb else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then min_binding_inter ta tb0 else min_binding_inter ta tb1 else None let rec max_binding_inter ta tb = match NODE.view ta, Map2.view tb with | Empty, _ | _, Empty -> None | Leaf{key;value},_ -> (try Some (KeyValueValue(key,value,Map2.find key tb)) with Not_found -> None) | _,Leaf{key;value} -> (try Some (KeyValueValue(key,find key ta,value)) with Not_found -> None) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: iterate on subtrees *) then match max_binding_inter ta1 tb1 with | None -> max_binding_inter ta0 tb0 | some -> some else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then max_binding_inter ta0 tb else max_binding_inter ta1 tb else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then max_binding_inter ta tb0 else max_binding_inter ta tb1 else None end include WithForeign(Core) let rec unsigned_min_binding x = match NODE.view x with | Empty -> raise Not_found | Leaf{key;value} -> KeyValue(key,value) | Branch{tree0;_} -> unsigned_min_binding tree0 let rec unsigned_max_binding x = match NODE.view x with | Empty -> raise Not_found | Leaf{key;value} -> KeyValue(key,value) | Branch{tree1;_} -> unsigned_max_binding tree1 type ('map1,'map2) polymapi = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t } [@@unboxed] let rec mapi (f:('map1,'map1) polymapi) m = match NODE.view m with | Empty -> empty | Leaf{key;value} -> let newval = (f.f key value) in if newval == value then m else leaf key newval | Branch{prefix;branching_bit;tree0;tree1} -> let newtree0 = mapi f tree0 in let newtree1 = mapi f tree1 in if tree0 == newtree0 && tree1 == newtree1 then m else branch ~prefix ~branching_bit ~tree0:newtree0 ~tree1:newtree1 (* MAYBE: A map (and map_filter) homogeneous, that try to preserve physical equality. *) let rec (f:('map1,'map2) polymapi) m = match NODE.view m with | Empty -> empty | Leaf{key;value} -> leaf key (f.f key value) | Branch{prefix;branching_bit;tree0;tree1} -> let tree0 = mapi_no_share f tree0 in let tree1 = mapi_no_share f tree1 in branch ~prefix ~branching_bit ~tree0 ~tree1 type ('map1,'map2) polymap = { f: 'a. ('a,'map1) Value.t -> ('a,'map2) Value.t } [@@unboxed] let map (f:('map1,'map1) polymap) m = mapi { f=fun _ v -> f.f v } m let (f:('map1,'map2) polymap) m = mapi_no_share { f=fun _ v -> f.f v } m let rec filter_map (f:('map1,'map1) polyfilter_map) m = match NODE.view m with | Empty -> empty | Leaf{key;value} -> (match f.f key value with | None -> empty | Some newval -> if newval == value then m else leaf key newval) | Branch{prefix;branching_bit;tree0;tree1} -> let newtree0 = filter_map f tree0 in let newtree1 = filter_map f tree1 in if tree0 == newtree0 && tree1 == newtree1 then m else branch ~prefix ~branching_bit ~tree0:newtree0 ~tree1:newtree1 type 'map polypretty = { f: 'a. Format.formatter -> 'a Key.t -> ('a, 'map) Value.t -> unit } [@@unboxed] let rec pretty ?(pp_sep=Format.pp_print_cut) (f : 'map polypretty) fmt m = match NODE.view m with | Empty -> () | Leaf{key;value} -> (f.f fmt key value) | Branch{tree0; tree1; _} -> pretty f ~pp_sep fmt tree0; pp_sep fmt (); pretty f ~pp_sep fmt tree1 let rec pop_unsigned_minimum m = match NODE.view m with | Empty -> None | Leaf{key;value} -> Some (KeyValue(key,value),empty) | Branch{prefix;branching_bit;tree0;tree1} -> match pop_unsigned_minimum tree0 with | None -> pop_unsigned_minimum tree1 | Some(res,tree0') -> let restree = if is_empty tree0' then tree1 else branch ~prefix ~branching_bit ~tree0:tree0' ~tree1 in Some(res,restree) let rec pop_unsigned_maximum m = match NODE.view m with | Empty -> None | Leaf{key;value} -> Some (KeyValue(key,value),empty) | Branch{prefix;branching_bit;tree0;tree1} -> match pop_unsigned_maximum tree1 with | None -> pop_unsigned_maximum tree0 | Some(res,tree1') -> let restree = if is_empty tree1' then tree0 else branch ~prefix ~branching_bit ~tree0 ~tree1:tree1' in Some(res,restree) (* Note: Insert is a bit weird, I am not sure it should be exported. *) type 'map polyinsert = { f: 'a . key:'a Key.t -> old:('a,'map) Value.t -> value:('a,'map) Value.t -> ('a,'map) Value.t } [@@unboxed] let insert_for_union: type a map. map polyinsert -> a Key.t -> (a,map) Value.t -> map t -> map t = fun f thekey value t -> let thekeyint = Key.to_int thekey in (* Preserve physical equality whenever possible. *) let exception Unmodified in try let rec loop t = match NODE.view t with | Empty -> leaf thekey value | Leaf{key;value=old} -> begin match Key.polyeq key thekey with | Eq -> if value == old then raise Unmodified else let newv = f.f ~key ~old ~value in if newv == old then raise Unmodified else leaf key newv | Diff -> let keyint = (Key.to_int key) in join thekeyint (leaf thekey value) keyint t end | Branch{prefix;branching_bit;tree0;tree1} -> if match_prefix thekeyint prefix branching_bit then if (thekeyint land (branching_bit :> int)) == 0 then branch ~prefix ~branching_bit ~tree0:(loop tree0) ~tree1 else branch ~prefix ~branching_bit ~tree0 ~tree1:(loop tree1) else join thekeyint (leaf thekey value) (prefix :> int) t in loop t with Unmodified -> t type ('map1,'map2) polysame_domain_for_all2 = { f: 'a 'b. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> bool } [@@unboxed] (* Fast equality test between two maps. *) let rec reflexive_same_domain_for_all2 f ta tb = match (NODE.view ta),(NODE.view tb) with | _ when ta == tb -> true (* Skip same subtrees thanks to reflexivity. *) | Empty, _ | _, Empty -> false | Leaf _, Branch _ | Branch _, Leaf _ -> false | Leaf{key=keya;value=valuea}, Leaf{key=keyb;value=valueb} -> begin match Key.polyeq keya keyb with | Diff -> false | Eq -> f.f keya valuea valueb end | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> pa == pb && ma == mb && reflexive_same_domain_for_all2 f ta0 tb0 && reflexive_same_domain_for_all2 f ta1 tb1 let rec nonreflexive_same_domain_for_all2 f ta tb = match (NODE.view ta),(NODE.view tb) with | Empty, _ | _, Empty -> false | Leaf _, Branch _ | Branch _, Leaf _ -> false | Leaf{key=keya;value=valuea}, Leaf{key=keyb;value=valueb} -> begin match Key.polyeq keya keyb with | Diff -> false | Eq -> f.f keya valuea valueb end | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> pa == pb && ma == mb && nonreflexive_same_domain_for_all2 f ta0 tb0 && nonreflexive_same_domain_for_all2 f ta1 tb1 let rec reflexive_subset_domain_for_all2 f ta tb = match (NODE.view ta),(NODE.view tb) with | _ when ta == tb -> true (* Skip same subtrees thanks to reflexivity. *) | Empty, _ -> true | _, Empty -> false | Branch _, Leaf _ -> false | Leaf {key=keya;value=valuea}, viewb -> (* Reimplement find locally, mostly because of typing issues (which could be solved if we had a version of find that returns a (key,value) pair. *) let searched = Key.to_int keya in let rec search = function | Leaf{key=keyb;value=valueb} -> begin match Key.polyeq keya keyb with | Diff -> false | Eq -> f.f keya valuea valueb end | Branch{branching_bit;tree0;tree1;_} -> if ((branching_bit :> int) land searched == 0) then search (NODE.view tree0) else search (NODE.view tree1) | Empty -> false (* Can only happen on weak nodes. *) in search viewb | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: divide the search. *) then (reflexive_subset_domain_for_all2 f ta0 tb0) && (reflexive_subset_domain_for_all2 f ta1 tb1) (* Case where ta have to be included in one of tb0 or tb1. *) else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then reflexive_subset_domain_for_all2 f ta tb0 else reflexive_subset_domain_for_all2 f ta tb1 (* Any other case: there are elements in ta that are unmatched in tb. *) else false type 'map polycompare = { f : 'a. 'a key -> ('a, 'map) value -> ('a, 'map) value -> int; } [@@unboxed] let compare_aux : type a b m. m polycompare -> a key -> (a,m) value -> b key -> (b,m) value -> int -> int = fun f ka va kb vb default -> let cmp = Int.compare (Key.to_int ka) (Key.to_int kb) in if cmp <> 0 then cmp else match Key.polyeq ka kb with | Eq -> let cmp = f.f ka va vb in if cmp <> 0 then cmp else default | Diff -> default (* Should not happen since same Key.to_int values should imply equality *) let rec reflexive_compare f ta tb = match (NODE.view ta),(NODE.view tb) with | _ when ta == tb -> 0 | Empty, _ -> 1 | _, Empty -> -1 | Branch _, Leaf {key;value} -> let KeyValue(k,v) = unsigned_min_binding ta in compare_aux f k v key value 1 | Leaf {key;value}, Branch _ -> let KeyValue(k,v) = unsigned_min_binding tb in compare_aux f key value k v (-1) | Leaf {key;value}, Leaf{key=keyb;value=valueb} -> compare_aux f key value keyb valueb 0 | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: divide the search. *) then let cmp = reflexive_compare f ta0 tb0 in if cmp <> 0 then cmp else reflexive_compare f ta1 tb1 else if branches_before pb mb pa ma (* ta has to be included in tb0 or tb1. *) then if (mb :> int) land (pa :> int) == 0 then let cmp = reflexive_compare f ta tb0 in if cmp <> 0 then cmp else -1 else -1 (* ta included in tb1, so there are elements of tb that appear before any elements of ta *) else if branches_before pa ma pb mb (* tb has to be included in ta0 or ta1. *) then if (mb :> int) land (pa :> int) == 0 then let cmp = reflexive_compare f ta0 tb in if cmp <> 0 then cmp else 1 else 1 (* tb included in ta1, so there are elements of ta that appear before any elements of tb *) else Int.compare (pa :> int) (pb :> int) let rec disjoint ta tb = if ta == tb then is_empty ta else match NODE.view ta,NODE.view tb with | Empty, _ | _, Empty -> true | Leaf{key;_},_ -> not (mem key tb) | _,Leaf{key;_} -> not (mem key ta) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: check both subtrees *) then disjoint ta0 tb0 && disjoint ta1 tb1 else if branches_before pa ma pb mb (* tb included in ta0 or ta1 *) then if (ma :> int) land (pb :> int) == 0 then disjoint ta0 tb else disjoint ta1 tb else if branches_before pb mb pa ma (* ta included in tb0 or tb1 *) then if (mb :> int) land (pa :> int) == 0 then disjoint ta tb0 else disjoint ta tb1 else true (* Different prefixes => no intersection *) type ('map1,'map2,'map3) polyunion = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> ('a,'map3) Value.t } [@@unboxed] let rec idempotent_union f ta tb = if ta == tb then ta else match NODE.view ta,NODE.view tb with | Empty, _ -> tb | _, Empty -> ta | Leaf{key;value},_ -> insert_for_union ({f=fun ~key ~old ~value -> f.f key value old}) key value tb | _,Leaf{key;value} -> insert_for_union ({f=fun ~key ~old ~value -> f.f key old value}) key value ta | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then (* MAYBE: if ta0 == tb0 and ta1 == tb1, we can return ta (or tb). Probably not useful. *) let tree0 = idempotent_union f ta0 tb0 in let tree1 = idempotent_union f ta1 tb1 in branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then branch ~prefix:pa ~branching_bit:ma ~tree0:(idempotent_union f ta0 tb) ~tree1:ta1 else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:(idempotent_union f ta1 tb) else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then branch ~prefix:pb ~branching_bit:mb ~tree0:(idempotent_union f ta tb0) ~tree1:tb1 else branch ~prefix:pb ~branching_bit:mb ~tree0:tb0 ~tree1:(idempotent_union f ta tb1) else join (pa :> int) ta (pb :> int) tb type ('map1,'map2,'map3) polyinter = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> ('a,'map3) Value.t } [@@unboxed] let rec idempotent_inter f ta tb = if ta == tb then ta else match NODE.view ta,NODE.view tb with | Empty, _ | _, Empty -> empty | Leaf{key;value},_ -> (try let res = find key tb in if res == value then ta else let newval = f.f key value res in if newval == value then ta else leaf key newval with Not_found -> empty) | _,Leaf{key;value} -> (try let res = find key ta in if res == value then tb else let newval = f.f key res value in if newval == value then tb else leaf key newval with Not_found -> empty) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = idempotent_inter f ta0 tb0 in let tree1 = idempotent_inter f ta1 tb1 in branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then idempotent_inter f ta0 tb else idempotent_inter f ta1 tb else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then idempotent_inter f ta tb0 else idempotent_inter f ta tb1 else empty (* Same as above, without the same subtree optimisation. *) let rec f ta tb = match NODE.view ta,NODE.view tb with | Empty, _ | _, Empty -> empty | Leaf{key;value},_ -> (try let res = find key tb in leaf key (f.f key value res) with Not_found -> empty) | _,Leaf{key;value} -> (try let res = find key ta in leaf key (f.f key res value) with Not_found -> empty) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = nonidempotent_inter_no_share f ta0 tb0 in let tree1 = nonidempotent_inter_no_share f ta1 tb1 in branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then nonidempotent_inter_no_share f ta0 tb else nonidempotent_inter_no_share f ta1 tb else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then nonidempotent_inter_no_share f ta tb0 else nonidempotent_inter_no_share f ta tb1 else empty type ('map1,'map2,'map3) polyinterfilter = ('map1, 'map2, 'map3) polyupdate_multiple_inter = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> ('a,'map3) Value.t option } [@@unboxed] let rec idempotent_inter_filter f ta tb = if ta == tb then ta else match NODE.view ta,NODE.view tb with | Empty, _ | _, Empty -> empty | Leaf{key;value},_ -> (try let res = find key tb in if res == value then ta else match (f.f key value res) with | Some v when v == value -> ta | Some v -> leaf key v | None -> empty with Not_found -> empty) | _,Leaf{key;value} -> (try let res = find key ta in if res == value then tb else match f.f key res value with | Some v when v == value -> tb | Some v -> leaf key v | None -> empty with Not_found -> empty) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = idempotent_inter_filter f ta0 tb0 in let tree1 = idempotent_inter_filter f ta1 tb1 in branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then idempotent_inter_filter f ta0 tb else idempotent_inter_filter f ta1 tb else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then idempotent_inter_filter f ta tb0 else idempotent_inter_filter f ta tb1 else empty type ('map1,'map2,'map3) polymerge = { f: 'a. 'a Key.t -> ('a,'map1) Value.t option -> ('a,'map2) Value.t option -> ('a,'map3) Value.t option } [@@unboxed] let rec slow_merge: type mapa mapb mapc. (mapa,mapb,mapc) polymerge -> mapa NODE.t -> mapb NODE.t -> mapc NODE. t= fun f ta tb -> let upd_ta ta = filter_map_no_share {f=fun key value -> f.f key (Some value) None} ta in let upd_tb tb = filter_map_no_share {f=fun key value -> f.f key None (Some value)} tb in let oldf = f in match NODE.view ta,NODE.view tb with | Empty, _ -> upd_tb tb | _, Empty -> upd_ta ta | Leaf{key;value},_ -> let found = ref false in let f: type a. a Key.t -> (a,mapb) Value.t -> (a,mapc) Value.t option = fun curkey curvalue -> match Key.polyeq curkey key with | Eq -> found:= true; f.f key (Some value) (Some curvalue) | Diff -> f.f curkey None (Some curvalue) in let res = filter_map_no_share {f} tb in (* If the key of the leaf is not present, add it back. Note that it breaks the assumption that merge is done in ascending number of keys; if we wanted that, we would need a "filter_map_no_share_add_key" function. *) if !found then res else begin match oldf.f key (Some value) None with | None -> res | Some value -> add key value res end | _, Leaf{key;value} -> let found = ref false in let f: type a. a Key.t -> (a,mapa) Value.t -> (a,mapc) Value.t option = fun curkey curvalue -> match Key.polyeq curkey key with | Eq -> found := true; f.f key (Some curvalue) (Some value) | Diff -> f.f curkey (Some curvalue) None in let res = filter_map_no_share {f} ta in if !found then res else begin match oldf.f key None (Some value) with | None -> res | Some value -> add key value res end | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then branch ~prefix:pa ~branching_bit:ma ~tree0:(slow_merge f ta0 tb0) ~tree1:(slow_merge f ta1 tb1) else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then branch ~prefix:pa ~branching_bit:ma ~tree0:(slow_merge f ta0 tb) ~tree1:(upd_ta ta1) else branch ~prefix:pa ~branching_bit:ma ~tree0:(upd_ta ta0) ~tree1:(slow_merge f ta1 tb) else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then branch ~prefix:pb ~branching_bit:mb ~tree0:(slow_merge f ta tb0) ~tree1:(upd_tb tb1) else branch ~prefix:pb ~branching_bit:mb ~tree0:(upd_tb tb0) ~tree1:(slow_merge f ta tb1) else join (pa :> int) (upd_ta ta) (pb :> int) (upd_tb tb) let rec symmetric_difference (f : (_,_) polydifference) ta tb = if ta == tb then empty else match NODE.view ta, NODE.view tb with | Empty, _ -> tb | _, Empty -> ta | Leaf{key;value},_ -> (try let res = find key tb in if res == value then remove key tb else match (f.f key value res) with | Some v when v == res -> tb | Some v -> add key v tb | None -> remove key tb with Not_found -> add key value tb) | _,Leaf{key;value} -> (try let res = find key ta in if res == value then remove key ta else match f.f key res value with | Some v when v == res -> ta | Some v -> add key v ta | None -> remove key ta with Not_found -> add key value ta) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let tree0 = symmetric_difference f ta0 tb0 in let tree1 = symmetric_difference f ta1 tb1 in branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1 else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then branch ~prefix:pa ~branching_bit:ma ~tree0:(symmetric_difference f ta0 tb) ~tree1:ta1 else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:(symmetric_difference f ta1 tb) else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then branch ~prefix:pb ~branching_bit:mb ~tree0:(symmetric_difference f ta tb0) ~tree1:tb1 else branch ~prefix:pb ~branching_bit:mb ~tree0:tb0 ~tree1:(symmetric_difference f ta tb1) else join (pa :> int) ta (pb :> int) tb type 'map polyiter = { f: 'a. 'a Key.t -> ('a,'map) Value.t -> unit } [@@unboxed] let rec iter f x = match NODE.view x with | Empty -> () | Leaf{key;value} -> f.f key value | Branch{tree0;tree1;_} -> iter f tree0; iter f tree1 type ('acc,'map) polyfold = { f: 'a. 'a Key.t -> ('a,'map) Value.t -> 'acc -> 'acc } [@@unboxed] let rec fold f m acc = match NODE.view m with | Empty -> acc | Leaf{key;value} -> f.f key value acc | Branch{tree0;tree1;_} -> let acc = fold f tree0 acc in fold f tree1 acc type ('acc,'map) polyfold2 = { f: 'a. 'a key -> ('a,'map) value -> ('a,'map) value -> 'acc -> 'acc } [@@unboxed] let rec fold_on_nonequal_inter f ta tb acc = if ta == tb then acc else match NODE.view ta,NODE.view tb with | Empty, _ | _, Empty -> acc | Leaf{key;value},_ -> (try let valueb = find key tb in if valueb == value then acc else f.f key value valueb acc with Not_found -> acc) | _,Leaf{key;value} -> (try let valuea = find key ta in if valuea == value then acc else f.f key valuea value acc with Not_found -> acc) | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: fold on each subtrees *) then let acc = fold_on_nonequal_inter f ta0 tb0 acc in let acc = fold_on_nonequal_inter f ta1 tb1 acc in acc else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then fold_on_nonequal_inter f ta0 tb acc else fold_on_nonequal_inter f ta1 tb acc else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then fold_on_nonequal_inter f ta tb0 acc else fold_on_nonequal_inter f ta tb1 acc else acc type ('acc,'map) polyfold2_union = { f: 'a. 'a key -> ('a,'map) value option -> ('a,'map) value option -> 'acc -> 'acc } [@@unboxed] let rec fold_on_nonequal_union: 'm 'acc. ('acc,'m) polyfold2_union -> 'm t -> 'm t -> 'acc -> 'acc = fun (type m) f (ta:m t) (tb:m t) acc -> if ta == tb then acc else let fleft:(_,_) polyfold = {f=fun key value acc -> f.f key (Some value) None acc} in let fright:(_,_)polyfold = {f=fun key value acc -> f.f key None (Some value) acc} in match NODE.view ta,NODE.view tb with | Empty, _ -> fold fright tb acc | _, Empty -> fold fleft ta acc | Leaf{key;value},_ -> let ida = Key.to_int key in (* Fold on the rest, knowing that ida may or may not be in b. So we fold and use did_a to remember if we already did the call to a. *) let g (type b) (keyb:b key) (valueb:(b,m) value) (acc,did_a) = let default() = (f.f keyb None (Some valueb) acc,did_a) in if did_a then default() else let idb = Key.to_int keyb in if unsigned_lt idb ida then default() else if unsigned_lt ida idb then let acc = f.f key (Some value) None acc in let acc = f.f keyb None (Some valueb) acc in (acc,true) else match Key.polyeq key keyb with | Eq -> if value == valueb then (acc,true) else (f.f key (Some value) (Some valueb) acc,true) | Diff -> raise (Invalid_argument "Keys with same to_int value are not equal by polyeq") in let (acc,found) = fold{f=fun keyb valueb acc -> g keyb valueb acc} tb (acc,false) in if found then acc else f.f key (Some value) None acc | _,Leaf{key;value} -> let idb = Key.to_int key in let g (type a) (keya: a key) (valuea:(a,m) value) (acc,did_b) = let default() = (f.f keya (Some valuea) None acc,did_b) in if did_b then default() else let ida = Key.to_int keya in if unsigned_lt ida idb then default() else if unsigned_lt idb ida then let acc = f.f key None (Some value) acc in let acc = f.f keya (Some valuea) None acc in (acc,true) else match Key.polyeq keya key with | Eq -> if valuea == value then (acc,true) else (f.f keya (Some valuea) (Some value) acc,true) | Diff -> raise (Invalid_argument "Keys with same to_int value are not equal by polyeq") in let (acc,found) = fold{f=fun keya valuea acc -> g keya valuea acc} ta (acc,false) in if found then acc else f.f key None (Some value) acc | Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1}, Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} -> if ma == mb && pa == pb (* Same prefix: merge the subtrees *) then let acc = fold_on_nonequal_union f ta0 tb0 acc in let acc = fold_on_nonequal_union f ta1 tb1 acc in acc else if branches_before pa ma pb mb then if (ma :> int) land (pb :> int) == 0 then let acc = fold_on_nonequal_union f ta0 tb acc in let acc = fold fleft ta1 acc in acc else let acc = fold fleft ta0 acc in let acc = fold_on_nonequal_union f ta1 tb acc in acc else if branches_before pb mb pa ma then if (mb :> int) land (pa :> int) == 0 then let acc = fold_on_nonequal_union f ta tb0 acc in let acc = fold fright tb1 acc in acc else let acc = fold fright tb0 acc in let acc = fold_on_nonequal_union f ta tb1 acc in acc else (* Distinct subtrees: process them in increasing order of keys. *) if unsigned_lt (pa :> int) (pb :> int) then let acc = fold fleft ta acc in let acc = fold fright tb acc in acc else let acc = fold fright tb acc in let acc = fold fleft ta acc in acc type 'map polypredicate = { f: 'a. 'a key -> ('a,'map) value -> bool; } [@@unboxed] let filter f m = filter_map {f = fun k v -> if f.f k v then Some v else None } m let rec for_all f m = match NODE.view m with | Empty -> true | Leaf{key;value} -> f.f key value | Branch{tree0; tree1; _ } -> for_all f tree0 && for_all f tree1 let rec to_seq m () = match NODE.view m with | Empty -> Seq.Nil | Leaf{key; value} -> Seq.Cons (KeyValue(key,value), Seq.empty) | Branch{tree0; tree1; _} -> Seq.append (to_seq tree0) (to_seq tree1) () let rec to_rev_seq m () = match NODE.view m with | Empty -> Seq.Nil | Leaf{key; value} -> Seq.Cons (KeyValue(key,value), Seq.empty) | Branch{tree0; tree1; _} -> Seq.append (to_rev_seq tree1) (to_rev_seq tree0) () let rec add_seq: type a. a key_value_pair Seq.t -> a t -> a t = fun s m -> match s () with | Seq.Nil -> m | Seq.Cons(KeyValue(key,value), s) -> add_seq s (add key value m) let of_seq s = add_seq s empty let of_list l = of_seq (List.to_seq l) let to_list m = List.of_seq (to_seq m) end module MakeCustomHeterogeneousSet (Key:HETEROGENEOUS_KEY) (Node:NODE with type 'a key = 'a Key.t and type ('a, 'b) value = unit) : HETEROGENEOUS_SET with type 'a elt = 'a Key.t and type 'a BaseMap.t = 'a Node.t = struct module BaseMap = MakeCustomHeterogeneousMap(Key)(struct type ('a,'b) t = unit end)(Node) (* No need to differentiate the values. *) include BaseMap type t = unit BaseMap.t type 'a elt = 'a key type any_elt = Any : 'a elt -> any_elt (* Note: as add is simpler, without any insertion function needed, maybe it is worth reimplementing it. *) let [@specialise] add key map = BaseMap.add key () map let singleton elt = singleton elt () let is_singleton set = match BaseMap.is_singleton set with | None -> None | Some(KeyValue(k,())) -> Some(Any(k)) (* Likewise with union and inter: we do not have to worry about reconciling the values here, so we could reimplement if the compiler is not smart enough. *) let union = let f:(unit,unit,unit) BaseMap.polyunion = {f=fun _ () () -> ()} in fun [@specialise] sa sb -> BaseMap.idempotent_union f sa sb let inter = let f:(unit,unit,unit) BaseMap.polyinter = {f=fun _ () () -> ()} in fun [@specialise] sa sb -> (BaseMap.idempotent_inter (* [@specialised] *)) f sa sb type polyiter = { f: 'a. 'a elt -> unit; } [@@unboxed] let iter f set = BaseMap.iter {f=fun k () -> f.f k} set (* TODO: A real implementation of fold would be faster. *) type 'acc polyfold = { f: 'a. 'a key -> 'acc -> 'acc } [@@unboxed] let fold f set acc = let f: type a. a key -> unit -> 'acc -> 'acc = fun k () acc -> f.f k acc in BaseMap.fold { f } set acc let unsigned_min_elt t = let KeyValue(m, ()) = BaseMap.unsigned_min_binding t in Any m let unsigned_max_elt t = let KeyValue(m, ()) = BaseMap.unsigned_max_binding t in Any m let min_elt_inter s1 s2 = BaseMap.min_binding_inter s1 s2 |> Option.map (fun (KeyValueValue(m, (), ())) -> Any m) let max_elt_inter s1 s2 = BaseMap.min_binding_inter s1 s2 |> Option.map (fun (KeyValueValue(m, (), ())) -> Any m) let pop_unsigned_maximum t = Option.map (fun (KeyValue(m,()),t) -> Any m,t) (BaseMap.pop_unsigned_maximum t) let pop_unsigned_minimum t = Option.map (fun (KeyValue(m,()),t) -> Any m,t) (BaseMap.pop_unsigned_minimum t) type polypretty = { f: 'a. Format.formatter -> 'a key -> unit; } [@@unboxed] let pretty ?pp_sep f fmt s = BaseMap.pretty ?pp_sep { f = fun fmt k () -> f.f fmt k} fmt s let equal t1 t2 = BaseMap.reflexive_same_domain_for_all2 {f=fun _ _ _ -> true} t1 t2 let subset t1 t2 = BaseMap.reflexive_subset_domain_for_all2 {f=fun _ _ _ -> true} t1 t2 let diff = BaseMap.difference { f = fun _ () () -> None } let split k m = let (l, present, r) = BaseMap.split k m in (l, Option.is_some present, r) type polypredicate = { f: 'a. 'a key -> bool; } [@@unboxed] let filter f s = BaseMap.filter {f = fun k () -> f.f k } s let for_all f s = BaseMap.for_all {f = fun k () -> f.f k} s let to_seq m = Seq.map (fun (KeyValue(elt,())) -> Any elt) (BaseMap.to_seq m) let to_rev_seq m = Seq.map (fun (KeyValue(elt,())) -> Any elt) (BaseMap.to_rev_seq m) let add_seq s m = BaseMap.add_seq (Seq.map (fun (Any elt) -> KeyValue(elt,())) s) m let of_seq s = add_seq s empty let of_list l = of_seq (List.to_seq l) let to_list s = List.of_seq (to_seq s) let compare s1 s2 = BaseMap.reflexive_compare {f=fun _ () () -> 0} s1 s2 end module MakeHeterogeneousMap(Key:HETEROGENEOUS_KEY)(Value:HETEROGENEOUS_VALUE) = MakeCustomHeterogeneousMap(Key)(Value)(SimpleNode(Key)(Value)) module MakeHeterogeneousSet(Key:HETEROGENEOUS_KEY) = MakeCustomHeterogeneousSet(Key)(SetNode(Key)) module MakeCustomMap (Key:KEY) (Value: VALUE) (NODE:NODE with type 'a key = Key.t and type ('key,'map) value = ('key,'map Value.t) snd) = struct module NewKey(* :Key *) = HeterogeneousKeyFromKey(Key) module BaseMap = MakeCustomHeterogeneousMap (NewKey)(struct type ('key,'map) t = ('key,'map Value.t) snd end)(NODE) include BaseMap type key = Key.t type 'a value = 'a Value.t let snd_opt = function | None -> None | Some x -> Some (Snd x) let opt_snd = function | None -> None | Some (Snd x) -> Some x let singleton k v = singleton k (Snd v) let find k m = let Snd x = find k m in x let find_opt k m = opt_snd (find_opt k m) let insert k f m = insert k (fun v -> Snd (f (opt_snd v))) m let update k f m = update k (fun v -> snd_opt (f (opt_snd v))) m let add k v m = add k (Snd v) m let split x m = let (l,m,r) = split x m in (l, opt_snd m, r) let unsigned_min_binding m = let KeyValue(key,Snd value) = BaseMap.unsigned_min_binding m in key,value let unsigned_max_binding m = let KeyValue(key,Snd value) = BaseMap.unsigned_max_binding m in key,value let min_binding_inter m1 m2 = BaseMap.min_binding_inter m1 m2 |> Option.map (fun (KeyValueValue(k,Snd v1,Snd v2)) -> (k,v1,v2)) let max_binding_inter m1 m2 = BaseMap.max_binding_inter m1 m2 |> Option.map (fun (KeyValueValue(k,Snd v1,Snd v2)) -> (k,v1,v2)) (* let singleton k v = BaseMap.singleton (PolyKey.K k) v *) let pop_unsigned_minimum m = match BaseMap.pop_unsigned_minimum m with | None -> None | Some(KeyValue(key,Snd value),m) -> Some(key,value,m) let pop_unsigned_maximum m = match BaseMap.pop_unsigned_maximum m with | None -> None | Some(KeyValue(key,Snd value),m) -> Some(key,value,m) let is_singleton m = match BaseMap.is_singleton m with | None -> None | Some(KeyValue(k,Snd v)) -> Some(k,v) let filter (f: key -> 'a value -> bool) m = BaseMap.filter {f = fun k (Snd v) -> f k v} m let map f a = BaseMap.map {f = fun (Snd v) -> Snd (f v)} a let f a = BaseMap.map_no_share {f = fun (Snd v) -> Snd (f v)} a let mapi (f : key -> 'a value -> 'a value) a = BaseMap.mapi {f = fun k (Snd v) -> Snd (f k v)} a let (f : key -> 'a value -> 'b value) a = BaseMap.mapi_no_share {f = fun k (Snd v) -> Snd (f k v)} a let filter_map (f: key -> 'a value -> 'a value option) a = BaseMap.filter_map {f=fun k (Snd v) -> snd_opt (f k v) } a let (f: key -> 'a value -> 'b value option) a = BaseMap.filter_map_no_share {f=fun k (Snd v) -> snd_opt (f k v) } a let idempotent_union (f: key -> 'a value -> 'a value -> 'a value) a b = BaseMap.idempotent_union {f=fun k (Snd v1) (Snd v2) -> Snd (f k v1 v2)} a b let idempotent_inter (f: key -> 'a value -> 'a value -> 'a value) a b = BaseMap.idempotent_inter {f=fun k (Snd v1) (Snd v2) -> Snd (f k v1 v2)} a b let (f: key -> 'a value -> 'b value -> 'c value) a b = BaseMap.nonidempotent_inter_no_share {f=fun k (Snd v1) (Snd v2) -> Snd (f k v1 v2)} a b let idempotent_inter_filter (f: key -> 'a value -> 'a value -> 'a value option) a b = BaseMap.idempotent_inter_filter {f=fun k (Snd v1) (Snd v2) -> snd_opt (f k v1 v2)} a b let reflexive_same_domain_for_all2 (f: key -> 'a value -> 'a value -> bool) a b = BaseMap.reflexive_same_domain_for_all2 {f=fun k (Snd v1) (Snd v2) -> f k v1 v2} a b let nonreflexive_same_domain_for_all2 (f: key -> 'a value -> 'b value -> bool) a b = BaseMap.nonreflexive_same_domain_for_all2 {f=fun k (Snd v1) (Snd v2) -> f k v1 v2} a b let reflexive_subset_domain_for_all2 (f: key -> 'a value -> 'a value -> bool) a b = BaseMap.reflexive_subset_domain_for_all2 {f=fun k (Snd v1) (Snd v2) -> f k v1 v2} a b let slow_merge (f : key -> 'a value option -> 'b value option -> 'c value option) a b = BaseMap.slow_merge {f=fun k v1 v2 -> snd_opt (f k (opt_snd v1) (opt_snd v2))} a b let symmetric_difference (f: key -> 'a value -> 'a value -> 'a value option) a b = BaseMap.symmetric_difference {f=fun k (Snd v1) (Snd v2) -> snd_opt (f k v1 v2)} a b let difference (f: key -> 'a value -> 'b value -> 'a value option) a b = BaseMap.difference { f=fun k (Snd v1) (Snd v2) -> snd_opt (f k v1 v2) } a b let iter (f: key -> 'a value -> unit) a = BaseMap.iter {f=fun k (Snd v) -> f k v} a let fold (f: key -> 'a value -> 'acc -> 'acc) m acc = BaseMap.fold {f=fun k (Snd v) acc -> f k v acc} m acc let fold_on_nonequal_inter (f: key -> 'a value -> 'a value -> 'acc -> 'acc) ma mb acc = let f k (Snd va) (Snd vb) acc = f k va vb acc in BaseMap.fold_on_nonequal_inter {f} ma mb acc let fold_on_nonequal_union (f: key -> 'a value option -> 'a value option -> 'acc -> 'acc) ma mb acc = let f k va vb acc = let va = Option.map (fun (Snd v) -> v) va in let vb = Option.map (fun (Snd v) -> v) vb in f k va vb acc in BaseMap.fold_on_nonequal_union {f} ma mb acc let pretty ?pp_sep (f: Format.formatter -> key -> 'a value -> unit) fmt m = BaseMap.pretty ?pp_sep {f=fun fmt k (Snd v) -> f fmt k v} fmt m let for_all (f : key -> 'a value -> bool) m = BaseMap.for_all {f = fun k (Snd v) -> f k v} m module WithForeign(Map2 : NODE_WITH_FIND with type _ key = key) = struct module BaseForeign = BaseMap.WithForeign(Map2) type ('b,'c) polyfilter_map_foreign = { f: 'a. key -> ('a,'b) Map2.value -> 'c value option } [@@unboxed] let f m2 = BaseForeign.filter_map_no_share { f=fun k v-> snd_opt (f.f k v)} m2 type ('value,'map2) polyinter_foreign = { f: 'a. 'a Map2.key -> 'value value -> ('a, 'map2) Map2.value -> 'value value } [@@unboxed] let nonidempotent_inter f m1 m2 = BaseForeign.nonidempotent_inter {f = fun k (Snd v) v2 -> Snd (f.f k v v2)} m1 m2 type ('map1,'map2) polyupdate_multiple = { f: 'a. key -> 'map1 value option -> ('a,'map2) Map2.value -> 'map1 value option } [@@unboxed] let update_multiple_from_foreign m2 f m = BaseForeign.update_multiple_from_foreign m2 {f = fun k v1 v2 -> snd_opt (f.f k (opt_snd v1) v2)} m type ('map1,'map2) polyupdate_multiple_inter = { f: 'a. key -> 'map1 value -> ('a,'map2) Map2.value -> 'map1 value option } [@@unboxed] let update_multiple_from_inter_with_foreign m2 f m = BaseForeign.update_multiple_from_inter_with_foreign m2 {f = fun k (Snd v1) v2 -> snd_opt (f.f k v1 v2)} m type ('map1, 'map2) polydifference = ('map1,'map2) polyupdate_multiple_inter let difference f m1 m2 = BaseForeign.difference {f=fun k (Snd v) v2 -> snd_opt (f.f k v v2) } m1 m2 end let to_seq m = Seq.map (fun (KeyValue(key,Snd value)) -> (key,value)) (BaseMap.to_seq m) let to_rev_seq m = Seq.map (fun (KeyValue(key,Snd value)) -> (key,value)) (BaseMap.to_rev_seq m) let add_seq s m = BaseMap.add_seq (Seq.map (fun (key,value) -> KeyValue(key,Snd value)) s) m let of_seq s = add_seq s empty let of_list l = of_seq (List.to_seq l) let to_list s = List.of_seq (to_seq s) let reflexive_equal f m1 m2 = reflexive_same_domain_for_all2 (fun _ -> f) m1 m2 let reflexive_compare f m1 m2 = reflexive_compare {f=fun _ (Snd v1) (Snd v2) -> f v1 v2} m1 m2 end module MakeMap(Key: KEY) = struct module NKey = struct type 'a t = Key.t end module Node = SimpleNode(NKey)(WrappedHomogeneousValue) include MakeCustomMap(Key)(Value)(Node) end module MakeCustomSet (Key: KEY) (Node:NODE with type 'a key = Key.t and type ('key,'map) value = unit) : SET with type elt = Key.t and type 'a BaseMap.t = 'a Node.t = struct module HKey = HeterogeneousKeyFromKey(Key) module S = MakeCustomHeterogeneousSet(HKey)(Node) include S type key = Key.t type elt = key let iter (f: elt -> unit) set = S.iter {f} set let fold (f: key -> 'acc -> 'acc) set acc = S.fold {f} set acc let filter (f: key -> bool) set = S.filter {f} set let for_all (f: key -> bool) set = S.for_all {f} set let pretty ?pp_sep (f : Format.formatter -> key -> unit) fmt s = S.pretty ?pp_sep {f} fmt s let is_singleton m = match BaseMap.is_singleton m with | None -> None | Some(KeyValue(k,())) -> Some k let unsigned_min_elt t = let Any x = unsigned_min_elt t in x let unsigned_max_elt t = let Any x = unsigned_max_elt t in x let pop_unsigned_minimum t = Option.map (fun (Any x, t) -> (x,t)) (pop_unsigned_minimum t) let pop_unsigned_maximum t = Option.map (fun (Any x, t) -> (x,t)) (pop_unsigned_maximum t) let min_elt_inter t1 t2 = Option.map (fun (Any x) -> x) (min_elt_inter t1 t2) let max_elt_inter t1 t2 = Option.map (fun (Any x) -> x) (max_elt_inter t1 t2) let to_seq m = Seq.map (fun (BaseMap.KeyValue(elt,())) -> elt) (BaseMap.to_seq m) let to_rev_seq m = Seq.map (fun (BaseMap.KeyValue(elt,())) -> elt) (BaseMap.to_rev_seq m) let add_seq s m = BaseMap.add_seq (Seq.map (fun (elt) -> BaseMap.KeyValue(elt,())) s) m let of_seq s = add_seq s empty let of_list l = of_seq (List.to_seq l) let to_list s = List.of_seq (to_seq s) end module MakeSet(Key: KEY) = MakeCustomSet(Key)(SetNode(HeterogeneousKeyFromKey(Key))) module MakeHashconsedHeterogeneousMap(Key:HETEROGENEOUS_KEY)(Value:HETEROGENEOUS_HASHED_VALUE)() = struct module Node = HashconsedNode(Key)(Value)() include MakeCustomHeterogeneousMap(Key)(Value)(Node) let equal = Node.equal let compare = Node.compare let to_int = Node.to_int end module MakeHashconsedHeterogeneousSet(Key:HETEROGENEOUS_KEY)() = struct module Node = HashconsedSetNode(Key)() include MakeCustomHeterogeneousSet(Key)(Node) let equal = Node.equal let compare = Node.compare let to_int = Node.to_int end module MakeHashconsedSet(Key : KEY)() = struct module Node = HashconsedSetNode(HeterogeneousKeyFromKey(Key))() include MakeCustomSet(Key)(Node) let equal = Node.equal let compare = Node.compare let to_int = Node.to_int end module MakeHashconsedMap(Key: KEY)(Value: HASHED_VALUE)() = struct module HetValue = HeterogeneousHashedValueFromHashedValue(Value) module Node = HashconsedNode(HeterogeneousKeyFromKey(Key))(HetValue)() include MakeCustomMap(Key)(Value)(Node) let equal = Node.equal let compare = Node.compare let to_int = Node.to_int end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>