package owl
OCaml Scientific and Engineering Computing
Install
Dune Dependency
Authors
Maintainers
Sources
owl-1.2.tbz
sha256=3817a2e4391922c8a2225b4e33ca95da6809246994e6bf291a300c82d8cac6c5
sha512=68a21f540cb4a289419f35cd152d132af36f1000fb41f98bab6e100698820379e36d650c5aa70a0126513451b354f86a28ea4ecf6f1d3b196b5b5e56f0fac9bd
doc/src/owl/owl_nlp_corpus.ml.html
Source file owl_nlp_corpus.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
# 1 "src/owl/nlp/owl_nlp_corpus.ml" (* * OWL - OCaml Scientific Computing * Copyright (c) 2016-2022 Liang Wang <liang@ocaml.xyz> *) (** NLP: Corpus module *) type t = { mutable uri : string ; (* path of the binary corpus *) mutable bin_ofs : int array ; (* index of the string corpus *) mutable tok_ofs : int array ; (* index of the tokenised corpus *) mutable bin_fh : in_channel option ; (* file descriptor of the binary corpus *) mutable tok_fh : in_channel option ; (* file descriptor of the tokenised corpus *) mutable vocab : Owl_nlp_vocabulary.t option ; (* vocabulary of the corpus *) mutable minlen : int ; (* minimum length of document to save *) mutable docid : int array (* document id, can refer to original data *) } [@@warning "-69"] let _close_if_open = function | Some h -> close_in h | None -> () let _open_if_exists f = match Sys.file_exists f with | true -> Some (open_in f) | false -> None let cleanup x = _close_if_open x.bin_fh; _close_if_open x.tok_fh let create uri bin_ofs tok_ofs bin_fh tok_fh vocab minlen docid = let x = { uri; bin_ofs; tok_ofs; bin_fh; tok_fh; vocab; minlen; docid } in Gc.finalise cleanup x; x let get_uri corpus = corpus.uri let get_bin_uri corpus = corpus.uri ^ ".bin" let get_bin_fh corpus = match corpus.bin_fh with | Some x -> x | None -> let h = corpus |> get_bin_uri |> open_in in corpus.bin_fh <- Some h; h let get_tok_uri corpus = corpus.uri ^ ".tok" let get_tok_fh corpus = match corpus.tok_fh with | Some x -> x | None -> let h = corpus |> get_tok_uri |> open_in in corpus.tok_fh <- Some h; h let get_vocab_uri corpus = corpus.uri ^ ".voc" let get_vocab corpus = match corpus.vocab with | Some x -> x | None -> let h = corpus |> get_vocab_uri |> Owl_nlp_vocabulary.load in corpus.vocab <- Some h; h let get_docid corpus = corpus.docid let length corpus = Array.length corpus.bin_ofs - 1 (* iterate docs and tokenised docs and etc. *) let next corpus : string = corpus |> get_bin_fh |> Marshal.from_channel let next_tok corpus : int array = corpus |> get_tok_fh |> Marshal.from_channel let iteri f corpus = Owl_io.iteri_lines_of_marshal f (get_bin_uri corpus) let iteri_tok f corpus = Owl_io.iteri_lines_of_marshal f (get_tok_uri corpus) let mapi f corpus = Owl_io.mapi_lines_of_marshal f (get_bin_uri corpus) let mapi_tok f corpus = Owl_io.mapi_lines_of_marshal f (get_tok_uri corpus) let get corpus i : string = let fh = get_bin_fh corpus in let old_pos = pos_in fh in seek_in fh corpus.bin_ofs.(i); let doc = Marshal.from_channel fh in seek_in fh old_pos; doc let get_tok corpus i : int array = let fh = get_tok_fh corpus in let old_pos = pos_in fh in seek_in fh corpus.tok_ofs.(i); let doc = Marshal.from_channel fh in seek_in fh old_pos; doc (* reset all the file pointers at offset 0 *) let reset_iterators corpus = let _reset_offset = function | Some h -> seek_in h 0 | None -> () in _reset_offset corpus.bin_fh; _reset_offset corpus.tok_fh (* return a batch of documents *) let next_batch ?(size = 100) corpus = let batch = Owl_utils.Stack.make () in (try for _i = 0 to size - 1 do corpus |> next |> Owl_utils.Stack.push batch done with | _exn -> ()); Owl_utils.Stack.to_array batch (* return a batch of tokenised documents *) let next_batch_tok ?(size = 100) corpus = let batch = Owl_utils.Stack.make () in (try for _i = 0 to size - 1 do corpus |> next_tok |> Owl_utils.Stack.push batch done with | _exn -> ()); Owl_utils.Stack.to_array batch let tokenise corpus s = let dict = get_vocab corpus in Str.split (Str.regexp " ") s |> List.filter (Owl_nlp_vocabulary.exits_w dict) |> List.map (Owl_nlp_vocabulary.word2index dict) |> Array.of_list (* convert corpus into binary format, build dictionary, tokenise lo and hi will be ignored if a vocab is passed in. The passed in docid can be used for tracking back to the original corpus, but this is not compulsory. *) let build ?docid ?stopwords ?lo ?hi ?vocab ?(minlen = 10) fname = (* build and save the vocabulary if necessary *) let vocab = match vocab with | Some vocab -> vocab | None -> Owl_log.info "build up vocabulary ..."; Owl_nlp_vocabulary.build ?lo ?hi ?stopwords fname in Owl_nlp_vocabulary.save vocab (fname ^ ".voc"); Owl_nlp_vocabulary.save_txt vocab (fname ^ ".voc.txt"); (* prepare the output file *) let bin_f = fname ^ ".bin" |> open_out in let tok_f = fname ^ ".tok" |> open_out in let mdl_f = fname ^ ".mdl" |> open_out in Fun.protect (fun () -> set_binary_mode_out bin_f true; set_binary_mode_out tok_f true; (* initialise the offset array *) let b_ofs = Owl_utils.Stack.make () in let t_ofs = Owl_utils.Stack.make () in Owl_utils.Stack.push b_ofs 0; Owl_utils.Stack.push t_ofs 0; (* initialise the doc_id stack *) let doc_s = Owl_utils.Stack.make () in (* binarise and tokenise at the same time *) Owl_log.info "convert to binary and tokenise ..."; Owl_io.iteri_lines_of_file (fun i s -> let t = Str.split Owl_nlp_utils.regexp_split s |> List.filter (Owl_nlp_vocabulary.exits_w vocab) |> List.map (Owl_nlp_vocabulary.word2index vocab) |> Array.of_list in (* only save those having at least minlen words *) if Array.length t >= minlen then ( Marshal.to_channel bin_f s []; Marshal.to_channel tok_f t []; (* keep tracking of doc id *) let id = match docid with | Some d -> d.(i) | None -> i in Owl_utils.Stack.push doc_s id; (* keep tracking of doc offset *) Owl_utils.Stack.push b_ofs (LargeFile.pos_out bin_f |> Int64.to_int); Owl_utils.Stack.push t_ofs (LargeFile.pos_out tok_f |> Int64.to_int))) fname; (* save the corpus file *) let b_ofs = Owl_utils.Stack.to_array b_ofs in let t_ofs = Owl_utils.Stack.to_array t_ofs in let doc_s = Owl_utils.Stack.to_array doc_s in let corpus = create fname b_ofs t_ofs None None None minlen doc_s in Marshal.to_channel mdl_f corpus []; (* return the finished corpus *) get_bin_fh corpus |> ignore; get_tok_fh corpus |> ignore; get_vocab corpus |> ignore; corpus) ~finally:(fun () -> (* done, close the files *) close_out bin_f; close_out tok_f; close_out mdl_f) (* remove duplicates in a text corpus, the ids of the removed files are returned *) let unique fi_name fo_name = let h = Hashtbl.create 1024 in let rm = Owl_utils.Stack.make () in let fo = open_out fo_name in Fun.protect (fun () -> Owl_io.iteri_lines_of_file (fun i s -> match Hashtbl.mem h s with | true -> Owl_utils.Stack.push rm i | false -> output_string fo s; output_char fo '\n'; Hashtbl.add h s None) fi_name; Owl_utils.Stack.to_array rm) ~finally:(fun () -> close_out fo) (* a simple function for pre-processing a given string *) let simple_process s = Str.split Owl_nlp_utils.regexp_split s |> List.filter (fun x -> String.length x > 1) |> String.concat " " |> String.lowercase_ascii (* pre-process a given file with the passed in function e.g., you can plug in [simple_process] function to clean up the text. Note this function will not change the number of lines in a corpus. *) let preprocess f fi_name fo_name = let fo = open_out fo_name in Fun.protect (fun () -> Owl_io.iteri_lines_of_file (fun _i s -> output_bytes fo (f s); output_char fo '\n') fi_name) ~finally:(fun () -> close_out fo) (* i/o: save and load corpus *) (* set some fields to None so it can be safely saved *) let reduce_model corpus = { uri = corpus.uri ; bin_ofs = corpus.bin_ofs ; tok_ofs = corpus.tok_ofs ; bin_fh = None ; tok_fh = None ; vocab = None ; minlen = corpus.minlen ; docid = corpus.docid } let save corpus f = let x = reduce_model corpus in Owl_io.marshal_to_file x f let load f : t = let corpus = Owl_io.marshal_from_file f in get_bin_fh corpus |> ignore; get_tok_fh corpus |> ignore; get_vocab corpus |> ignore; corpus (* convert tokenised corpus back to text file *) let save_txt corpus f = let fh = open_out f in Fun.protect (fun () -> let vocab = get_vocab corpus in let i2w_f = Owl_nlp_vocabulary.index2word vocab in iteri_tok (fun _i t -> let s = t |> Array.map i2w_f |> Array.to_list |> String.concat " " in output_string fh s; output_char fh '\n') corpus) ~finally:(fun () -> close_out fh) let to_string corpus = Printf.sprintf "corpus info\n" ^ Printf.sprintf " file path : %s\n" (corpus |> get_uri) ^ Printf.sprintf " # of docs : %i\n" (corpus |> length) ^ Printf.sprintf " doc minlen : %i" corpus.minlen let print corpus = corpus |> to_string |> print_endline (* ends here *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>