package owl
Install
Dune Dependency
Authors
Maintainers
Sources
sha256=d91ba09488edd602dad845f68db1f980a601bdbb55d9516e3b59681eca20debe
sha512=9b31c3474a94c3b11d1dedba00639e770737e61f2e724a1288066ed976e4d0f8afe891a430e17ecf525fbca92e433d71d1b66d3ba17d4e299a4f8fdc3b902461
doc/owl/Owl_dense_ndarray_z/index.html
Module Owl_dense_ndarray_z
type elt = Complex.t
type arr =
(Complex.t, Bigarray.complex64_elt, Bigarray.c_layout) Bigarray.Genarray.t
type cast_arr =
(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
include Owl_dense_ndarray_intf.Common with type elt := elt and type arr := arr
include Owl_base_dense_ndarray_intf.Common
with type elt := elt
with type arr := arr
val number : Owl_types_common.number
val empty : int array -> arr
val zeros : int array -> arr
val ones : int array -> arr
val bernoulli : ?p:float -> int array -> arr
val shape : arr -> int array
val numel : arr -> int
val strides : arr -> int array
Refer to :doc:`owl_dense_ndarray_generic`
val slice_size : arr -> int array
Refer to :doc:`owl_dense_ndarray_generic`
val reset : arr -> unit
Iterate array elements
Examination & Comparison
val is_zero : arr -> bool
val is_positive : arr -> bool
val is_negative : arr -> bool
val is_nonpositive : arr -> bool
val is_nonnegative : arr -> bool
val is_normal : arr -> bool
val not_nan : arr -> bool
val not_inf : arr -> bool
val row_num : arr -> int
val col_num : arr -> int
Create N-dimensional array
val unit_basis : int -> int -> arr
``unit_basis k n i`` returns a unit basis vector with ``i``th element set to 1.
Obtain basic properties
val num_dims : arr -> int
val nth_dim : arr -> int -> int
val nnz : arr -> int
val density : arr -> float
val size_in_bytes : arr -> int
val ind : arr -> int -> int array
val i1d : arr -> int array -> int
Manipulate a N-dimensional array
val get_fancy : Owl_types.index list -> arr -> arr
val set_fancy : Owl_types.index list -> arr -> arr -> unit
val top : arr -> int -> int array array
val bottom : arr -> int -> int array array
val argsort :
arr ->
(int64, Bigarray.int64_elt, Bigarray.c_layout) Bigarray.Genarray.t
val mmap : Unix.file_descr -> ?pos:int64 -> bool -> int array -> arr
Iterate array elements
Examine array elements or compare two arrays
Input/Output functions
val save : out:string -> arr -> unit
val load : string -> arr
val save_npy : out:string -> arr -> unit
val load_npy : string -> arr
Unary mathematical operations
Binary mathematical operations
Tensor Calculus
Experimental functions
Functions of in-place modification
val bernoulli_ : ?p:float -> out:arr -> unit
val zeros_ : out:arr -> unit
val ones_ : out:arr -> unit
val sort_ : arr -> unit
val get_fancy_ : out:arr -> Owl_types.index list -> arr -> unit
val set_fancy_ : out:arr -> Owl_types.index list -> arr -> arr -> unit
include Owl_dense_ndarray_intf.NN with type arr := arr
include Owl_base_dense_ndarray_intf.NN with type arr := arr
val conv1d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
arr
val conv2d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
arr
val conv3d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
arr
val dilated_conv1d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
int array ->
arr
val dilated_conv2d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
int array ->
arr
val dilated_conv3d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
int array ->
arr
val transpose_conv1d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
arr
val transpose_conv2d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
arr
val transpose_conv3d :
?padding:Owl_types_common.padding ->
arr ->
arr ->
int array ->
arr
val max_pool1d :
?padding:Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr
val max_pool2d :
?padding:Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr
val max_pool3d :
?padding:Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr
val avg_pool1d :
?padding:Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr
val avg_pool2d :
?padding:Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr
val avg_pool3d :
?padding:Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr
val max_pool1d_backward :
Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val max_pool2d_backward :
Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val max_pool3d_backward :
Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val avg_pool1d_backward :
Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val avg_pool2d_backward :
Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr ->
arr
val avg_pool3d_backward :
Owl_types_common.padding ->
arr ->
int array ->
int array ->
arr ->
arr
Neural network related functions
val max_pool2d_argmax :
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
arr * (int64, Bigarray.int64_elt, Bigarray.c_layout) Bigarray.Genarray.t
val conv1d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
unit
val conv2d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
unit
val conv3d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
unit
val dilated_conv1d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
int array ->
unit
val dilated_conv2d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
int array ->
unit
val dilated_conv3d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
int array ->
unit
val transpose_conv1d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
unit
val transpose_conv2d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
unit
val transpose_conv3d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
arr ->
int array ->
unit
val max_pool1d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
unit
val max_pool2d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
unit
val max_pool3d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
unit
val avg_pool1d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
unit
val avg_pool2d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
unit
val avg_pool3d_ :
out:arr ->
?padding:Owl_types.padding ->
arr ->
int array ->
int array ->
unit
val max_pool1d_backward_ :
out:arr ->
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
unit
val max_pool2d_backward_ :
out:arr ->
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
unit
val max_pool3d_backward_ :
out:arr ->
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
unit
val avg_pool1d_backward_ :
out:arr ->
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
unit
val avg_pool2d_backward_ :
out:arr ->
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
unit
val avg_pool3d_backward_ :
out:arr ->
Owl_types.padding ->
arr ->
int array ->
int array ->
arr ->
unit
include Owl_dense_ndarray_intf.Complex
with type elt := elt
and type arr := arr
and type cast_arr := cast_arr
Complex operations
``complex re im`` constructs a complex ndarray/matrix from ``re`` and ``im``. ``re`` and ``im`` contain the real and imaginary part of ``x`` respectively.
Note that both ``re`` and ``im`` can be complex but must have same type. The real part of ``re`` will be the real part of ``x`` and the imaginary part of ``im`` will be the imaginary part of ``x``.
``polar rho theta`` constructs a complex ndarray/matrix from polar coordinates ``rho`` and ``theta``. ``rho`` contains the magnitudes and ``theta`` contains phase angles. Note that the behaviour is undefined if ``rho`` has negative elelments or ``theta`` has infinity elelments.