package owl
OCaml Scientific and Engineering Computing
Install
Dune Dependency
Authors
Maintainers
Sources
owl-0.8.0.tbz
sha256=862af251e2a3e7a6b79724a4020a0c9308b36f12c85cd0a52385c4df82132c66
sha512=c1dabbf467a587757b11a28b9c6e8f68a86ce799d07c7ab5f2afa92d20145ba9e4282975aeb269b7324f5ba90d1576db156006f4d58177a860def773f9d974f2
doc/src/owl/owl_sparse_matrix_generic.ml.html
Source file owl_sparse_matrix_generic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
# 1 "src/owl/sparse/owl_sparse_matrix_generic.ml" (* * OWL - OCaml Scientific and Engineering Computing * Copyright (c) 2016-2020 Liang Wang <liang.wang@cl.cam.ac.uk> *) open Bigarray open Owl_sparse_common open Owl_base_dense_common type ('a, 'b) kind = ('a, 'b) Bigarray.kind type ('a, 'b) t = { mutable m : int ; (* number of rows *) mutable n : int ; (* number of columns *) mutable k : ('a, 'b) kind ; (* type of sparse matrices *) mutable d : ('a, 'b) eigen_mat (* point to eigen struct *) } let zeros ?(density = 0.01) k m n = { m; n; k; d = _eigen_create density k m n } let eye k m = { m; n = m; k; d = _eigen_eye k m } let shape x = x.m, x.n let row_num x = x.m let col_num x = x.n let numel x = x.m * x.n let nnz x = _eigen_nnz x.d let density x = float_of_int (nnz x) /. float_of_int (numel x) let kind x = x.k let insert x i j a = if a <> Owl_const.zero x.k then _eigen_insert x.d i j a let set x i j a = _eigen_set x.d i j a let get x i j = _eigen_get x.d i j let reset x = _eigen_reset x.d let prune x a eps = _eigen_prune x.d a eps let copy x = { m = x.m; n = x.n; k = x.k; d = _eigen_copy x.d } let transpose x = { m = x.m; n = x.n; k = x.k; d = _eigen_transpose x.d } let diag x = { m = min x.m x.n; n = 1; k = x.k; d = _eigen_diagonal x.d } let trace x = _eigen_trace x.d let row x i = { m = 1; n = x.n; k = x.k; d = _eigen_row x.d i } let col x j = { m = x.m; n = 1; k = x.k; d = _eigen_col x.d j } let iteri f x = for i = 0 to row_num x - 1 do for j = 0 to col_num x - 1 do f i j (get x i j) done done let iter f x = for i = 0 to row_num x - 1 do for j = 0 to col_num x - 1 do f (get x i j) done done let mapi f x = let d = density x in let y = zeros ~density:d (kind x) (row_num x) (col_num x) in iteri (fun i j z -> insert y i j (f i j z)) x; y let map f x = let d = density x in let y = zeros ~density:d (kind x) (row_num x) (col_num x) in iteri (fun i j z -> insert y i j (f z)) x; y let _fold_basic iter_fun f a x = let r = ref a in iter_fun (fun y -> r := f !r y) x; !r let fold f a x = _fold_basic iter f a x let foldi f a x = let r = ref a in iteri (fun i j y -> r := f i j !r y) x; !r let filteri f x = let s = Owl_utils.Stack.make () in iteri (fun i j y -> if f i j y then Owl_utils.Stack.push s (i, j)) x; Owl_utils.Stack.to_array s let filter f x = filteri (fun _ _ y -> f y) x let iteri_nz f x = let _ = _eigen_compress x.d in let d = _eigen_valueptr x.d in let q = _eigen_innerindexptr x.d in let p = _eigen_outerindexptr x.d in for i = 0 to x.m - 1 do for k = Int64.to_int p.{i} to Int64.to_int p.{i + 1} - 1 do let j = Int64.to_int q.{k} in f i j d.{k} done done let iter_nz f x = let _ = _eigen_compress x.d in let d = _eigen_valueptr x.d in for i = 0 to Array1.dim d - 1 do f d.{i} done let mapi_nz f x = let _ = _eigen_compress x.d in let d = _eigen_valueptr x.d in let q = _eigen_innerindexptr x.d in let p = _eigen_outerindexptr x.d in let y = copy x in let e = _eigen_valueptr y.d in for i = 0 to x.m - 1 do for k = Int64.to_int p.{i} to Int64.to_int p.{i + 1} - 1 do let j = Int64.to_int q.{k} in e.{k} <- f i j d.{k} done done; y let map_nz f x = let _ = _eigen_compress x.d in let d = _eigen_valueptr x.d in let y = copy x in let e = _eigen_valueptr y.d in for i = 0 to Array1.dim d - 1 do e.{i} <- f d.{i} done; y let foldi_nz f a x = let r = ref a in iteri_nz (fun i j y -> r := f i j !r y) x; !r let fold_nz f a x = _fold_basic iter_nz f a x let filteri_nz f x = let s = Owl_utils.Stack.make () in iteri_nz (fun i j y -> if f i j y then Owl_utils.Stack.push s (i, j)) x; Owl_utils.Stack.to_array s let filter_nz f x = filteri_nz (fun _ _ y -> f y) x let _disassemble_rows x = _eigen_compress x.d; Owl_log.debug "_disassemble_rows :allocate space"; let d = Array.init x.m (fun _ -> zeros x.k 1 x.n) in Owl_log.debug "_disassemble_rows: iteri_nz"; let _ = iteri_nz (fun i j z -> insert d.(i) 0 j z) x in Owl_log.debug "_disassemble_rows: ends"; d let _disassemble_cols x = _eigen_compress x.d; let d = Array.init x.n (fun _ -> zeros x.k x.m 1) in let _ = iteri_nz (fun i j z -> insert d.(j) i 0 z) x in d let iteri_rows f x = Array.iteri (fun i y -> f i y) (_disassemble_rows x) let iter_rows f x = iteri_rows (fun _ y -> f y) x let iteri_cols f x = Array.iteri (fun j y -> f j y) (_disassemble_cols x) let iter_cols f x = iteri_cols (fun _ y -> f y) x let mapi_rows f x = let a = _disassemble_rows x in Array.init (row_num x) (fun i -> f i a.(i)) let map_rows f x = mapi_rows (fun _ y -> f y) x let mapi_cols f x = let a = _disassemble_cols x in Array.init (col_num x) (fun i -> f i a.(i)) let map_cols f x = mapi_cols (fun _ y -> f y) x let fold_rows f a x = _fold_basic iter_rows f a x let fold_cols f a x = _fold_basic iter_cols f a x let iteri_rows_nz f x = iteri_rows (fun i y -> if nnz y != 0 then f i y) x let iter_rows_nz f x = iteri_rows_nz (fun _ y -> f y) x let iteri_cols_nz f x = iteri_cols (fun i y -> if nnz y != 0 then f i y) x let iter_cols_nz f x = iteri_cols_nz (fun _ y -> f y) x let mapi_rows_nz f x = let a = _disassemble_rows x in let s = Owl_utils.Stack.make () in Array.iteri (fun i y -> if nnz y != 0 then Owl_utils.Stack.push s (f i y)) a; Owl_utils.Stack.to_array s let map_rows_nz f x = mapi_rows_nz (fun _ y -> f y) x let mapi_cols_nz f x = let a = _disassemble_cols x in let s = Owl_utils.Stack.make () in Array.iteri (fun i y -> if nnz y != 0 then Owl_utils.Stack.push s (f i y)) a; Owl_utils.Stack.to_array s let map_cols_nz f x = mapi_cols_nz (fun _ y -> f y) x let fold_rows_nz f a x = _fold_basic iter_rows_nz f a x let fold_cols_nz f a x = _fold_basic iter_cols_nz f a x let _exists_basic iter_fun f x = try iter_fun (fun y -> if f y = true then failwith "found") x; false with | _exn -> true let exists f x = _exists_basic iter f x let not_exists f x = not (exists f x) let for_all f x = let g y = not (f y) in not_exists g x let exists_nz f x = _exists_basic iter_nz f x let not_exists_nz f x = not (exists_nz f x) let for_all_nz f x = let g y = not (f y) in not_exists_nz g x let is_zero x = _eigen_is_zero x.d let is_positive x = _eigen_is_positive x.d let is_negative x = _eigen_is_negative x.d let is_nonpositive x = _eigen_is_nonpositive x.d let is_nonnegative x = _eigen_is_nonnegative x.d let equal x1 x2 = _eigen_equal x1.d x2.d let not_equal x1 x2 = _eigen_not_equal x1.d x2.d let greater x1 x2 = _eigen_greater x1.d x2.d let less x1 x2 = _eigen_less x1.d x2.d let greater_equal x1 x2 = _eigen_greater_equal x1.d x2.d let less_equal x1 x2 = _eigen_less_equal x1.d x2.d let add x y = { m = x.m; n = x.n; k = x.k; d = _eigen_add x.d y.d } let sub x y = { m = x.m; n = x.n; k = x.k; d = _eigen_sub x.d y.d } let mul x y = { m = x.m; n = x.n; k = x.k; d = _eigen_mul x.d y.d } let div x y = { m = x.m; n = x.n; k = x.k; d = _eigen_div x.d y.d } let dot x y = { m = x.m; n = y.n; k = x.k; d = _eigen_gemm x.d y.d } let add_scalar x a = { m = x.m; n = x.n; k = x.k; d = _eigen_add_scalar x.d a } let sub_scalar x a = { m = x.m; n = x.n; k = x.k; d = _eigen_sub_scalar x.d a } let mul_scalar x a = { m = x.m; n = x.n; k = x.k; d = _eigen_mul_scalar x.d a } let div_scalar x a = { m = x.m; n = x.n; k = x.k; d = _eigen_div_scalar x.d a } let min x = _eigen_min x.d let max x = _eigen_max x.d (* TODO: optimise *) let minmax x = _eigen_min x.d, _eigen_max x.d let min2 x y = _eigen_min2 x.d y.d [@@warning "-32"] let max2 x y = _eigen_max2 x.d y.d [@@warning "-32"] let sum x = _eigen_sum x.d let mean x = (_mean_elt x.k) (sum x) (numel x) let abs x = { m = x.m; n = x.n; k = x.k; d = _eigen_abs x.d } let neg x = { m = x.m; n = x.n; k = x.k; d = _eigen_neg x.d } (* TODO: optimise *) let reci x = let _op = Owl_base_dense_common._inv_elt (kind x) in map_nz (fun a -> _op a) x let power_scalar x c = let _op = Owl_base_dense_common._pow_elt (kind x) in map (fun y -> _op y c) x let l1norm x = x |> abs |> sum let l2norm x = mul x x |> sum |> sqrt let scalar_add a x = add_scalar x a let scalar_sub a x = sub_scalar x a |> neg let scalar_mul a x = mul_scalar x a let scalar_div a x = div_scalar x a |> reci (** permutation and draw functions *) let permutation_matrix k d = let l = Array.init d (fun x -> x) |> Owl_stats.shuffle in let y = zeros k d d in let _a1 = Owl_const.one k in Array.iteri (fun i j -> insert y i j _a1) l; y let draw_rows ?(replacement = true) x c = let m, _n = shape x in let a = Array.init m (fun i -> i) in let l = match replacement with | true -> Owl_stats.sample a c | false -> Owl_stats.choose a c in let y = zeros (kind x) c m in let _a1 = Owl_const.one (kind x) in let _ = Array.iteri (fun i j -> insert y i j _a1) l in dot y x, l let draw_cols ?(replacement = true) x c = let _m, n = shape x in let a = Array.init n (fun i -> i) in let l = match replacement with | true -> Owl_stats.sample a c | false -> Owl_stats.choose a c in let y = zeros (kind x) n c in let _a1 = Owl_const.one (kind x) in let _ = Array.iteri (fun j i -> insert y i j _a1) l in dot x y, l let shuffle_rows x = let y = permutation_matrix (kind x) (row_num x) in dot y x let shuffle_cols x = let y = permutation_matrix (kind x) (col_num x) in dot x y let shuffle x = x |> shuffle_rows |> shuffle_cols let to_dense x = let y = Owl_dense_matrix_generic.zeros x.k x.m x.n in iteri_nz (fun i j z -> Owl_dense_matrix_generic.set y i j z) x; y let of_dense x = let m, n = Owl_dense_matrix_generic.shape x in let y = zeros ~density:1. (Owl_dense_matrix_generic.kind x) m n in for i = 0 to m - 1 do for j = 0 to n - 1 do let z = Owl_dense_matrix_generic.get x i j in insert y i j z done done; y let sum_rows x = let y = Owl_dense_matrix_generic.ones x.k 1 x.m |> of_dense in dot y x let sum_cols x = let y = Owl_dense_matrix_generic.ones x.k x.n 1 |> of_dense in dot x y let mean_rows x = let m, _n = shape x in let k = kind x in let a = (_mean_elt k) (Owl_const.one k) m in let y = Owl_dense_matrix_generic.create k 1 m a |> of_dense in dot y x let mean_cols x = let _m, n = shape x in let k = kind x in let a = (_mean_elt k) (Owl_const.one k) n in let y = Owl_dense_matrix_generic.create k n 1 a |> of_dense in dot x y let nnz_rows x = let s = Hashtbl.create 1000 in let _ = iteri_nz (fun i _ _ -> if not (Hashtbl.mem s i) then Hashtbl.add s i 0) x in Hashtbl.fold (fun k _v l -> l @ [ k ]) s [] |> Array.of_list let nnz_cols x = let s = Hashtbl.create 1000 in let _ = iteri_nz (fun _ j _ -> if not (Hashtbl.mem s j) then Hashtbl.add s j 0) x in Hashtbl.fold (fun k _v l -> l @ [ k ]) s [] |> Array.of_list let row_num_nz x = nnz_rows x |> Array.length let col_num_nz x = nnz_cols x |> Array.length let to_array x = let y = Array.make (nnz x) ([||], Owl_const.zero x.k) in let k = ref 0 in iteri_nz (fun i j v -> y.(!k) <- [| i; j |], v; k := !k + 1) x; y let of_array k m n x = let y = zeros k m n in Array.iter (fun (i, v) -> insert y i.(0) i.(1) v) x; y let ones k m n = Owl_dense_matrix_generic.ones k m n |> of_dense let sequential k m n = let x = Owl_dense_matrix_generic.sequential k m n |> of_dense in _eigen_prune x.d (Owl_const.zero x.k) 0.; x let fill x a = let m, n = shape x in for i = 0 to m - 1 do for j = 0 to n - 1 do insert x i j a done done let _random_basic d k f m n = let c = int_of_float (float_of_int (m * n) *. d) in let x = zeros ~density:(d +. 0.01) k m n in let l = Owl_stats.choose (Array.init (m * n) (fun i -> i)) c in for k = 0 to c - 1 do let i = l.(k) / n in let j = l.(k) - (i * n) in insert x i j (f ()) done; x let binary ?(density = 0.15) k m n = let _a1 = Owl_const.one k in _random_basic density k (fun () -> _a1) m n let uniform ?(density = 0.15) ?(scale = 1.) k m n = let _op = Owl_ndarray._owl_uniform_fun k in _random_basic density k (fun () -> _op scale) m n let print x = _eigen_print x.d (* TODO: improve the performance *) let pp_spmat x = let m, n = shape x in let c = nnz x in let p = 100. *. density x in let mz, nz = row_num_nz x, col_num_nz x in if m < 100 && n < 100 then Owl_dense_matrix_generic.print (to_dense x); Printf.printf "shape = (%i,%i) | (%i,%i); nnz = %i (%.1f%%)\n" m n mz nz c p let save x f = Owl_io.marshal_to_file x f let load _k f = Owl_io.marshal_from_file f (* TODO: optimise *) let rows x l = let y = zeros x.k (Array.length l) x.n in Array.iteri (fun i k -> iteri_nz (fun _ j v -> insert y i j v) (row x k)) l; y let cols x l = let y = zeros x.k x.m (Array.length l) in Array.iteri (fun j k -> iteri_nz (fun i _ v -> insert y i j v) (col x k)) l; y let concat_vertical _x _y = failwith "owl_sparse_matrix_generic:concat_vertical:not implemented" let concat_horizontal _x _y = failwith "owl_sparse_matrix_generic:concat_horizontal:not implemented" let mpow _x _a = failwith "owl_sparse_matrix_generic:mpow:not implemented"
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>