package ostap
Parser-combinator library
Install
Dune Dependency
Authors
Maintainers
Sources
ostap-0.6.tbz
sha256=8c310bd119fbc3ccbaf6f048d7cf97454343df01699c6da01fc72e0d09a6d9d5
sha512=784888bf0b6125404406ad1e5a6e08d587fcfb827482a4302de09077631b46a0674406de5b2e82a201be73665411d2021cdce5424a4a5c896fd0378e100f0130
doc/src/ostap.syntax/extension.ml.html
Source file extension.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
(* * Extension: a camlp5 extension to wrap Ostap's combinators. * Copyright (C) 2006-2009 * Dmitri Boulytchev, St.Petersburg State University * * This software is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License version 2, as published by the Free Software Foundation. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Library General Public License version 2 for more details * (enclosed in the file COPYING). *) (** Pa_ostap --- a camlp5 syntax extension for BNF-like grammar definitions. *) (** {2 General description} [Pa_ostap] extends Objective Caml grammar with construct [ostap (..)], introduced at structure and expression levels. The exact allowed forms are the following: {ol {- [ostap] {i doc_tag} [(]{i rules}[)] --- at the structure (module implementation) level;} {- [let ostap] {i doc_tag} [(]{i rule}[)] --- at the let-binding level; introduces {i recursive} binding;} {- [ostap] {i doc_tag} [(]{i rules}[)] --- at the expression level;} {- [ostap] [(]{i parse_expr}[)] --- at the expression level;} {- [let ostap] {i doc_tag} [(]{i rules}[) in] {i expr} --- at the expression level;} } In the specification above {i rules} denotes a sequence of grammar rules, {i rule} --- a single rule, {i parse_expr} --- parse expression, {i doc_tag} --- documentation specifier. Below the examples of all these constructs are given: {[ (* Grammar rules specification at the structure level; rules are mutually recursive *) ostap ( x: IDENT; (* rule defining parser x *) y: CONST (* rule defining parser y *) ) (* Grammar rule at the let-binding level; bindings are mutually recursive *) let ostap (x: IDENT) (* rule defining parser x *) and ostap (y: CONST) (* rule defining parser y *) and u = 3 (* an example to demonstrate interoperability with other let-bindings *) let _ = (* Let-bindings at expression level; x and y are mutually recursive *) let ostap (x: IDENT; y: CONST) in (* Grammar expression *) let p = ostap (x y) in () ]} All these constructs are converted into pure OCaml using [Ostap] parser combinators. While [Ostap] is purely abstract with regard to stream implementation [Pa_ostap] additionally provides convenient integration of parsing and lexing by considering {i streams as objects}. Namely, the stream of tokens [L]{_1}, [L]{_2}, ..., [L]{_k} is represented by an object with member functions [getL]{_1}, [getL]{_2}, ..., [getL]{_k}. Such a representation allows to freely combine various parser functions that operate on different types of streams with almost no type limitations at construction time. Additionally to this documentation we provide a closed example of how to use [Pa_ostap] (see [sample] directory of the distribution). {2 Parse expressions} The syntax of parse expressions is as follows (text in {b bold} denotes meta-language syntax description symbols): [parse_expr] {b :} [alternative]{_[1]} {b | } [alternative]{_[2]} {b | ... |} [alternative]{_[k]} [alternative] {b :} [prefixed+] {b \[ } [semantic] {b \] } [prefixed] {b : } {b \[ } [-] {b \] } [basic] [basic] {b : } {b \[ } [binding] {b \] } [postfix] {b \[ } [predicate] {b \]} [postfix] {b : } [primary] {b | } [postfix] {b ( } [*] {b \[} folding {b \]} {b | } [+] {b \[} folding {b \]} {b | } [?] {b | } [:: (] {i EXPR} [)] {b ) } [folding] {b : } {b with} {b \{} {i EXPR} {b \}} {b \{} {i EXPR} {b \}} [primary] {b : } {i UIDENT} {b | } [parser] {b \[ } [parameters] {b \] } {b | } [string] {b | } [$] {b | ( } [parse_expr] {b )} [parser] {b : } {i LIDENT} {b | } [!(]{i EXPR}[)] [string] {b : } {i STRING} {b | } [$(]{i EXPR}[)] [parameters] {b : } {b (}[\[] {i EXPR} [\]]{b )*} [binding] {b : } {i PATT} [:] [predicate] {b : } [=> {] {i EXPR} [}] {b \[} [::(] {i EXPR} [)]{b \]} [=>] [semantic] {b : } [{] {i EXPR} [}] Here {i UIDENT} and {i LIDENT} stand for identifiers starting from uppercase and lowercase letters correspondingly, {i STRING} --- for OCaml strings, {i EXPR} --- for OCaml expression, {i PATT} --- for OCaml pattern. [parser] within parse expression denotes a {i parse function} that applied to a stream to obtain parsed value and residual stream (see module [Ostap.Combinators]). Each reference is either a {i LIDENT} or arbitrary OCaml expression of appropriate type, surrounded by [!(...)]. Parser invocation may be equipped with parameters each of which has to be surrounded by [\[...\]] (partial application is allowed as well). {i UIDENT} is treated as a lexeme reference; thought generally speaking parsing with [Ostap] does not require any lexer to be provided (you may instead supply a set of basic parse functions in any way you find convenient) [Pa_ostap] additionally operates with some predefined representation of streams as objects (see module [Matcher]). This representation does not interfere with the common approach and you need not use this feature unless you explicitly apply to it. There are only three constructs that refer to object implementation of streams: {i UIDENT}, [$(]{i EXPR}[)] and {i STRING}. If you use {i UIDENT} in grammar expression, for example {i NAME}, then the stream to parse with this expression has to provide a member function {i getNAME}. Similarly using {i STRING} in expression requires stream to provide a member {i look}. Finally you may match a stream against value of any OCaml expression of string type by surrounding it with [$(...)]. Postfix operators [+], [*] and [?] denote respectively one-or-more iteration, zero-or-more iteration and optional value. Postfix operator [::(]{i EXPR}[)] can be used to {i comment} the reason returned on failure with the given reason value (see {!Ostap.Combinators.comment} function and module {!Reason} as reference implementation). Additionally some folding can be specified for postfix [+] and [*] operators. The folding has the form {b with \{} {i EXPR}{b \}\{} {i EXPR} {b \}} where the first expression in curved brackets denotes initial value for folding with function given by the second expression. For example {[ callee:expression call:(-"(" arguments -")")* with{callee}{fun callee args -> `Call (callee, args)} {call} ]} is equivalent to {[ callee:expression call:(-"(" arguments -")")* {List.fold_left (fun callee args -> `Call (callee, args)) callee call} ]} Symbol [$] within parse expression serves as a shortcut for {!Ostap.Combinators.lift} and so delivers underlying stream as its semantic value. Prefix operator [-] is used to {i omit} parsed value from the result of parsing (the parsing of its operand however is not omitted). Prefix construct {i PATT}[:] is used to match successfully parsed value against pattern {i PATT}; this matching may provide bindings that can be used later. Construct [=>{]{i EXPR}[}=>] is used to supply additional check of successfully parsed value; {i EXPR} has to be of boolean type and may use bindings made before. We will not describe the meaning of all constructs in all details since generally it follows the common BNF style; instead we demonstrate some examples that cover all cases of their exploration. {b Examples:} {ol {li ["(" expression ")"] is a grammar expression to define a function that matches a stream against successive occurrences of ["("], that that parsed by [expression], and [")"]. On success this function returns {i a triple}: the token for ["("] (of type determined by stream implementation), the value parsed by [expression], and the token for [")"]. There are generally two ways to exclude ["("] and [")"] from the result. The first way is to bind the result of [expression] to some name and then explicitly specify the result of grammar expression as follows: ["(" e:expression ")" {e}] The second is just to say to omit brackets: [-"(" expression -")"]. Note that you may specify arbitrary pattern in the left part of binding. Prefix omitting operator "[-]" may also be applied to any grammar expression, enclosed in brackets. } {li [hd:item tl:(-"," item)* {hd :: tl}] defines a function to parse a list of [item]s.} {li [(s:string {`Str s} | x:integer {`Int x})*] defines a function to parse a list of strings or integers.} {li [hd:integer tl:(-(","?) integer)* {hd :: tl}] parses a list of integers delimited by optional commas.} {li [x:integer => {x > 0}::("positive value expected") => {x}] parses positive integer value.} {li [x:(integer?) => {match x with Some 0 -> false | _ -> true} => {x}] parses optional non-zero integer value.} {li [x:!(MyParseLibrary.MyModule.parseIt)] parses a stream with parse function specified by qualified name.} } In all examples above we assume that [integer] parses integer value, [string] --- string value. {2 Rules} Rule is named and optionally parameterized parse expression; several mutually-recursive rules may be defined at once. The syntax of rule definition is [rule] {b : } {i LIDENT} [arguments] [:] {b \[} [predicate] {b \]} [parse_expr] [rules] {b : } [rule]{_1}; [rule]{_2}; ...; [rule]{_k} [arguments] {b : ( }[\[]{i PATT}[\]] {b )*} For example, {[ ostap ( sequence[start]: item[start] | next:item[start] sequence[next]; item[start]: x:integer {x+start} | ";" {start}; entry: sequence[0] ) ]} declares (among others) the parser function [entry] which parses and sums a semicolon-terminated sequence of integers. {2 Documentation generation} Option [-tex ]{i filename} makes [Pa_ostap] generate [LaTeX] documentation for all rules. On default all text is placed into specified file; however the output can be split into several files by specifying [doc_tag] option for [ostap] construct. The syntax of option is as follows: [doc_tag] {b : \[} [\[] {i STRING} [\]] {b \]} With this option provided the documentation for corresponding rules will be placed in file with name {i filename}[.]{i tagname}[.tex], where {i filename} is the name specified by option [-tex] and {i tagname} is string value of [doc_tag]. Generated documentation uses [ostap.sty] package which provides cross-references and automatic layout for most of the cases. To obtain good documentation it is recommended to use simple parsers (i.e. identifiers) in grammar rules. Parameterized rules are supported as well. *) (**/**) [@@@ocaml.warning "-27"] open Pcaml open Printf open BNF3 module Args = struct let (h : (string, string) Hashtbl.t) = Hashtbl.create 1024 let register x = Hashtbl.add h x x let wrap x = try Expr.custom [`S (Hashtbl.find h x)] with Not_found -> Expr.nonterm x let clear () = Hashtbl.clear h end module Uses = struct let (h : (string, unit) Hashtbl.t) = Hashtbl.create 1024 let register x = Hashtbl.add h x () let has x = Hashtbl.mem h x let clear () = Hashtbl.clear h end module Cache = struct let (h : (string, Expr.t) Hashtbl.t) = Hashtbl.create 1024 let compress x = let b = Buffer.create 1024 in let f = ref false in for i = 0 to String.length x - 1 do match x.[i] with ' ' -> if !f then () else (Buffer.add_char b ' '; f := true) | '\t' | '\n' -> f := false | c -> Buffer.add_char b c; f := false done; Buffer.contents b let cache x y = Hashtbl.add h (compress x) y let cached x = let x = compress x in let rec substitute acc s i j = let len = String.length s in if j < i then if i < len then substitute acc s (i+1) (len-1) else List.rev (`S s :: acc) else if i = len then List.rev (`S s :: acc) else let d = String.sub s i (j-i+1) in try substitute (`T (Hashtbl.find h d) :: (`S (String.sub s 0 i) :: acc)) (String.sub s (j + 1) (len - j - 1)) 0 (len - j - 2) with Not_found -> substitute acc s i (j-1) in match substitute [] x 0 (String.length x - 1) with [`S s] -> Args.wrap s | list -> Expr.custom list end let printBNF = ref (fun (_: string option) (_: string) -> ()) let printExpr = ref (fun (_: MLast.expr) -> "") let printPatt = ref (fun (_: MLast.patt) -> "") let texDef def = Def.toTeX def let texDefList defs = let buf = Buffer.create 1024 in List.iter (fun def -> Buffer.add_string buf (sprintf "%s\n" (Def.toTeX def))) defs; Buffer.contents buf let bindOption x f = match x with None -> None | Some x -> Some (f x) let rec get_ident = function <:expr< $lid:x$ >> -> [x] | <:expr< [| $list:el$ |] >> -> List.flatten (List.map get_ident el) | <:expr< ($list:el$) >> -> List.flatten (List.map get_ident el) | <:expr< $p1$ $p2$ >> -> get_ident p1 @ get_ident p2 | <:expr< { $list:lel$ } >> -> List.flatten (List.map (fun (_lab, e) -> get_ident e) lel) | <:expr< ($e$ : $_$) >> -> get_ident e | _ -> [] let rec get_defined_ident = function <:patt< $longid:_$ . $lid:_$ >> -> [] | <:patt< _ >> -> [] | <:patt< $lid:x$ >> -> [x] | <:patt< ($p1$ as $p2$) >> -> get_defined_ident p1 @ get_defined_ident p2 | <:patt< $int:_$ >> -> [] | <:patt< $flo:_$ >> -> [] | <:patt< $str:_$ >> -> [] | <:patt< $chr:_$ >> -> [] | <:patt< [| $list:pl$ |] >> -> List.flatten (List.map get_defined_ident pl) | <:patt< ($list:pl$) >> -> List.flatten (List.map get_defined_ident pl) | <:patt< $uid:_$ >> -> [] | <:patt< ` $_$ >> -> [] | <:patt< # $lilongid:_$ >> -> [] | <:patt< $p1$ $p2$ >> -> get_defined_ident p1 @ get_defined_ident p2 | <:patt< { $list:lpl$ } >> -> List.flatten (List.map (fun (_lab, p) -> get_defined_ident p) lpl) | <:patt< $p1$ | $p2$ >> -> get_defined_ident p1 @ get_defined_ident p2 | <:patt< $p1$ .. $p2$ >> -> get_defined_ident p1 @ get_defined_ident p2 | <:patt< ($p$ : $_$) >> -> get_defined_ident p | <:patt< ~{$_$} >> -> [] | <:patt< ~{$_$ = $p$} >> -> get_defined_ident p | <:patt< ?{$_$} >> -> [] | <:patt< ?{$lid:s$ = $_$} >> -> [s] | <:patt< ?{$_$ = ?{$lid:s$ = $e$}} >> -> [s] | <:patt< $anti:p$ >> -> get_defined_ident p | _ -> [] EXTEND GLOBAL: expr patt str_item let_binding; doc_name: [ [ "["; name=STRING; "]" -> name ] ]; str_item: LEVEL "top" [ [ "ostap"; doc=OPT doc_name; "("; rules=o_rules; ")" -> let (fakePatts, fakeExprs, fixedRuleExprs, defs, namePatts, gen_fixBodyWithArgs, paramNums) = rules in !printBNF doc (texDefList defs); let rules = List.map2 (fun a b -> (a, b, <:vala<[]>>)) fakePatts fixedRuleExprs in let makePattsAndExprs str num = let nameSeq = let rec loop n = if n > num then [] else (str ^ (string_of_int n)) :: (loop (n + 1)) in loop 1 in (List.map (fun name -> <:patt< ($lid:name$)>>) nameSeq, List.map (fun name -> <:expr< ($lid:name$)>>) nameSeq) in let fixPointRule = [(<:patt< $lid:"_generated_fixpoint"$>>, gen_fixBodyWithArgs, <:vala<[]>>)] in let fix_gen = List.fold_left (fun exprAcc fakeExpr -> <:expr< $exprAcc$ $fakeExpr$ >>) <:expr< _generated_fixpoint >> fakeExprs in let insideExpr = <:expr< let $opt:false$ $list:rules$ in $fix_gen$ >> in let insideExprWithFixpoint = <:expr< let $opt:false$ $list:fixPointRule$ in $insideExpr$ >> in let nameTuplePatt = match fakePatts with | [ ] -> <:patt< () >> | [x] -> x | x -> <:patt< ( $list:x$ ) >> in let tupleRule = [(nameTuplePatt, insideExprWithFixpoint, <:vala<[]>>)] in let namePatts = List.combine namePatts paramNums in let outerRules = ListLabels.fold_right2 ~init:[] namePatts fakeExprs ~f:(fun (namePatt, paramNum) fakeExpr lets -> let (paramPatts, paramExprs) = makePattsAndExprs "_param" paramNum in let e' = List.fold_left (fun exprAcc paramExpr -> <:expr< $exprAcc$ $paramExpr$>>) fakeExpr (paramExprs @ [<:expr< $lid:"_s"$>>]) in let e'' = <:expr< let $opt:false$ $list:tupleRule$ in $e'$ >> in let finalExpr = List.fold_right ( fun paramPatt exprAcc -> let pwel = [(paramPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) (paramPatts @ [<:patt< $lid:"_s"$>>]) e'' in (namePatt, finalExpr, <:vala<[]>>) :: lets ) in <:str_item< value $opt:false$ $list:outerRules$ >> (* let lcice = [{ ciLoc = Ploc.dummy; ciVir = Ploc.VaVal false; ciPrm = (Ploc.dummy, Ploc.VaVal []); ciNam = Ploc.VaVal "matcher_stream"; ciExp = <:class_expr< $uid:"Matcher"$ . $lid:"stream"$ >>}] in let lsi = [<:str_item< value $opt:false$ $list:outerRules$ >>; <:str_item< class $list:lcice$ >>] in <:str_item< declare $list:lsi$ end >> *) (* let lsi = [<:str_item< open $["Matcher"]$ >>; <:str_item< value $opt:false$ $list:outerRules$ >>] in <:str_item< declare $list:lsi$ end >> *) ] ]; let_binding: [ [ "ostap"; doc=OPT doc_name; "("; rule=o_rule; ")" -> let (((name, rule), def), _) = rule in !printBNF doc (texDef def); (<:patt< $lid:name$ >>, rule, <:vala<[]>>) ] ]; expr: LEVEL "expr1" [ [ "ostap"; "("; (p, tree)=o_alternatives; ")" -> let body = <:expr< $p$ _ostap_stream >> in (* let typ = <:ctyp< # $list:["matcher_stream"]$ >> in *) (* let typ = <:ctyp< $uid:"Matcher"$ . $lid:"stream"$ >> in *) (* let typ = <:ctyp< # $list:["Matcher"; "t"]$ >> in *) (* let pwel = [(<:patt< ( $lid:"_ostap_stream"$ : $typ$ ) >>, Ploc.VaVal None, body)] in *) let pwel = [(<:patt< $lid:"_ostap_stream"$ >>, Ploc.VaVal None, body)] in let _f = <:expr< fun [$list:pwel$] >> in (match tree with Some tree -> Cache.cache (!printExpr p) tree | None -> ()); p ] ]; expr: LEVEL "expr1" [ [ "let"; "ostap"; doc=OPT doc_name; "("; rules=o_rules; ")"; "in"; e=expr LEVEL "top" -> let (fakePatts, fakeExprs, fixedRuleExprs, defs, namePatts, gen_fixBodyWithArgs, paramNums) = rules in !printBNF doc (texDefList defs); let rules = List.map2 (fun a b -> (a, b, <:vala<[]>>)) fakePatts fixedRuleExprs in let makePattsAndExprs str num = let nameSeq = let rec loop n = if n > num then [] else (str ^ (string_of_int n)) :: (loop (n + 1)) in loop 1 in (List.map (fun name -> <:patt< ($lid:name$)>>) nameSeq, List.map (fun name -> <:expr< ($lid:name$)>>) nameSeq) in let fixPointRule = [(<:patt< $lid:"_generated_fixpoint"$>>, gen_fixBodyWithArgs, <:vala<[]>>)] in let fix_gen = List.fold_left (fun exprAcc fakeExpr -> <:expr< $exprAcc$ $fakeExpr$ >>) <:expr< _generated_fixpoint >> fakeExprs in let insideExpr = <:expr< let $opt:false$ $list:rules$ in $fix_gen$ >> in let insideExprWithFixpoint = <:expr< let $opt:false$ $list:fixPointRule$ in $insideExpr$ >> in (* let nameTuplePatt = <:patt< ($list:fakePatts$) >> in (*!!!*) *) let nameTuplePatt = match fakePatts with | [ ] -> <:patt< () >> | [x] -> x | x -> <:patt< ( $list:x$ ) >> in let tupleRule = [(nameTuplePatt, insideExprWithFixpoint, <:vala<[]>>)] in let namePatts = List.combine namePatts paramNums in let outerRules = List.fold_right2 ( fun (namePatt, paramNum) fakeExpr lets -> let (paramPatts, paramExprs) = makePattsAndExprs "_param" paramNum in let e' = List.fold_left (fun exprAcc paramExpr -> <:expr< $exprAcc$ $paramExpr$>>) fakeExpr (paramExprs @ [<:expr< $lid:"_s"$>>]) in let e'' = <:expr< let $opt:false$ $list:tupleRule$ in $e'$ >> in let finalExpr = List.fold_right ( fun paramPatt exprAcc -> let pwel = [(paramPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) (paramPatts @ [<:patt< $lid:"_s"$>>]) e'' in (namePatt, finalExpr, <:vala<[]>>) :: lets) namePatts fakeExprs [] in <:expr< let $opt:false$ $list:outerRules$ in $e$ >> ] ]; o_rules: [ [ rules=LIST1 o_rule SEP ";" -> let (rules, paramNums) = List.split rules in let (rules, defs) = List.split rules in let (names, ruleExprs) = List.split rules in let namePatts = List.map (fun name -> <:patt< $lid:name$>>) names in let makePattsAndExprs str num = let nameSeq = let rec loop n = if n > num then [] else (str ^ (string_of_int n)) :: (loop (n + 1)) in loop 1 in (List.map (fun name -> <:patt< ($lid:name$)>>) nameSeq, List.map (fun name -> <:expr< ($lid:name$)>>) nameSeq) in let (fakePatts, fakeExprs) = makePattsAndExprs "_fakename" (List.length names) in let (fixArgPatts, fixArgExprs) = makePattsAndExprs "_f" (List.length names) in let (lazyPatts, lazyExprs) = makePattsAndExprs "_p" (List.length names) in let forcedLazyExprs = List.map ( fun lazyExpr -> let pwel = [(<:patt< ($lid:"_t"$)>>), Ploc.VaVal None, <:expr< Lazy.force_val $lazyExpr$ ($lid:"_t"$)>>] in <:expr< fun [$list:pwel$]>>) lazyExprs in let lazyRules = List.map2 (fun fixArgExpr paramNum -> let (paramPatts, paramExprs) = makePattsAndExprs "_param" paramNum in let (paramPatts', paramExprs') = makePattsAndExprs "_param'" paramNum in let cmp = List.fold_right2 (fun paramExpr paramExpr' acc -> let tryExpr = let pwel = [(<:patt< Invalid_argument _ >>), Ploc.VaVal None, <:expr< $paramExpr$ == $paramExpr'$>>] in <:expr< try $paramExpr$ = $paramExpr'$ with [ $list:pwel$ ]>> in <:expr< $acc$ && ($tryExpr$)>> ) paramExprs paramExprs' <:expr< True>> in let innerMatch = let e = <:expr< $lid:"acc"$>> in let pwel = [(<:patt< Some _>>, Ploc.VaVal None, <:expr< $lid:"acc"$>> ); (<:patt< None>>, Ploc.VaVal Some cmp, <:expr< Some $lid:"p'"$>>); (<:patt< _>>, Ploc.VaVal None, <:expr< None>> )] in <:expr< match $e$ with [ $list:pwel$ ] >> in let folder = let pwel1 = [(<:patt< $lid:"acc"$>>, Ploc.VaVal None, innerMatch)] in let pwel2 = [(<:patt< $lid:"p'"$>>, Ploc.VaVal None, <:expr< fun [$list:pwel1$]>>)] in (* let pwel3 = [(<:patt< ($list:paramPatts'$)>>, Ploc.VaVal None, <:expr< fun [$list:pwel2$]>>)] in (*!!!*) *) let pwel3 = let paramPatts'' = match paramPatts' with | [ ] -> <:patt< () >> | [x] -> x | x -> <:patt< ( $list:x$ ) >> in [(paramPatts'', Ploc.VaVal None, <:expr< fun [$list:pwel2$]>>)] in <:expr< (fun [$list:pwel3$])>> in let hashFold = <:expr< (Hashtbl.fold $folder$ $lid:"_table"$ None)>> in let fixArgExpr'' = List.fold_left (fun exprAcc forcedLazyExpr -> <:expr< $exprAcc$ ($forcedLazyExpr$)>>) fixArgExpr forcedLazyExprs in let fixArgExpr' = List.fold_left (fun exprAcc paramExpr -> <:expr< $exprAcc$ $paramExpr$>>) fixArgExpr'' paramExprs in let memoBody = let r = <:expr< $lid:"_r"$>> in (* let el = [<:expr< Hashtbl.add $lid:"_table"$ ($list:paramExprs$) $r$>>; <:expr< $r$ $lid:"_s"$>>] in (*!!!*) *) let el = let paramExprs'' = match paramExprs with | [ ] -> <:expr< () >> | [x] -> x | x -> <:expr< ( $list:x$ ) >> in [<:expr< Hashtbl.add $lid:"_table"$ $paramExprs''$ $r$>>; <:expr< $r$ $lid:"_s"$>>] in <:expr< do {$list:el$}>> in let outerMatch = let rules = [(<:patt< $lid:"_r"$>>, fixArgExpr', <:vala<[]>>)] in let pwel = [(<:patt< None>>, Ploc.VaVal None, <:expr< let $opt:false$ $list:rules$ in $memoBody$>>); (<:patt< Some $lid:"x"$>>, Ploc.VaVal None, <:expr< $lid:"x"$ $lid:"_s"$>>)] in <:expr< match $hashFold$ with [ $list:pwel$ ]>> in let memoizedRule = List.fold_right ( fun paramPatt exprAcc -> let pwel = [(paramPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) (paramPatts @ [<:patt< $lid:"_s"$>>]) outerMatch in let fixArgExpr = let rules = [(<:patt< $lid:"_table"$>>), <:expr< Hashtbl.create $int:"16"$>>, <:vala<[]>>] in <:expr< let $opt:false$ $list:rules$ in $memoizedRule$>> in <:expr< lazy ($fixArgExpr$) >> ) fixArgExprs paramNums in let lazyRules = List.map2 (fun a b -> (a, b, <:vala<[]>>)) lazyPatts lazyRules in let finalExpr = match forcedLazyExprs with | [ ] -> <:expr< () >> | [x] -> x | x -> <:expr< ( $list:x$ ) >> in let gen_fixBody = <:expr< let $opt:true$ $list:lazyRules$ in $finalExpr$ >> in let gen_fixBodyWithArgs = List.fold_right ( fun fixArgPatt exprAcc -> let pwel = [(fixArgPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) fixArgPatts gen_fixBody in let fixedRuleExprs = let makeFixed rule = List.fold_right ( fun namePatt exprAcc -> let pwel = [(namePatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) namePatts rule in (List.map makeFixed ruleExprs) in (fakePatts, fakeExprs, fixedRuleExprs, defs, namePatts, gen_fixBodyWithArgs, paramNums) ] ]; o_rule: [ [ name=LIDENT; args=OPT o_formal_parameters; ":"; (p, tree)=o_alternatives -> let args' = match args with None -> [(*<:patt< (_ostap_stream : #Matcher.t) >>*)] | Some l -> l @ [(*<:patt< (_ostap_stream : #Matcher.t) >>*)] in let rule = List.fold_right (fun x f -> let pwel = [(x, Ploc.VaVal None, f)] in <:expr< fun [$list:pwel$] >> ) args' <:expr< $p$(* _ostap_stream*) >> in let p = match args with None -> [] | Some args -> let args = List.filter (fun p -> let idents = get_defined_ident p in List.fold_left (fun acc ident -> acc || (Uses.has ident)) false idents ) args in List.map !printPatt args in let tree = match tree with None -> Expr.string "" | Some tree -> tree in let def = match p with [] -> Def.make name tree | args -> Def.makeP name args tree in Args.clear (); Uses.clear (); (((name, rule), def), List.length args') ] ]; (* str_item: LEVEL "top" [ [ "ostap"; doc=OPT doc_name; "("; rules=o_rules; ")" -> let (numberOfRules, rules, defs, namePatts, gen_fixBodiesWithArgs) = rules in let fixedRuleExprs = let makeFixed rule = List.fold_right ( fun namePatt exprAcc -> let pwel = [(namePatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) namePatts rule in (List.map makeFixed rules) in !printBNF doc (texDefList defs); let makePattsAndExprs str num = let nameSeq = let rec loop n = if n > num then [] else (str ^ (string_of_int n)) :: (loop (n + 1)) in loop 1 in (List.map (fun name -> <:patt< ($lid:name$)>>) nameSeq, List.map (fun name -> <:expr< ($lid:name$)>>) nameSeq) in let (fakePatts, fakeExprs) = makePattsAndExprs "_nonrecursiveParser" numberOfRules in let (fixPatts, fixExprs) = makePattsAndExprs "_fixedParser" numberOfRules in let fixgens = List.map (fun gen_fixBodyWithArgs -> let fixPointRule = [(<:patt< $lid:"_generated_fixpoint"$>>, gen_fixBodyWithArgs)] in let fixgen = List.fold_left (fun exprAcc fakeExpr -> <:expr< $exprAcc$ $fakeExpr$ >>) <:expr< _generated_fixpoint >> fakeExprs in let fixgen = <:expr< $fixgen$ $lid:"_ostap_stream"$ >> in let pwel = [(<:patt< $lid:"_ostap_stream"$>>, Ploc.VaVal None, fixgen)] in <:expr< let $opt:false$ $list:fixPointRule$ in (fun [$list:pwel$]) >>) gen_fixBodiesWithArgs in let rules = (List.combine fakePatts fixedRuleExprs) @ (List.combine fixPatts fixgens) in let fakeExprTuple = match fixExprs with | [x] -> x | x -> <:expr< ( $list:x$ ) >> in let namePattTuple = match namePatts with | [x] -> x | x -> <:patt< ( $list:x$ ) >> in let outerRules = [(namePattTuple, <:expr< let $opt:true$ $list:rules$ in $fakeExprTuple$ >>)] in <:str_item< value $opt:false$ $list:outerRules$ >> ] ]; let_binding: [ [ "ostap"; doc=OPT doc_name; "("; rule=o_rule; ")" -> let (((name, rule), def), _) = rule in !printBNF doc (texDef def); (<:patt< $lid:name$ >>, rule) ] ]; expr: LEVEL "expr1" [ [ "ostap"; "("; (p, tree)=o_alternatives; ")" -> let body = <:expr< $p$ _ostap_stream >> in let pwel = [(<:patt< _ostap_stream >>, Ploc.VaVal None, body)] in let f = <:expr< fun [$list:pwel$] >> in (match tree with Some tree -> Cache.cache (!printExpr f) tree | None -> ()); f ] ]; expr: LEVEL "expr1" [ [ "let"; "ostap"; doc=OPT doc_name; "("; rules=o_rules; ")"; "in"; e=expr LEVEL "top" -> let (numberOfRules, rules, defs, namePatts, gen_fixBodiesWithArgs) = rules in let fixedRuleExprs = let makeFixed rule = List.fold_right ( fun namePatt exprAcc -> let pwel = [(namePatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) namePatts rule in (List.map makeFixed rules) in !printBNF doc (texDefList defs); let makePattsAndExprs str num = let nameSeq = let rec loop n = if n > num then [] else (str ^ (string_of_int n)) :: (loop (n + 1)) in loop 1 in (List.map (fun name -> <:patt< ($lid:name$)>>) nameSeq, List.map (fun name -> <:expr< ($lid:name$)>>) nameSeq) in let (fakePatts, fakeExprs) = makePattsAndExprs "_nonrecursiveParser" numberOfRules in let (fixPatts, fixExprs) = makePattsAndExprs "_fixedParser" numberOfRules in let fixgens = List.map (fun gen_fixBodyWithArgs -> let fixPointRule = [(<:patt< $lid:"_generated_fixpoint"$>>, gen_fixBodyWithArgs)] in let fixgen = List.fold_left (fun exprAcc fakeExpr -> <:expr< $exprAcc$ $fakeExpr$ >>) <:expr< _generated_fixpoint >> fakeExprs in let fixgen = <:expr< $fixgen$ $lid:"_ostap_stream"$ >> in let pwel = [(<:patt< $lid:"_ostap_stream"$>>, Ploc.VaVal None, fixgen)] in <:expr< let $opt:false$ $list:fixPointRule$ in (fun [$list:pwel$]) >>) gen_fixBodiesWithArgs in let rules = (List.combine fakePatts fixedRuleExprs) @ (List.combine fixPatts fixgens) in let fakeExprTuple = match fixExprs with | [x] -> x | x -> <:expr< ( $list:x$ ) >> in let namePattTuple = match namePatts with | [x] -> x | x -> <:patt< ( $list:x$ ) >> in let outerRules = [(namePattTuple, <:expr< let $opt:true$ $list:rules$ in $fakeExprTuple$ >>)] in <:expr< let $opt:false$ $list:outerRules$ in $e$ >> ] ]; o_rules: [ [ rules=LIST1 o_rule SEP ";" -> let (rules, paramNums) = List.split rules in let (rules, defs) = List.split rules in let (names, rules) = List.split rules in let namePatts = List.map (fun name -> <:patt< $lid:name$>>) names in let makePattsAndExprs str num = let nameSeq = let rec loop n = if n > num then [] else (str ^ (string_of_int n)) :: (loop (n + 1)) in loop 1 in (List.map (fun name -> <:patt< ($lid:name$)>>) nameSeq, List.map (fun name -> <:expr< ($lid:name$)>>) nameSeq) in let (fixArgPatts, fixArgExprs) = makePattsAndExprs "_f" (List.length names) in let (lazyPatts, lazyExprs) = makePattsAndExprs "_p" (List.length names) in let forcedLazyExprs = List.map ( fun lazyExpr -> let pwel = [(<:patt< ($lid:"_t"$)>>), Ploc.VaVal None, <:expr< Lazy.force_val $lazyExpr$ ($lid:"_t"$)>>] in <:expr< fun [$list:pwel$]>>) lazyExprs in let lazyRules = List.map2 (fun fixArgExpr paramNum -> let (paramPatts, paramExprs) = makePattsAndExprs "_param" paramNum in let (paramPatts', paramExprs') = makePattsAndExprs "_param'" paramNum in let cmp = List.fold_right2 (fun paramExpr paramExpr' acc -> let tryExpr = let pwel = [(<:patt< Invalid_argument _ >>), Ploc.VaVal None, <:expr< $paramExpr$ == $paramExpr'$>>] in <:expr< try $paramExpr$ = $paramExpr'$ with [ $list:pwel$ ]>> in <:expr< $acc$ && ($tryExpr$)>> ) paramExprs paramExprs' <:expr< True>> in let innerMatch = let e = <:expr< $lid:"acc"$>> in let pwel = [(<:patt< Some _>>, Ploc.VaVal None, <:expr< $lid:"acc"$>> ); (<:patt< None>>, Ploc.VaVal Some cmp, <:expr< Some $lid:"p'"$>>); (<:patt< _>>, Ploc.VaVal None, <:expr< None>> )] in <:expr< match $e$ with [ $list:pwel$ ] >> in let folder = let pwel1 = [(<:patt< $lid:"acc"$>>, Ploc.VaVal None, innerMatch)] in let pwel2 = [(<:patt< $lid:"p'"$>>, Ploc.VaVal None, <:expr< fun [$list:pwel1$]>>)] in (* let pwel3 = [(<:patt< ($list:paramPatts'$)>>, Ploc.VaVal None, <:expr< fun [$list:pwel2$]>>)] in (*!!!*) *) let pwel3 = let paramPatts'' = match paramPatts' with | [ ] -> <:patt< () >> | [x] -> x | x -> <:patt< ( $list:x$ ) >> in [(paramPatts'', Ploc.VaVal None, <:expr< fun [$list:pwel2$]>>)] in <:expr< (fun [$list:pwel3$])>> in let hashFold = <:expr< (Hashtbl.fold $folder$ $lid:"_table"$ None)>> in let fixArgExpr'' = List.fold_left (fun exprAcc forcedLazyExpr -> <:expr< $exprAcc$ ($forcedLazyExpr$)>>) fixArgExpr forcedLazyExprs in let fixArgExpr' = List.fold_left (fun exprAcc paramExpr -> <:expr< $exprAcc$ $paramExpr$>>) fixArgExpr'' paramExprs in let memoBody = let r = <:expr< $lid:"_r"$>> in (* let el = [<:expr< Hashtbl.add $lid:"_table"$ ($list:paramExprs$) $r$>>; <:expr< $r$ $lid:"_s"$>>] in (*!!!*) *) let el = let paramExprs'' = match paramExprs with | [ ] -> <:expr< () >> | [x] -> x | x -> <:expr< ( $list:x$ ) >> in [<:expr< Hashtbl.add $lid:"_table"$ $paramExprs''$ $r$>>; <:expr< $r$ $lid:"_s"$>>] in <:expr< do {$list:el$}>> in let outerMatch = let rules = [(<:patt< $lid:"_r"$>>, fixArgExpr')] in let pwel = [(<:patt< None>>, Ploc.VaVal None, <:expr< let $opt:false$ $list:rules$ in $memoBody$>>); (<:patt< Some $lid:"x"$>>, Ploc.VaVal None, <:expr< $lid:"x"$ $lid:"_s"$>>)] in <:expr< match $hashFold$ with [ $list:pwel$ ]>> in let memoizedRule = List.fold_right ( fun paramPatt exprAcc -> let pwel = [(paramPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) (paramPatts @ [<:patt< $lid:"_s"$>>]) outerMatch in let fixArgExpr = let rules = [(<:patt< $lid:"_table"$>>), <:expr< Hashtbl.create $int:"16"$>>] in <:expr< let $opt:false$ $list:rules$ in $memoizedRule$>> in <:expr< lazy ($fixArgExpr$) >> ) fixArgExprs paramNums in let lazyRules = List.combine lazyPatts lazyRules in (* let lazyRules = List.map2 (fun fixArgExpr paramNum -> let (paramPatts, paramExprs) = makePattsAndExprs "_param" paramNum in let fixArgExpr = List.fold_left (fun exprAcc lazyExpr -> <:expr< $exprAcc$ $lazyExpr$ >>) fixArgExpr lazyExprs in let fixArgExpr = List.fold_left (fun exprAcc paramExpr -> <:expr< $exprAcc$ $paramExpr$ >>) fixArgExpr paramExprs in let fixArgExpr = <:expr< $fixArgExpr$ $lid:"_ostap_stream"$>> in let memoizedRule = List.fold_right ( fun paramPatt exprAcc -> let pwel = [(paramPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) (paramPatts @ [<:patt< $lid:"_ostap_stream"$>>]) fixArgExpr in memoizedRule ) fixArgExprs paramNums in *) let gen_fixBody lazyExpr = <:expr< let $opt:true$ $list:lazyRules$ in $lazyExpr$ >> in let gen_fixBodiesWithArgs = List.map (fun lazyExpr -> List.fold_right ( fun fixArgPatt exprAcc -> let pwel = [(fixArgPatt, Ploc.VaVal None, exprAcc)] in <:expr< fun [$list:pwel$] >> ) fixArgPatts (gen_fixBody lazyExpr)) forcedLazyExprs in (List.length names, rules, defs, namePatts, gen_fixBodiesWithArgs) ] ]; o_rule: [ [ name=LIDENT; args=OPT o_formal_parameters; ":"; (p, tree)=o_alternatives -> let args' = match args with None -> [(*<:patt< _ostap_stream >>*)] | Some l -> l(* @ [<:patt< _ostap_stream >>]*) in let rule = List.fold_right (fun x f -> let pwel = [(x, Ploc.VaVal None, f)] in <:expr< (fun [$list:pwel$]) >> ) args' (* <:expr< $p$ _ostap_stream >> *) p in let p = match args with None -> [] | Some args -> let args = List.filter (fun p -> let idents = get_defined_ident p in List.fold_left (fun acc ident -> acc || (Uses.has ident)) false idents ) args in List.map !printPatt args in let tree = match tree with None -> Expr.string "" | Some tree -> tree in let def = match p with [] -> Def.make name tree | args -> Def.makeP name args tree in Args.clear (); Uses.clear (); ((name, rule), def), List.length args' - 1 ] ]; *) o_formal_parameters: [ [ p=LIST1 o_formal_parameter -> p ]]; o_formal_parameter: [ [ "["; p=patt; "]" -> List.iter Args.register (get_defined_ident p); p ] ]; o_alternatives: [ [ p=LIST1 o_alternativeItem SEP "|" -> match p with [p] -> p | _ -> let (p, trees) = List.split p in let trees = List.filter_map Fun.id trees in match List.fold_right (fun item expr -> match expr with None -> Some item | Some expr -> Some <:expr< Ostap.Combinators.alt $item$ $expr$ >> ) p None with None -> raise (Failure "internal error --- must not happen") | Some x -> (x, match trees with [] -> None | _ -> Some (Expr.alt trees)) ] ]; o_alternativeItem: [ [ g=OPT o_guard; p=LIST1 o_prefix; s=OPT o_semantic -> let (p, trees) = List.split p in let trees = List.map Option.get (List.filter (fun x -> x <> None) trees) in let trees = match trees with [] -> None | _ -> Some (Expr.seq trees) in let (s, isSema) = match s with Some s -> (s, true) | None -> let (tuple, _) = List.fold_right (fun (_, omit, _, _) ((acc, i) as x) -> if omit then x else (<:expr< $lid:"_" ^ (string_of_int i)$>> :: acc, i+1) ) p ([], 0) in match tuple with [] -> (<:expr< () >>, true) | [x] -> (x, false) | _ -> (<:expr< ($list:tuple$) >>, true) in match List.fold_right (fun (flag, omit, binding, p) rightPart -> let p = match flag with None -> p | Some (f, r) -> let pwel = match binding with None -> [(<:patt< _ >>, Ploc.VaVal None, f)] | Some p -> [(<:patt< $p$ >>, Ploc.VaVal None, f)] in let pfun = <:expr< fun [$list:pwel$] >> in match r with None -> <:expr< Ostap.Combinators.guard $p$ $pfun$ None >> | Some r -> let pwel = match binding with None -> [(<:patt< _ >>, Ploc.VaVal None, r)] | Some p -> [(<:patt< $p$ >>, Ploc.VaVal None, r)] in let rfun = <:expr< fun [$list:pwel$] >> in <:expr< Ostap.Combinators.guard $p$ $pfun$ (Some $rfun$) >> in let (n, right, combi, isMap) = match rightPart with None -> (0, s, (fun x y -> <:expr< Ostap.Combinators.map $y$ $x$>>), true) | Some (right, n) -> (n, right, (fun x y -> <:expr< Ostap.Combinators.seq $x$ $y$>>), false) in if not isSema && not omit && isMap && binding = None then Some (p, n+1) else let patt = match binding with None -> <:patt< _ >> | Some patt -> patt in let (patt, n) = if not omit then (<:patt< ($patt$ as $lid:"_" ^ (string_of_int n)$) >>, n+1) else (patt, n) in let pwel = [(patt, Ploc.VaVal None, right)] in let sfun = <:expr< fun [$list:pwel$] >> in Some ((combi p sfun), n) ) p None with Some (expr, _) -> (match g with None -> (expr, trees) | Some (g, None) -> <:expr< Ostap.Combinators.seq (Ostap.Combinators.guard Ostap.Combinators.empty (fun _ -> $g$) None) (fun _ -> $expr$) >>, trees | Some (g, Some r) -> <:expr< Ostap.Combinators.seq (Ostap.Combinators.guard Ostap.Combinators.empty (fun _ -> $g$) (Some (fun _ -> $r$))) (fun _ -> $expr$) >>, trees ) | None -> raise (Failure "internal error: empty list must not be eaten") ] ]; o_prefix: [ [ "%"; s=STRING -> let name = <:expr< $str:s$ >> in let regexp = <:expr< $name$ ^ "\\\\\\\\b" >> in let look = <:expr< _ostap_stream # regexp ($name$) ($regexp$) >> in let resType' = <:ctyp< $uid:"Types_"$ . $lid:"result"$ >> in let strType = <:ctyp< $uid:"String"$ . $lid:"t"$ >> in let resType = <:ctyp< $resType'$ '$"self"$ '$"b"$ '$"c"$ >> in let contType = <:ctyp< '$"alook"$ -> '$"self"$ -> $resType$ >> in let methodType = <:ctyp< ! $list:["b"]$ . $strType$ -> $strType$ -> $contType$ -> $resType$ >> in let fl = [(Some "regexp", methodType, <:vala<[]>>)] in let classType = <:ctyp< < $list:fl$ .. > as '$"self"$>> in let pwel = [(<:patt< ( $lid:"_ostap_stream"$ : $classType$ ) >>, Ploc.VaVal None, look)] in let e = <:expr<fun [$list:pwel$]>> in let s = Some (Expr.string (!printExpr name)) in ((None, true, None, e), s) ] | [ m=OPT "-"; (p, s)=o_basic -> let (binding, p, f) = p in ((f, (m <> None), binding, p), s) ] ]; o_basic: [ [ p=OPT o_binding; (e, s)=o_postfix; f=OPT o_predicate -> ((p, e, f), s) ] ]; o_postfix: [ [ o_primary ] | [ (e, s)=o_postfix; "*"; folding=OPT o_folding -> let post = match folding with | None -> <:expr< Ostap.Combinators.many $e$ >> | Some (init, folder) -> <:expr< Ostap.Combinators.manyFold $folder$ $init$ $e$ >> in post, bindOption s (fun s -> Expr.star s) ] | [ (e, s)=o_postfix; "+"; folding=OPT o_folding -> let post = match folding with | None -> <:expr< Ostap.Combinators.some $e$ >> | Some (init, folder) -> <:expr< Ostap.Combinators.someFold $folder$ $init$ $e$ >> in post, bindOption s (fun s -> Expr.plus s) ] | [ (e, s)=o_postfix; "?" -> let post = <:expr< Ostap.Combinators.opt $e$ >> in post, bindOption s (fun s -> Expr.opt s) ] | [ (e, s)=o_postfix; "::"; "("; c=expr; ")" -> let post = <:expr< Ostap.Combinators.comment $e$ ($c$) >> in post, s ] ]; o_folding: [ [ "with"; "{"; init=expr; "}"; "{"; folder=expr; "}" -> (init, folder) ] ]; o_primary: [ [ (p, s)=o_reference; args=OPT o_parameters -> match args with None -> (p, Some s) | Some (args, a) -> (* let args = args @ [<:expr< _ostap_stream >>] in *) let body = List.fold_left (fun expr arg -> <:expr< $expr$ $arg$ >>) p args in (* let body = <:expr< (Ostap.Combinators.HashCons.lookup_obj $body$) >> in *) (* let pwel = [(<:patt< _ostap_stream >>, Ploc.VaVal None, <:expr< (Ostap.Combinators.HashCons.lookup_obj $body$) >>)] in *) (* <:expr< fun [$list:pwel$] >>, (Some (Expr.apply s a)) *) body, (Some (Expr.apply s a)) ] | [ p=UIDENT -> let p' = "get" ^ p in let look = <:expr< _ostap_stream # $p'$ >> in let resType' = <:ctyp< $uid:"Types_"$ . $lid:"result"$ >> in let resType = <:ctyp< $resType'$ '$"self"$ '$"b"$ '$"c"$ >> in let contType = <:ctyp< '$"a" ^ p$ -> '$"self"$ -> $resType$ >> in let methodType = <:ctyp< ! $list:["b"]$ . $contType$ -> $resType$ >> in let fl = [(Some p', methodType, <:vala<[]>>)] in let classType = <:ctyp< < $list:fl$ .. > as '$"self"$>> in let pwel = [(<:patt< ( $lid:"_ostap_stream"$ : $classType$ ) >>, Ploc.VaVal None, look)] in <:expr<fun [$list:pwel$]>>, Some (Expr.term p) ] | [ p=STRING -> let look = <:expr< _ostap_stream # look $str:p$ >> in let resType' = <:ctyp< $uid:"Types_"$ . $lid:"result"$ >> in let strType = <:ctyp< $uid:"String"$ . $lid:"t"$ >> in let resType = <:ctyp< $resType'$ '$"self"$ '$"b"$ '$"c"$ >> in let contType = <:ctyp< '$"alook"$ -> '$"self"$ -> $resType$ >> in let methodType = <:ctyp< ! $list:["b"]$ . $strType$ -> $contType$ -> $resType$ >> in let fl = [(Some "look", methodType, <:vala<[]>>)] in let classType = <:ctyp< < $list:fl$ .. > as '$"self"$>> in let pwel = [(<:patt< ( $lid:"_ostap_stream"$ : $classType$ ) >>, Ploc.VaVal None, look)] in <:expr<fun [$list:pwel$]>>, Some (Expr.string p) ] | [ "$"; "("; p=expr; ")" -> let look = <:expr< _ostap_stream # look ($p$) >> in let resType' = <:ctyp< $uid:"Types_"$ . $lid:"result"$ >> in let strType = <:ctyp< $uid:"String"$ . $lid:"t"$ >> in let resType = <:ctyp< $resType'$ '$"self"$ '$"b"$ '$"c"$ >> in let contType = <:ctyp< '$"alook"$ -> '$"self"$ -> $resType$ >> in let methodType = <:ctyp< ! $list:["b"]$ . $strType$ -> $contType$ -> $resType$ >> in let fl = [(Some "look", methodType, <:vala<[]>>)] in let classType = <:ctyp< < $list:fl$ .. > as '$"self"$>> in let pwel = [(<:patt< ( $lid:"_ostap_stream"$ : $classType$ ) >>, Ploc.VaVal None, look)] in <:expr<fun [$list:pwel$]>>, Some (Expr.string (!printExpr p)) ] | [ "@"; "("; p=expr; n=OPT o_regexp_name; ")" -> let name = match n with None -> p | Some p -> p in let look = <:expr< _ostap_stream # regexp ($name$) ($p$) >> in let resType' = <:ctyp< $uid:"Types_"$ . $lid:"result"$ >> in let strType = <:ctyp< $uid:"String"$ . $lid:"t"$ >> in let resType = <:ctyp< $resType'$ '$"self"$ '$"b"$ '$"c"$ >> in let contType = <:ctyp< '$"alook"$ -> '$"self"$ -> $resType$ >> in let methodType = <:ctyp< ! $list:["b"]$ . $strType$ -> $strType$ -> $contType$ -> $resType$ >> in let fl = [(Some "regexp", methodType, <:vala<[]>>)] in let classType = <:ctyp< < $list:fl$ .. > as '$"self"$>> in let pwel = [(<:patt< ( $lid:"_ostap_stream"$ : $classType$ ) >>, Ploc.VaVal None, look)] in <:expr<fun [$list:pwel$]>>, Some (Expr.string (!printExpr p)) ] | [ "$" -> <:expr< Ostap.Combinators.lift >>, None ] | [ "("; (p, s)=o_alternatives; ")" -> (p, bindOption s (fun s -> Expr.group s)) ] ]; o_regexp_name: [[ ":"; e=expr -> e ]]; o_reference: [ [ p=LIDENT -> Uses.register p; (<:expr< $lid:p$ >>, Args.wrap p) ] | [ "!"; "("; e=expr; ")" -> (e, Expr.string (!printExpr e)) ] ]; o_parameters: [ [ p=LIST1 o_parameter -> List.split p ]]; o_parameter: [ [ "["; e=expr; "]" -> List.iter Uses.register (get_ident e); (e, Cache.cached (!printExpr e)) ] ]; o_binding: [ [ "<"; p=patt; ">"; ":" -> p ] | [ p=LIDENT; ":" -> <:patt< $lid:p$ >> ] ]; o_semantic: [ ["{"; e=expr; "}" -> e ] ]; o_predicate: [ [ "=>"; e=o_guard -> e ] ]; o_guard: [ [ "{"; e=expr; "}"; r=OPT o_reason; "=>" -> (e, r) ] ]; o_reason: [ [ "::"; "("; e=expr; ")" -> e ] ]; END; add_option "-tex" (Arg.String (fun s -> let p = !printBNF in let ouch = open_out (s ^ ".tex") in close_out ouch; printExpr := (fun e -> Eprinter.apply pr_expr Pprintf.empty_pc e); printPatt := (fun p -> Eprinter.apply pr_patt Pprintf.empty_pc p); printBNF := (fun name bnf -> let ouch = match name with None -> open_out_gen [Open_append; Open_text] 0o66 (s ^ ".tex") | Some name -> open_out (s ^ "." ^ name ^ ".tex") in fprintf ouch "%s" bnf; close_out ouch; p name bnf ) ) ) "<name> - print TeX grammar documentation to given file";
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>