package orthologic-coq
A plugin to add orthologic-based tactics to Coq
Install
Dune Dependency
Authors
Maintainers
Sources
orthologic-coq-0.9.1.tbz
sha256=60a9eeb27b6ad0a6fadb4127f5a7fdc194133dc55fa627e5eaedbee58a58651e
sha512=bab767857cecbb1529e599785f2485e62171a55b7ec34483976a9a15e8223167c52a2977f88752e64f17fd1b4e6fde682b608bd046b2a7867da2eca10844cf57
doc/src/orthologic-coq.plugin/ce_api.ml.html
Source file ce_api.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
open Ol open Constr open Pp open Typing open Util module PV = Proofview let counter_bug = ref 0 let checkfail () = incr counter_bug; if !counter_bug > 30 then failwith "bug" (* Coq helpers *) let decomp_term sigma (c : Constr.t) = Constr.kind (EConstr.Unsafe.to_constr (Termops.strip_outer_cast sigma (EConstr.of_constr c))) let lib_constr n = lazy (UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref n) let find_reference = Coqlib.find_reference [@ocaml.warning "-3"] let msg_in_tactic str : unit PV.tactic = PV.tclLIFT (PV.NonLogical.make (fun () -> Feedback.msg_warning (Pp.str str))) let (===) = Constr.equal (* Hash table with coq terms as keys *) module Constrhash = Hashtbl.Make (struct type t = constr let equal = eq_constr_nounivs let hash = Constr.hash end) (* Reference Theorems *) let eq = lib_constr "core.eq.type" let bool_typ = lib_constr "core.bool.type" let trueb = lib_constr "core.bool.true" let falseb = lib_constr "core.bool.false" let andb = lib_constr "core.bool.andb" let orb = lib_constr "core.bool.orb" let xorb = lib_constr "core.bool.xorb" let negb = lib_constr "core.bool.negb" let eqb = lib_constr "core.bool.eqb" let tpair = lib_constr "olplugin.tpair" let left_true_or = lib_constr "olplugin.left_true_or" let right_true_or = lib_constr "olplugin.right_true_or" let left_neg_or = lib_constr "olplugin.left_neg_or" let right_neg_or = lib_constr "olplugin.right_neg_or" let left_and_or = lib_constr "olplugin.left_and_or" let right_and_or = lib_constr "olplugin.right_and_or" let left_or_or_1 = lib_constr "olplugin.left_or_or_1" let left_or_or_2 = lib_constr "olplugin.left_or_or_2" let right_or_or_1 = lib_constr "olplugin.right_or_or_1" let right_or_or_2 = lib_constr "olplugin.right_or_or_2" let contract_or_1 = lib_constr "olplugin.contract_or_1" let contract_or_2 = lib_constr "olplugin.contract_or_2" let tpair_to_eq = lib_constr "olplugin.tpair_to_eq" (* Reification in ol.ml formulas*) let revmap_ol_formula = Constrhash.create 50 let map_var_types: (int, types) Hashtbl.t = Hashtbl.create 50 let counter = ref 0 let quote (env : Environ.env) sigma (e : Constr.t) = let trueb = Lazy.force trueb in let falseb = Lazy.force falseb in let andb = Lazy.force andb in let orb = Lazy.force orb in let xorb = Lazy.force xorb in let negb = Lazy.force negb in let rec aux e = match decomp_term sigma e with | App (head, args) -> if head === andb && Array.length args = 2 then let a0 = aux args.(0) in let a1 = aux args.(1) in new_and [a0; a1] else if head === orb && Array.length args = 2 then let a0 = aux args.(0) in let a1 = aux args.(1) in new_or [a0; a1] else if head === xorb && Array.length args = 2 then let a0 = aux args.(0) in let a1 = aux args.(1) in new_or [new_and [a0; new_neg a1]; new_and [new_neg a0; a1]] else if head === negb && Array.length args = 1 then new_neg (aux args.(0)) else ( match Constrhash.find_opt revmap_ol_formula e with | Some v -> v | None -> (incr counter; let v = new_variable (!counter) in Constrhash.add revmap_ol_formula e v; Hashtbl.add map_var_types !counter e; v) ) | _ -> if e === falseb then new_literal false else if e === trueb then new_literal true else ( match Constrhash.find_opt revmap_ol_formula e with | Some v -> v | None -> (incr counter; let v = new_variable (!counter) in Constrhash.add revmap_ol_formula e v; Hashtbl.add map_var_types !counter e; v) ) in aux e let unquote (f: formula) : Constr.t = let trueb = Lazy.force trueb in let falseb = Lazy.force falseb in let andb = Lazy.force andb in let orb = Lazy.force orb in let negb = Lazy.force negb in let rec aux f = match f with | Variable r -> Hashtbl.find map_var_types r.id | Neg r -> Constr.mkApp (negb, [|aux r.child|]) | Or r -> (match r.children with | [] -> falseb | head :: tail -> List.fold_left (fun acc x -> Constr.mkApp (orb, [|acc; aux x|])) (aux head) tail ) | And r -> (match r.children with | [] -> trueb | head :: tail -> List.fold_left (fun acc x -> Constr.mkApp (andb, [|acc; aux x|])) (aux head) tail ) | Literal r -> if r.b then trueb else falseb in aux f (* Formulas used for the proof-producing certification algorithm *) type cert_formula = | CertVariable of { polarity : bool; id : int; unique_key : int; lt_cache : (int * bool * bool, types option) Hashtbl.t; coqterm : types } | CertNeg of { child: cert_formula; unique_key : int; lt_cache : ((int * bool * bool), types option) Hashtbl.t; coqterm : types } | CertOr of { c1: cert_formula; c2:cert_formula; unique_key : int; lt_cache : ((int * bool * bool), types option) Hashtbl.t; coqterm : types } | CertAnd of { c1: cert_formula; c2:cert_formula; unique_key : int; lt_cache : ((int * bool * bool), types option) Hashtbl.t; coqterm : types } | CertLiteral of { b : bool; unique_key : int; lt_cache : ((int * bool * bool), types option) Hashtbl.t; coqterm : types } let tot_cert = ref 0 let tot_id = ref 0 (* This is of course better, but it's a little cheating for the benchmarks...*) (*let revmap : (cert_formula Constrhash.t) = Constrhash.create 50*) (* helpers for cert_formula *) let new_formulas (env : Environ.env) sigma (e:(types array)) : cert_formula array = let trueb = Lazy.force trueb in let falseb = Lazy.force falseb in let andb = Lazy.force andb in let orb = Lazy.force orb in let negb = Lazy.force negb in let revmap : (cert_formula Constrhash.t) = Constrhash.create 50 in let rec aux e = incr tot_cert; let key = !tot_cert in match decomp_term sigma e with | App (head, args) when head === andb && Array.length args = 2 -> CertAnd {c1 = aux args.(0); c2 = aux args.(1); unique_key = key; lt_cache = Hashtbl.create 50; coqterm = e} | App (head, args) when head === orb && Array.length args = 2 -> CertOr {c1 = aux args.(0); c2 = aux args.(1); unique_key = key; lt_cache = Hashtbl.create 50; coqterm = e} | _ when e === trueb -> CertLiteral {b = true; unique_key = key; lt_cache = Hashtbl.create 50; coqterm = e} | _ when e === falseb -> CertLiteral {b = false; unique_key = key; lt_cache = Hashtbl.create 50; coqterm = e} | App (head, args) when head === negb && Array.length args = 1 -> CertNeg {child = aux args.(0); unique_key = key; lt_cache = Hashtbl.create 50; coqterm = e} | _ -> match Constrhash.find_opt revmap e with | Some v -> v | None -> (incr tot_id; let id = !tot_id in let v = CertVariable {polarity = true; id = id; unique_key = key; lt_cache = Hashtbl.create 50; coqterm = e} in Constrhash.add revmap e v; v) in Array.map aux e let get_cert_key (f: cert_formula) : int = match f with | CertVariable {unique_key = k; _} -> k | CertNeg {unique_key = k; _} -> k | CertOr {unique_key = k; _} -> k | CertAnd {unique_key = k; _} -> k | CertLiteral {unique_key = k; _} -> k let get_coq_term (f: cert_formula) : types = match f with | CertVariable {coqterm = c; _} -> c | CertNeg {coqterm = c; _} -> c | CertOr {coqterm = c; _} -> c | CertAnd {coqterm = c; _} -> c | CertLiteral {coqterm = c; _} -> c let get_lt_cache_cert cf = match cf with | CertVariable {lt_cache = c; _} -> c | CertNeg {lt_cache = c; _} -> c | CertOr {lt_cache = c; _} -> c | CertAnd {lt_cache = c; _} -> c | CertLiteral {lt_cache = c; _} -> c let lt_cached_cert cf1 cf2 b1 b2= Hashtbl.find_opt (get_lt_cache_cert cf1) (get_cert_key cf2, b1, b2) let set_lt_cached_cert cf1 cf2 b1 b2 res = Hashtbl.add (get_lt_cache_cert cf1) (get_cert_key cf2, b1, b2) res let cert_formula_to_string (f: cert_formula) : string = let rec aux f = match f with | CertVariable {id = i; _} -> Printf.sprintf "Var(%d)" i | CertNeg {child = c; _} -> Printf.sprintf "Neg(%s)" (aux c) | CertOr {c1 = c1; c2 = c2; _} -> Printf.sprintf "Or(%s, %s)" (aux c1) (aux c2) | CertAnd {c1 = c1; c2 = c2; _} -> Printf.sprintf "And(%s, %s)" (aux c1) (aux c2) | CertLiteral {b = b; _} -> Printf.sprintf "Lit(%b)" b in aux f (* Returns the first option if it is defined, the second otherwise *) let first_some opt1 opt2 = match opt1 with | Some _ -> opt1 | None -> Lazy.force opt2 (* Produces a proof that f1 = f2, using the laws of orthologic. If no such proof is found, return None. *) let proof_ol (f1: cert_formula) (f2: cert_formula) : types option = let left_true_or = Lazy.force left_true_or in let right_true_or = Lazy.force right_true_or in let left_neg_or = Lazy.force left_neg_or in let right_neg_or = Lazy.force right_neg_or in let left_and_or = Lazy.force left_and_or in let right_and_or = Lazy.force right_and_or in let left_or_or_1 = Lazy.force left_or_or_1 in let left_or_or_2 = Lazy.force left_or_or_2 in let right_or_or_1 = Lazy.force right_or_or_1 in let right_or_or_2 = Lazy.force right_or_or_2 in let contract_or_1 = Lazy.force contract_or_1 in let contract_or_2 = Lazy.force contract_or_2 in let rec aux f1 f2 (b1: bool) (b2: bool): types option = match lt_cached_cert f1 f2 b1 b2 with | Some res -> res | None -> let gct = get_coq_term in let res = match f1, f2 with | CertLiteral a, _ when a.b -> Some (Constr.mkApp(left_true_or, [|gct f2|])) | _, CertLiteral a when a.b -> Some (Constr.mkApp(right_true_or, [|gct f1|])) | CertNeg {child = CertVariable a; _}, CertVariable b when a.id = b.id -> Some (Constr.mkApp(left_neg_or, [|gct f2|])) | CertVariable a, CertNeg {child = CertVariable b; _} when a.id = b.id -> Some (Constr.mkApp(right_neg_or, [|gct f1|])) | CertAnd a, _ -> let r1 = aux a.c1 f2 false b2 in (match r1 with | Some x -> let r2 = aux a.c2 f2 false b2 in (match r2 with | Some y -> Some (Constr.mkApp(left_and_or, [|gct a.c1; gct a.c2; gct f2; x; y|])) | _ -> None) | _ -> None) | _, CertAnd a -> let r1 = aux f1 a.c1 b1 false in (match r1 with | Some x -> let r2 = aux f1 a.c2 b1 false in (match r2 with | Some y -> Some (Constr.mkApp(right_and_or, [|gct f1; gct a.c1; gct a.c2; x; y|])) | _ -> None) | _ -> None) | _ -> (first_some (first_some (first_some (match f1 with | CertOr a -> first_some (Option.map (fun x -> Constr.mkApp(left_or_or_1, [|gct a.c1; gct a.c2; gct f2; x|])) (aux a.c1 f2 false b2)) (lazy (Option.map (fun x -> Constr.mkApp(left_or_or_2, [|gct a.c1; gct a.c2; gct f2; x|])) (aux a.c2 f2 false b2))) | _ -> None) (lazy (match f2 with | CertOr b -> first_some (Option.map (fun x -> Constr.mkApp(right_or_or_1, [|gct f1; gct b.c1; gct b.c2; x|])) (aux f1 b.c1 b1 false)) (lazy (Option.map (fun x -> Constr.mkApp(right_or_or_2, [|gct f1; gct b.c1; gct b.c2; x|])) (aux f1 b.c2 b1 false))) | _ -> None)) ) (lazy (if b1 then None else (Option.map (fun x -> Constr.mkApp(contract_or_1, [|gct f1; gct f2; x|])) (aux f1 f1 true true)))) ) (lazy (if b2 then None else (Option.map (fun x -> Constr.mkApp(contract_or_2, [|gct f1; gct f2; x|])) (aux f2 f2 true true)))) ) in set_lt_cached_cert f1 f2 b1 b2 res; res in aux f1 f2 false false (* Find the atom in a formula (i.e. variable) that appears most often *) let best_atom (l: cert_formula list) : cert_formula option = let counts = Hashtbl.create 50 in let rec aux f = match f with | CertVariable a -> let count = Hashtbl.find_opt counts a.id in (match count with | Some (c, e) -> Hashtbl.replace counts a.id ((c + 1), e) | None -> Hashtbl.add counts a.id (1, f)) | CertNeg a -> aux a.child | CertOr a -> aux a.c1; aux a.c2 | CertAnd a -> aux a.c1; aux a.c2 | CertLiteral _ -> () in List.iter aux l; let max_key = ref None in let max_value = ref 0 in Hashtbl.iter (fun key (c, e) -> if c > !max_value then begin max_value := c; max_key := Some e end ) counts; !max_key (* Tactic: Introduces the normal form of a t as h, without proving equality*) let ol_normal (t: Evd.econstr) (h: Names.Id.t): unit PV.tactic = let bool = Lazy.force bool_typ in Proofview.Goal.enter begin fun gl -> let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let t2 = EConstr.Unsafe.to_constr t in let typ = type_of env sigma t in let typ_c = EConstr.Unsafe.to_constr (snd typ) in if typ_c === bool then let formula = quote env sigma t2 in let normal_form = reduced_form formula in let res = unquote normal_form in let res = EConstr.of_constr res in Tacticals.tclTHENLIST [ Tactics.pose_tac (Names.Name.mk_name h) res; ] else let typ_str = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma typ_c) in let msg = str "Not a boolean expression: " ++ str typ_str in Tacticals.tclFAIL msg end (* Tactic: introduce as "h" a proof of t, where t is a tpair of between boolean terms. *) let ol_cert_tactic (t: Evd.econstr) (h: Names.Id.t): unit PV.tactic = let tpair = Lazy.force tpair in Proofview.Goal.enter begin fun gl -> let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let t2 = EConstr.Unsafe.to_constr t in match decomp_term sigma t2 with | App (head, args) when head === tpair && Array.length args = 2 -> let new_forms = new_formulas env sigma args in let f1 = new_forms.(0) in let f2 = new_forms.(1) in let res = proof_ol f1 f2 in (match res with | Some res -> let res = EConstr.of_constr res in Tacticals.tclTHENLIST [ Tactics.pose_tac (Names.Name.mk_name h) res; ] | None -> let msg = str "No proof found" in Tacticals.tclFAIL msg) | App (head, args) when head === tpair -> let msg = str (Printf.sprintf "Not a pair of boolean expressions. Is tpair but args size: %d" (Array.length args)) in Tacticals.tclFAIL msg | _ -> let typ_str = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma t2) in let msg = str "Goal is not a tpair: " ++ str typ_str in Tacticals.tclFAIL msg end (* Tactic: Prove the current goal, which has to be of the form `tpair a b` or ` a = b` with a and b of type bool, using orthologic rules. *) let ol_cert_goal_tactic cl : unit PV.tactic = let tpair = Lazy.force tpair in let eq = Lazy.force eq in let aux () = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let concl2 = EConstr.Unsafe.to_constr concl in match decomp_term sigma concl2 with | App (head, args) when head === tpair && Array.length args = 2 -> let new_forms = new_formulas env sigma args in let f1 = new_forms.(0) in let f2 = new_forms.(1) in let res = proof_ol f1 f2 in (match res with | Some res -> let res = EConstr.of_constr res in Tacticals.tclTHENLIST [ Tactics.exact_check res; ] | None -> let f1_s = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma args.(0)) in let f2_s = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma args.(1)) in let msg = str (Printf.sprintf "No proof of tpair %s %s found" f1_s f2_s) in Tacticals.tclFAIL msg) | _ -> let typ_str = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma concl2) in let msg = str "Goal is not a tpair nor an equality: " ++ str typ_str in Tacticals.tclFAIL msg end in Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let concl2 = EConstr.Unsafe.to_constr concl in match decomp_term sigma concl2 with | App (head, args) when head === tpair && Array.length args = 2 -> Tacticals.tclTHENLIST [ Autorewrite.auto_multi_rewrite ["nnf_lemmas"] cl; aux () ] | App (head, args) when head === eq -> Tacticals.tclTHENFIRSTn (Tactics.apply (EConstr.of_constr (Lazy.force tpair_to_eq))) [| (Tacticals.tclTHEN (Autorewrite.auto_multi_rewrite ["nnf_lemmas"] cl) (aux ())); (Tacticals.tclTHEN (Autorewrite.auto_multi_rewrite ["nnf_lemmas"] cl) (aux ())) |] | App (head, args) when head === tpair -> let msg = str (Printf.sprintf "Not a pair of boolean expressions. Is tpair but args size: %d" (Array.length args)) in Tacticals.tclFAIL msg | _ -> let typ_str = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma concl2) in let msg = str "Goal is not a tpair nor an equality: " ++ str typ_str in Tacticals.tclFAIL msg end (* Tactic: Prove the current goal, which has to be of the form `tpair a b` or ` a = b` with a and b of type bool, using orthologic rules. *) (* Tactic: Destruct the boolean atom in a boolean term that appears most often *) let destruct_atom () : unit PV.tactic = Proofview.Goal.enter begin fun gl -> let eq = Lazy.force eq in let bool_typ = Lazy.force bool_typ in let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let concl = Proofview.Goal.concl gl in let concl = EConstr.Unsafe.to_constr concl in let t = decomp_term sigma concl in match t with | App (head, args) when head === eq && Array.length args = 3 && args.(0) === bool_typ -> let new_forms = new_formulas env sigma [|args.(1); args.(2)|] in let tl = new_forms.(0) in let tr = new_forms.(1) in let res = best_atom [tl; tr] in (match res with | Some res -> let res = get_coq_term res in let res = EConstr.of_constr res in Tactics.destruct false None res None None; | None -> let msg = str "No atom found" in Tacticals.tclFAIL msg) | _ -> let msg = str "Not an equality of boolean expressions" in Tacticals.tclFAIL msg end (* Tactic: For every maximal boolean subterm `a` of `t`, compute `a'` the OL-normal form of `a`, prove `a=a'`, and substitute `ta`by `a'` in the goal. *) let ol_norm_cert_tactic (t: Evd.econstr) cl : unit PV.tactic = let andb = Lazy.force andb in let orb = Lazy.force orb in let xorb = Lazy.force xorb in let negb = Lazy.force negb in let eqb = Lazy.force eqb in Proofview.Goal.enter begin fun gl -> let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let rec aux t: types list = match decomp_term sigma t with | App (head, args) when head === andb && Array.length args = 2 || head === orb && Array.length args = 2 || head === xorb && Array.length args = 2 || head === negb && Array.length args = 1 || head === eqb && Array.length args = 2 -> [t] | App (head, args) -> let h: types list = aux head in let rest: types list = List.flatten (List.map aux (Array.to_list args)) in h @ rest | _ -> [] in let t2 = EConstr.Unsafe.to_constr t in let l = aux t2 in let l = List.map (fun t2 -> let f = quote env sigma t2 in (t2, f, size f) ) l in let l = List.sort (fun (_, _, i1) -> fun (_, _, i2) -> Int.compare i2 i1) l in Tacticals.tclTHENLIST (List.map (fun (t, f, _) -> let normal_form = reduced_form f in let res = unquote normal_form in let tac = ol_cert_goal_tactic cl in let res2 = EConstr.of_constr res in let t2 = EConstr.of_constr t in Equality.replace_by t2 res2 tac ) l) end (* Tactic: For every maximal boolean subterm `a` of the goal, compute `a'` the OL-normal form of `a`, prove `a=a'`, and substitute `ta`by `a'` in the goal. *) let ol_norm_cert_goal_tactic cl : unit PV.tactic = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in ol_norm_cert_tactic concl cl end (* Tactic: oltauto with certification*) let oltauto_cert cl : unit PV.tactic = let eq = Lazy.force eq in let bool_typ = Lazy.force bool_typ in let rec aux () : unit PV.tactic = Proofview.Goal.enter begin fun gl -> let env = Tacmach.pf_env gl in let sigma = Tacmach.project gl in let concl = Proofview.Goal.concl gl in let concl = EConstr.Unsafe.to_constr concl in match decomp_term sigma concl with | App (head, args) when head === eq && Array.length args = 3 && args.(0) === bool_typ -> let f1 = args.(1) in let f2 = args.(2) in let f1_q = quote env sigma f1 in let f2_q = quote env sigma f2 in let f1_q_n = polar_to_normal_form (polarize f1_q true) in let f2_q_n = polar_to_normal_form (polarize f2_q true) in let f1_q_r = to_formula f1_q_n in let f2_q_r = to_formula f2_q_n in if (lattices_leq f1_q_n f2_q_n) && (lattices_leq f2_q_n f1_q_n) then ol_cert_goal_tactic cl else ( let f1_n = unquote f1_q_r in let f2_n = unquote f2_q_r in let f1_n_e = EConstr.of_constr f1_n in let f2_n_e = EConstr.of_constr f2_n in let tac = (Proofview.tclIFCATCH (ol_cert_goal_tactic cl) (fun () -> aux ()) (fun er -> ( (Autorewrite.auto_multi_rewrite ["nnf_lemmas"] cl;) )) ) in let t1, t2 = let f1_e = EConstr.of_constr f1 in let f2_e = EConstr.of_constr f2 in if (size f1_q) > (size f2_q) then (Equality.replace_by f1_e f1_n_e tac, Equality.replace_by f2_e f2_n_e tac) else (Equality.replace_by f2_e f2_n_e tac, Equality.replace_by f1_e f1_n_e tac) in Tacticals.tclTHENLIST [ t1; t2; (Proofview.tclIFCATCH (destruct_atom ()) (fun () -> aux ()) (fun er -> (Proofview.tclUNIT ())) ) ] ) | _ -> let typ_str = Pp.string_of_ppcmds (Printer.pr_constr_env env sigma concl) in let msg = str "Goal must be an equality between boolean terms: " ++ str typ_str in Tacticals.tclFAIL msg end in aux () (* Tactic: oltauto with certification*)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>