package opam-format
Format library for opam 2.1
Install
Dune Dependency
Authors
-
VVincent Bernardoff <vb@luminar.eu.org>
-
RRaja Boujbel <raja.boujbel@ocamlpro.com>
-
RRoberto Di Cosmo <roberto@dicosmo.org>
-
TThomas Gazagnaire <thomas@gazagnaire.org>
-
LLouis Gesbert <louis.gesbert@ocamlpro.com>
-
FFabrice Le Fessant <Fabrice.Le_fessant@inria.fr>
-
AAnil Madhavapeddy <anil@recoil.org>
-
GGuillem Rieu <guillem.rieu@ocamlpro.com>
-
RRalf Treinen <ralf.treinen@pps.jussieu.fr>
-
FFrederic Tuong <tuong@users.gforge.inria.fr>
Maintainers
Sources
2.1.1.tar.gz
md5=e1202a21d669d460b9fa852e39f0502e
sha512=fb46bc8f12e49c2da95c5f8669f55fb93710ee826827538852c3091ec2c714c082137373fa9e1ad3f53f107b1fae6c2abd0b6e5f84f7756bd3b38e57978f080e
doc/src/opam-format/opamFormula.ml.html
Source file opamFormula.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
(**************************************************************************) (* *) (* Copyright 2012-2020 OCamlPro *) (* Copyright 2012 INRIA *) (* *) (* All rights reserved. This file is distributed under the terms of the *) (* GNU Lesser General Public License version 2.1, with the special *) (* exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) type relop = [`Eq|`Neq|`Geq|`Gt|`Leq|`Lt] let neg_relop = function | `Eq -> `Neq | `Neq -> `Eq | `Geq -> `Lt | `Gt -> `Leq | `Leq -> `Gt | `Lt -> `Geq let string_of_relop = OpamPrinter.FullPos.relop_kind type version_constraint = relop * OpamPackage.Version.t type atom = OpamPackage.Name.t * version_constraint option let string_of_atom = function | n, None -> OpamPackage.Name.to_string n | n, Some (r,c) -> Printf.sprintf "%s (%s %s)" (OpamPackage.Name.to_string n) (string_of_relop r) (OpamPackage.Version.to_string c) let short_string_of_atom = function | n, None -> OpamPackage.Name.to_string n | n, Some (`Eq,c) -> Printf.sprintf "%s.%s" (OpamPackage.Name.to_string n) (OpamPackage.Version.to_string c) | n, Some (r,c) -> Printf.sprintf "%s%s%s" (OpamPackage.Name.to_string n) (string_of_relop r) (OpamPackage.Version.to_string c) let string_of_atoms atoms = OpamStd.List.concat_map " & " short_string_of_atom atoms let atom_of_string str = let re = lazy Re.(compile @@ whole_string @@ seq [ group @@ rep1 @@ diff any (set ">=<.!"); group @@ alt [ seq [ set "<>"; opt @@ char '=' ]; set "=."; str "!="; ]; group @@ rep1 any; ]) in try let sub = Re.exec (Lazy.force re) str in let sname = Re.Group.get sub 1 in let sop = Re.Group.get sub 2 in let sversion = Re.Group.get sub 3 in let name = OpamPackage.Name.of_string sname in let sop = if sop = "." then "=" else sop in let op = OpamLexer.FullPos.relop sop in let version = OpamPackage.Version.of_string sversion in name, Some (op, version) with Not_found | Failure _ | OpamLexer.Error _ -> OpamPackage.Name.of_string str, None type 'a conjunction = 'a list let string_of_conjunction string_of_atom c = Printf.sprintf "(%s)" (OpamStd.List.concat_map " & " string_of_atom c) type 'a disjunction = 'a list let string_of_disjunction string_of_atom c = Printf.sprintf "(%s)" (OpamStd.List.concat_map " | " string_of_atom c) type 'a cnf = 'a list list let string_of_cnf string_of_atom cnf = let string_of_clause c = let left, right = match c with [_] -> "", "" | _ -> "(", ")" in OpamStd.List.concat_map ~left ~right " | " string_of_atom c in OpamStd.List.concat_map " & " string_of_clause cnf type 'a dnf = 'a list list let string_of_dnf string_of_atom cnf = let string_of_clause c = let left, right = match c with [_] -> "", "" | _ -> "(", ")" in OpamStd.List.concat_map ~left ~right " & " string_of_atom c in OpamStd.List.concat_map " | " string_of_clause cnf type 'a formula = | Empty | Atom of 'a | Block of 'a formula | And of 'a formula * 'a formula | Or of 'a formula * 'a formula let make_and a b = match a, b with | Empty, r | r, Empty -> r | a, b -> And (a, b) let make_or a b = match a, b with | Empty, r | r, Empty -> r (* we're not assuming Empty is true *) | a, b -> Or (a, b) let string_of_formula string_of_a f = let rec aux ?(in_and=false) f = let paren_if ?(cond=false) s = if cond || OpamFormatConfig.(!r.all_parens) then Printf.sprintf "(%s)" s else s in match f with | Empty -> "[]" | Atom a -> paren_if (string_of_a a) | Block x -> Printf.sprintf "(%s)" (aux x) | And(x,y) -> paren_if (Printf.sprintf "%s & %s" (aux ~in_and:true x) (aux ~in_and:true y)) | Or(x,y) -> paren_if ~cond:in_and (Printf.sprintf "%s | %s" (aux x) (aux y)) in aux f let rec map f = function | Empty -> Empty | Atom x -> f x | And(x,y) -> make_and (map f x) (map f y) | Or(x,y) -> make_or (map f x) (map f y) | Block x -> match map f x with | Empty -> Empty | x -> Block x (* Maps top-down *) let rec map_formula f t = let t = f t in match t with | Block x -> Block (map_formula f x) | And(x,y) -> make_and (map_formula f x) (map_formula f y) | Or(x,y) -> make_or (map_formula f x) (map_formula f y) | x -> x let rec map_up_formula f t = let t = match t with | Block x -> f (Block (map_up_formula f x)) | And(x,y) -> f (make_and (map_up_formula f x) (map_up_formula f y)) | Or(x,y) -> f (make_or (map_up_formula f x) (map_up_formula f y)) | Atom x -> f (Atom x) | Empty -> Empty in f t let neg neg_atom = map_formula (function | And(x,y) -> Or(x,y) | Or(x,y) -> And(x,y) | Atom x -> Atom (neg_atom x) | x -> x) let rec iter f = function | Empty -> () | Atom x -> f x | Block x -> iter f x | And(x,y) -> iter f x; iter f y | Or(x,y) -> iter f x; iter f y let rec fold_left f i = function | Empty -> i | Atom x -> f i x | Block x -> fold_left f i x | And(x,y) -> fold_left f (fold_left f i x) y | Or(x,y) -> fold_left f (fold_left f i x) y let rec fold_right f i = function | Empty -> i | Atom x -> f i x | Block x -> fold_right f i x | And(x,y) -> fold_right f (fold_right f i y) x | Or(x,y) -> fold_right f (fold_right f i y) x type version_formula = version_constraint formula type t = (OpamPackage.Name.t * version_formula) formula let rec compare_formula f x y = let rec compare_atom x = function | Empty -> 1 | Atom y -> f x y | Block y -> compare_atom x y | And (y,z) | Or (y,z) -> let r = compare_atom x y in if r <> 0 then r else compare_atom x z in match x, y with | Empty, Empty -> 0 | Empty, _ -> -1 | _ , Empty -> 1 | Atom x, Atom y -> f x y | Atom x, y -> compare_atom x y | x , Atom y -> -1 * (compare_atom y x) | Block x, y | x, Block y -> compare_formula f x y | (And (x,y) | Or (x,y)) as lhs, ((And (x',y') | Or (x',y')) as rhs) -> let l = compare_formula f x x' in if l <> 0 then l else let r = compare_formula f y y' in if r <> 0 then r else (match lhs, rhs with | And _, And _ | Or _, Or _ -> 0 | And _, Or _ -> 1 | Or _, And _ -> -1 | _ -> assert false) let compare_relop op1 op2 = match op1, op2 with | `Lt,`Lt | `Leq,`Leq | `Neq,`Neq | `Eq,`Eq | `Geq,`Geq | `Gt,`Gt -> 0 | `Lt, _ -> -1 | _, `Lt -> 1 | `Leq, _ -> -1 | _, `Leq -> 1 | `Neq, _ -> -1 | _, `Neq -> 1 | `Eq, _ -> -1 | _, `Eq -> 1 | `Geq, _ -> -1 | _, `Geq -> 1 let compare_version_formula = compare_formula (fun (op1,v1) (op2,v2) -> let c = compare v1 v2 in if c <> 0 then c else compare_relop op1 op2) let compare_nc (n1, c1) (n2, c2) = let c = OpamPackage.Name.compare n1 n2 in if c <> 0 then c else compare_version_formula c1 c2 let compare = compare_formula compare_nc let rec eval atom = function | Empty -> true | Atom x -> atom x | Block x -> eval atom x | And(x,y) -> eval atom x && eval atom y | Or(x,y) -> eval atom x || eval atom y let rec partial_eval atom = function | Empty -> `Formula Empty | Atom x -> atom x | And(x,y) -> (match partial_eval atom x, partial_eval atom y with | `False, _ | _, `False -> `False | `True, f | f, `True -> f | `Formula x, `Formula y -> `Formula (And (x,y))) | Or(x,y) -> (match partial_eval atom x, partial_eval atom y with | `True, _ | _, `True -> `True | `False, f | f, `False -> f | `Formula x, `Formula y -> `Formula (Or (x,y))) | Block x -> partial_eval atom x let check_relop relop c = match relop with | `Eq -> c = 0 | `Neq -> c <> 0 | `Geq -> c >= 0 | `Gt -> c > 0 | `Leq -> c <= 0 | `Lt -> c < 0 let eval_relop relop v1 v2 = check_relop relop (OpamPackage.Version.compare v1 v2) let check_version_formula f v = eval (fun (relop, vref) -> eval_relop relop v vref) f let check (name,cstr) package = name = OpamPackage.name package && match cstr with | None -> true | Some (relop, v) -> eval_relop relop (OpamPackage.version package) v let packages_of_atoms ?(disj=false) pkgset atoms = (* Conjunction for constraints over the same name (unless [disj] is specified), but disjunction on the package names *) let ffilter = if disj then List.exists else List.for_all in let by_name = List.fold_left (fun acc (n,_ as atom) -> OpamPackage.Name.Map.update n (fun a -> atom::a) [] acc) OpamPackage.Name.Map.empty atoms in OpamPackage.Name.Map.fold (fun name atoms acc -> OpamPackage.Set.union acc @@ OpamPackage.Set.filter (fun nv -> ffilter (fun a -> check a nv) atoms) (OpamPackage.packages_of_name pkgset name)) by_name OpamPackage.Set.empty let satisfies_depends pkgset f = eval (fun (name, cstr) -> OpamPackage.Set.exists (fun nv -> check_version_formula cstr nv.version) (OpamPackage.packages_of_name pkgset name)) f let to_string t = let string_of_constraint (relop, version) = Printf.sprintf "%s %s" (string_of_relop relop) (OpamPackage.Version.to_string version) in let string_of_pkg = function | n, Empty -> OpamPackage.Name.to_string n | n, (Atom _ as c) -> Printf.sprintf "%s %s" (OpamPackage.Name.to_string n) (string_of_formula string_of_constraint c) | n, c -> Printf.sprintf "%s (%s)" (OpamPackage.Name.to_string n) (string_of_formula string_of_constraint c) in string_of_formula string_of_pkg t (* convert a formula to a CNF *) let cnf_of_formula t = let rec mk_left x y = match y with | Block y -> mk_left x y | And (a,b) -> And (mk_left x a, mk_left x b) | Empty -> x | _ -> Or (x,y) in let rec mk_right x y = match x with | Block x -> mk_right x y | And (a,b) -> And (mk_right a y, mk_right b y) | Empty -> y | _ -> mk_left x y in let rec mk = function | Empty -> Empty | Block x -> mk x | Atom x -> Atom x | And (x,y) -> And (mk x, mk y) | Or (x,y) -> mk_right (mk x) (mk y) in mk t (* convert a formula to DNF *) let dnf_of_formula t = let rec mk_left x y = match y with | Block y -> mk_left x y | Or (a,b) -> Or (mk_left x a, mk_left x b) | _ -> And (x,y) in let rec mk_right x y = match x with | Block x -> mk_right x y | Or (a,b) -> Or (mk_right a y, mk_right b y) | _ -> mk_left x y in let rec mk = function | Empty -> Empty | Block x -> mk x | Atom x -> Atom x | Or (x,y) -> Or (mk x, mk y) | And (x,y) -> mk_right (mk x) (mk y) in mk t let verifies f nv = let name_formula = map (fun ((n, _) as a) -> if n = OpamPackage.name nv then Atom a else Empty) (dnf_of_formula f) in name_formula <> Empty && eval (fun (_name, cstr) -> check_version_formula cstr (OpamPackage.version nv)) name_formula let packages pkgset f = let names = fold_left (fun acc (name, _) -> OpamPackage.Name.Set.add name acc) OpamPackage.Name.Set.empty f in (* dnf allows us to transform the formula into a union of intervals, where ignoring atoms for different package names works. *) let dnf = dnf_of_formula f in OpamPackage.Name.Set.fold (fun name acc -> (* Ignore conjunctions where [name] doesn't appear *) let name_formula = map (fun ((n, _) as a) -> if n = name then Atom a else Empty) dnf in OpamPackage.Set.union acc @@ OpamPackage.Set.filter (fun nv -> let v = OpamPackage.version nv in eval (fun (_name, cstr) -> check_version_formula cstr v) name_formula) (OpamPackage.packages_of_name pkgset name)) names OpamPackage.Set.empty (* Convert a t an atom formula *) let to_atom_formula (t:t): atom formula = map (fun (x, c) -> match c with | Empty -> Atom (x, None) | cs -> map (fun c -> Atom (x, Some c)) cs) t (* Convert an atom formula to a t-formula *) let of_atom_formula (a:atom formula): t = let atom (n, v) = match v with | None -> Atom (n, Empty) | Some (r,v) -> Atom (n, Atom (r,v)) in map atom a let ands l = List.fold_left make_and Empty l let rec ands_to_list = function | Empty -> [] | And (e,f) -> List.rev_append (rev_ands_to_list e) (ands_to_list f) | Block f -> ands_to_list f | x -> [x] and rev_ands_to_list = function | Empty -> [] | Block f -> rev_ands_to_list f | And (e,f) -> List.rev_append (ands_to_list f) (rev_ands_to_list e) | x -> [x] let of_conjunction c = of_atom_formula (ands (List.rev_map (fun x -> Atom x) c)) let ors l = List.fold_left make_or Empty l let rec ors_to_list = function | Empty -> [] | Or (e,f) -> List.rev_append (rev_ors_to_list e) (ors_to_list f) | Block f -> ors_to_list f | x -> [x] and rev_ors_to_list = function | Empty -> [] | Or (e,f) -> List.rev_append (ors_to_list f) (rev_ors_to_list e) | Block f -> rev_ors_to_list f | x -> [x] let is_conjunction t = let rec aux = function | Or _ -> false | And (a,b) -> aux a && aux b | Block a -> aux a | _ -> true in aux t let is_disjunction t = let rec aux = function | And _ -> false | Or (a,b) -> aux a && aux b | Block a -> aux a | _ -> true in aux t let rec sort comp f= match f with | (Empty | Atom _) as f -> f | Block f -> Block (sort comp f) | And _ as f -> ands_to_list f |> List.rev_map (sort comp) |> List.sort (compare_formula comp) |> ands | Or _ as f -> ors_to_list f |> List.rev_map (sort comp) |> List.sort (compare_formula comp) |> ors let atoms t = fold_right (fun accu x -> x::accu) [] (to_atom_formula t) let to_cnf t = let atf = to_atom_formula t in let atoms = fold_right (fun acc a -> a::acc) [] in let conj = rev_ands_to_list atf in if List.for_all is_disjunction conj then List.rev_map atoms conj (* this gives a nice speedup *) else List.rev_map atoms @@ rev_ands_to_list @@ cnf_of_formula atf let to_dnf t = let atf = to_atom_formula t in let atoms = fold_right (fun acc a -> a::acc) [] in let disj = rev_ors_to_list atf in if List.for_all is_conjunction disj then List.rev_map atoms disj else List.rev_map atoms @@ rev_ors_to_list @@ dnf_of_formula atf let to_conjunction t = if is_conjunction t then atoms t else failwith (Printf.sprintf "%s is not a valid conjunction" (to_string t)) let to_disjunction t = if is_disjunction t then atoms t else failwith (Printf.sprintf "%s is not a valid disjunction" (to_string t)) let of_disjunction d = of_atom_formula (ors (List.rev_map (fun x -> Atom x) d)) let get_disjunction_formula version_set cstr = (* rev_ors_to_list cstr |> * List.fold_left *) List.rev_map (fun ff -> match ands_to_list ff with | [] -> assert false | [Atom _] as at -> at | _ -> OpamPackage.Version.Set.filter (check_version_formula ff) version_set |> OpamPackage.Version.Set.elements |> List.map (fun v -> Atom (`Eq, v))) (rev_ors_to_list cstr) |> List.flatten let set_to_disjunction set t = List.map (function | And _ -> failwith (Printf.sprintf "%s is not a valid disjunction" (to_string t)) | Or _ | Block _ | Empty -> assert false | Atom (name, Empty) -> [name, None] | Atom (name, Atom a) -> [name, Some a] | Atom (name, cstr) -> get_disjunction_formula (OpamPackage.versions_of_name set name) cstr |> List.map (function | Atom (relop, v) -> name, Some (relop, v) | _ -> assert false)) (ors_to_list t) |> List.flatten let simplify_ineq_formula vcomp f = let vals = fold_left (fun acc (_op, x) -> x::acc) [] f in let vals = List.sort_uniq vcomp vals in let vals_a = Array.of_list vals in let val_of_int i = vals_a.(i/2) in let int_of_val = let m = List.mapi (fun i v -> v, 2 * i + 1) vals in fun v -> List.assoc v m in (* One integer for each value appearing in f, plus one for each interval *) let rec mk_ranges acc n = if n < 0 then acc else mk_ranges (n::acc) (n-1) in let ranges = mk_ranges [] (2 * Array.length vals_a + 2) in let int_formula = map (fun (op, x) -> Atom (op, int_of_val x)) f in let vals = List.map (fun i -> eval (fun (relop, iref) -> check_relop relop (i - iref)) int_formula, i) ranges in if List.for_all (fun (t, _) -> not t) vals then None else let rec aux = function | (true, _) :: ((true, _) :: _ as r) -> aux r | (false, _) :: ((false, _) :: _ as r) -> aux r | (true, _) :: (false, x) :: ((true, _) :: _ as r) when x mod 2 = 1 -> (`Neq, x) :: aux r | (false, _) :: (true, x) :: ((false, _) :: _ as r) when x mod 2 = 1 -> (`Eq, x) :: aux r | (true, _) :: ((false, x) :: _ as r) -> (if x mod 2 = 1 then `Lt, x else `Leq, x-1) :: aux r | (false, _) :: ((true, x) :: _ as r) -> (if x mod 2 = 1 then `Geq, x else `Gt, x-1) :: aux r | [_] | []-> [] in let rec aux2 = function | (`Geq|`Gt|`Neq as op, i) :: r -> let rec find_upper acc = function | (`Leq|`Lt as op, i) :: r -> ands (List.rev_append acc [Atom (op, val_of_int i)]) :: aux2 r | (`Neq, i) :: r -> find_upper (Atom (`Neq, val_of_int i) :: acc) r | r -> ands (List.rev acc) :: aux2 r in find_upper [Atom (op, val_of_int i)] r | (op, i) :: r -> Atom (op, val_of_int i) :: aux2 r | [] -> [Empty] in Some (ors (aux2 (aux vals))) let simplify_version_formula f = simplify_ineq_formula OpamPackage.Version.compare f (** Takes an ordered list of atoms and a predicate, returns a formula describing the subset of matching atoms *) let gen_formula l f = let l = List.map (fun x -> f x, x) l in let rec aux (t, x as bound) l = match t, l with | true, (false, y) :: (true, _) :: r | false, (true, y) :: (false, _) :: r -> let a = (if t then `Neq else `Eq), y in (match aux bound r with | b :: r -> b :: a :: r | r -> a :: r) | true, (true, _) :: r | false, (false, _) :: r -> aux bound r | true, (false, _ as bound') :: r | false, (true, _ as bound') :: r -> ((if t then `Geq else `Lt), x) :: aux bound' r | _, [] -> [(if t then `Geq else `Lt), x] in let rec aux2 = function | (`Geq|`Neq), _ as a :: r -> let rec find_upper acc = function | `Lt, _ as a :: r -> ands (List.rev_append acc [Atom a]) :: aux2 r | `Neq, _ as a :: r -> find_upper (Atom a :: acc) r | r -> ands (List.rev acc) :: aux2 r in find_upper [Atom a] r | a :: r -> Atom a :: aux2 r | [] -> [Empty] in match l with | [] -> Some Empty | (t, x) :: r -> match aux (t, x) r with | [] -> assert false | [`Geq, _] -> Some Empty | [`Lt, _] -> None | _ :: r -> Some (ors (aux2 r)) let formula_of_version_set set subset = let module S = OpamPackage.Version.Set in match gen_formula (S.elements set) (fun x -> S.mem x subset) with | Some f -> f | None -> invalid_arg "Empty subset" let simplify_version_set set f = let module S = OpamPackage.Version.Set in if S.is_empty set then Empty else let set = fold_left (fun set (_relop, v) -> S.add v set) set f in gen_formula (S.elements set) (check_version_formula f) |> OpamStd.Option.default f
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>