package ocaml-protoc
Protobuf compiler for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
2.4.0.tar.gz
md5=8a294e86c6202b8ec8016e71d19264cb
sha512=67020bef50b59c6590c1b25d85a75d6e19d6cd37d42b87c94aef798bff51a45f38fe7024b4c67d71c22c13d3f2776bec83acd77794a518f1c4a7eddfc30b6d0b
doc/src/ocaml-protoc.compiler-lib/pb_codegen_decode_bs.ml.html
Source file pb_codegen_decode_bs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
module Ot = Pb_codegen_ocaml_type module F = Pb_codegen_formatting let sp = Pb_codegen_util.sp let value_expression ~r_name ~rf_label field_type = let basic_type helper_fun = sp "Pbrt_bs.%s json \"%s\" \"%s\"" helper_fun r_name rf_label in match field_type with | Ot.Ft_basic_type Ot.Bt_string -> basic_type "string" | Ot.Ft_basic_type Ot.Bt_float -> basic_type "float" | Ot.Ft_basic_type Ot.Bt_int -> basic_type "int" | Ot.Ft_basic_type Ot.Bt_int32 -> basic_type "int32" | Ot.Ft_basic_type Ot.Bt_int64 -> basic_type "int64" | Ot.Ft_basic_type Ot.Bt_uint32 -> basic_type "[`unsigned of int32]" | Ot.Ft_basic_type Ot.Bt_uint64 -> basic_type "[`unsigned of int64]" | Ot.Ft_basic_type Ot.Bt_bool -> basic_type "bool" | Ot.Ft_basic_type Ot.Bt_bytes -> basic_type "bytes" | Ot.Ft_unit -> "()" | Ot.Ft_user_defined_type udt -> let { Ot.udt_type; _ } = udt in let f_name = let function_prefix = "decode" in let module_suffix = "bs" in Pb_codegen_util.function_name_of_user_defined ~function_prefix ~module_suffix udt in (match udt_type with | `Message -> let o = sp "(Pbrt_bs.object_ json \"%s\" \"%s\")" r_name rf_label in "(" ^ f_name ^ " " ^ o ^ ")" | `Enum -> "(" ^ f_name ^ " json)") | Ot.Ft_wrapper_type { Ot.wt_type = Ot.Bt_int32; _ } -> basic_type "int32_wrapped" | Ot.Ft_wrapper_type { Ot.wt_type = Ot.Bt_int64; _ } -> basic_type "int64_wrapped" | Ot.Ft_wrapper_type { Ot.wt_type = Ot.Bt_float; _ } -> basic_type "float_wrapped" | Ot.Ft_wrapper_type { Ot.wt_type = Ot.Bt_string; _ } -> basic_type "string_wrapped" | Ot.Ft_wrapper_type { Ot.wt_type = Ot.Bt_bool; _ } -> basic_type "bool_wrapped" | Ot.Ft_wrapper_type _ -> "None" (* | _ -> assert(false) *) (* Generate the pattern match for a record field *) let gen_rft_nolabel sc ~r_name ~rf_label (field_type, _, _) = let json_label = Pb_codegen_util.camel_case_of_label rf_label in let value_expression = value_expression ~r_name ~rf_label field_type in F.linep sc "| \"%s\" -> " json_label; F.linep sc " let json = Js.Dict.unsafeGet json \"%s\" in" json_label; F.linep sc " v.%s <- %s" rf_label value_expression (* Generate all the pattern matches for a repeated field *) let gen_rft_repeated sc ~r_name ~rf_label repeated_field = let _, field_type, _, _, _ = repeated_field in let json_label = Pb_codegen_util.camel_case_of_label rf_label in F.linep sc "| \"%s\" -> begin" json_label; F.scope sc (fun sc -> F.line sc "let a = "; F.scope sc (fun sc -> F.linep sc "let a = Js.Dict.unsafeGet json \"%s\" in " json_label; F.linep sc "Pbrt_bs.array_ a \"%s\" \"%s\"" r_name rf_label); F.line sc "in"; F.linep sc "v.%s <- Array.map (fun json -> " rf_label; let value_expression = value_expression ~r_name ~rf_label field_type in F.linep sc " %s" value_expression; F.line sc ") a |> Array.to_list;"); F.line sc "end" let gen_rft_optional sc ~r_name ~rf_label optional_field = let field_type, _, _, _ = optional_field in let json_label = Pb_codegen_util.camel_case_of_label rf_label in let value_expression = value_expression ~r_name ~rf_label field_type in F.linep sc "| \"%s\" -> " json_label; F.linep sc " let json = Js.Dict.unsafeGet json \"%s\" in" json_label; F.linep sc " v.%s <- Some (%s)" rf_label value_expression (* Generate pattern match for a variant field *) let gen_rft_variant sc ~r_name ~rf_label { Ot.v_constructors; _ } = List.iter (fun { Ot.vc_constructor; vc_field_type; _ } -> let json_label = Pb_codegen_util.camel_case_of_constructor vc_constructor in match vc_field_type with | Ot.Vct_nullary -> F.linep sc "| \"%s\" -> v.%s <- %s" json_label rf_label vc_constructor | Ot.Vct_non_nullary_constructor field_type -> let value_expression = value_expression ~r_name ~rf_label field_type in F.linep sc "| \"%s\" -> " json_label; F.linep sc " let json = Js.Dict.unsafeGet json \"%s\" in" json_label; F.linep sc " v.%s <- %s (%s)" rf_label vc_constructor value_expression) v_constructors (* Generate decode function for a record *) let gen_record ?and_ module_prefix { Ot.r_name; r_fields } sc = let mutable_record_name = Pb_codegen_util.mutable_record_name r_name in F.linep sc "%s decode_%s json =" (Pb_codegen_util.let_decl_of_and and_) r_name; F.scope sc (fun sc -> F.linep sc "let v = default_%s () in" mutable_record_name; F.line sc "let keys = Js.Dict.keys json in"; F.line sc "let last_key_index = Array.length keys - 1 in"; F.line sc "for i = 0 to last_key_index do"; F.scope sc (fun sc -> F.line sc "match Array.unsafe_get keys i with"; (* Generate pattern match for all the possible message field *) List.iter (fun { Ot.rf_label; rf_field_type; _ } -> match rf_field_type with | Ot.Rft_nolabel nolabel_field -> gen_rft_nolabel sc ~r_name ~rf_label nolabel_field | Ot.Rft_optional optional_field -> gen_rft_optional sc ~r_name ~rf_label optional_field | Ot.Rft_repeated repeated_field -> gen_rft_repeated sc ~r_name ~rf_label repeated_field | Ot.Rft_variant variant_field -> gen_rft_variant sc ~r_name ~rf_label variant_field | Ot.Rft_required _ -> Printf.eprintf "Only proto3 syntax supported in JSON encoding"; exit 1 | Ot.Rft_associative _ -> Printf.eprintf "Map field are not currently supported for JSON"; exit 1) r_fields; (* Unknown fields are simply ignored *) F.empty_line sc; F.line sc "| _ -> () (*Unknown fields are ignored*)"); F.line sc "done;"; (* Transform the mutable record in an immutable one *) F.line sc "({"; F.scope sc (fun sc -> List.iter (fun { Ot.rf_label; _ } -> F.linep sc "%s_types.%s = v.%s;" module_prefix rf_label rf_label) r_fields); F.linep sc "} : %s_types.%s)" module_prefix r_name) (* Generate decode function for a variant type *) let gen_variant ?and_ module_prefix { Ot.v_name; v_constructors } sc = (* helper function for each constructor case *) let process_v_constructor sc { Ot.vc_constructor; vc_field_type; _ } = let json_label = Pb_codegen_util.camel_case_of_constructor vc_constructor in match vc_field_type with | Ot.Vct_nullary -> F.linep sc "| \"%s\" -> (%s_types.%s : %s_types.%s)" json_label module_prefix vc_constructor module_prefix v_name | Ot.Vct_non_nullary_constructor field_type -> let value_expression = let r_name = v_name and rf_label = vc_constructor in value_expression ~r_name ~rf_label field_type in F.linep sc "| \"%s\" -> " json_label; F.linep sc " let json = Js.Dict.unsafeGet json \"%s\" in" json_label; F.linep sc " (%s_types.%s (%s) : %s_types.%s)" module_prefix vc_constructor value_expression module_prefix v_name in F.linep sc "%s decode_%s json =" (Pb_codegen_util.let_decl_of_and and_) v_name; F.scope sc (fun sc -> F.line sc "let keys = Js.Dict.keys json in"; (* even though a variant should be an object with a single field, * it is possible other fields are present in the JSON object. Therefore * we still need a loop to iterate over the key/value, even if in 99.99% * of the cases it will be a single iteration *) F.line sc "let rec loop = function "; F.scope sc (fun sc -> F.linep sc "| -1 -> Pbrt_bs.E.malformed_variant \"%s\"" v_name; F.line sc "| i -> "; F.scope sc (fun sc -> F.line sc "begin match Array.unsafe_get keys i with"; List.iter (process_v_constructor sc) v_constructors; F.empty_line sc; F.line sc "| _ -> loop (i - 1)"; F.line sc "end")); F.line sc "in"; F.line sc "loop (Array.length keys - 1)") let gen_const_variant ?and_ module_prefix { Ot.cv_name; cv_constructors } sc = F.linep sc "%s decode_%s (json:Js.Json.t) =" (Pb_codegen_util.let_decl_of_and and_) cv_name; F.scope sc (fun sc -> F.linep sc "match Pbrt_bs.string json \"%s\" \"value\" with" cv_name; List.iter (fun { Ot.cvc_name; cvc_string_value; _ } -> F.linep sc "| \"%s\" -> (%s_types.%s : %s_types.%s)" cvc_string_value module_prefix cvc_name module_prefix cv_name) cv_constructors; F.linep sc "| \"\" -> %s_types.%s" module_prefix (let { Ot.cvc_name; _ } = List.hd cv_constructors in cvc_name); F.linep sc "| _ -> Pbrt_bs.E.malformed_variant \"%s\"" cv_name) let gen_struct ?and_ t sc = let { Ot.module_prefix; spec; _ } = t in let has_encoded = match spec with | Ot.Record r -> gen_record ?and_ module_prefix r sc; true | Ot.Variant v -> gen_variant ?and_ module_prefix v sc; true | Ot.Const_variant v -> gen_const_variant ?and_ module_prefix v sc; true in has_encoded let gen_sig ?and_ t sc = let _ = and_ in let { Ot.module_prefix; spec; _ } = t in let f type_name = F.linep sc "val decode_%s : Js.Json.t Js.Dict.t -> %s_types.%s" type_name module_prefix type_name; F.linep sc ("(** [decode_%s decoder] decodes a " ^^ "[%s] value from [decoder] *)") type_name type_name in match spec with | Ot.Record { Ot.r_name; _ } -> f r_name; true | Ot.Variant { Ot.v_name; _ } -> f v_name; true | Ot.Const_variant { Ot.cv_name; _ } -> F.linep sc "val decode_%s : Js.Json.t -> %s_types.%s" cv_name module_prefix cv_name; F.linep sc "(** [decode_%s value] decodes a [%s] from a Json value*)" cv_name cv_name; true let ocamldoc_title = "BS Decoding" let file_suffix = "bs"
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>