package obatcher
A Framework for building Batched Concurrent Data Structures
Install
Dune Dependency
Authors
Maintainers
Sources
obatcher-1.1.tbz
sha256=2ee8f97a1e4a55899f8fdc48aa422e553d6a4d256e71b59e4257448beaf27dd3
sha512=61d0645dc5bd6955f3e663f133d27d9c8c61081e24bc8d88e73f86380432e783fa50bc4d980a9b17ccb949f6af9b90ef834f379ec9171b692745f05d9a34c0f9
doc/src/obatcher.ds/batched_btree.ml.html
Source file batched_btree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
open Utils [@@@warning "-26"] let btree_insert_sequential_threshold = ref None let btree_search_sequential_threshold = ref None let btree_search_parallel_threshold = ref None let btree_max_children = ref 8 module Make (V : Map.OrderedType) = struct let ( .!() ) x v = Finite_vector.get x v module Sequential = struct type 'a node = { mutable n : int; (* number of keys in node *) mutable keys : V.t Finite_vector.t; (* keys themselves *) mutable values : 'a Finite_vector.t; (* values *) leaf : bool; mutable children : 'a node Finite_vector.t; mutable no_elements : int; (* number of elements in the node and subtrees *) mutable capacity : int; mutable min_child_capacity : int; } type 'a t = { mutable root : 'a node; mutable height : int; max_children : int; } let rec size_node node = if node.leaf then Finite_vector.length node.values else Finite_vector.fold_left (fun acc vl -> acc + size_node vl) 0 node.children let size t = t.root.no_elements let rec pp_node ?(pp_child = true) ?(pp_v = fun fmt _ -> Format.fprintf fmt "<opaque>") indent f fmt node = let spaces = String.make indent ' ' in Format.fprintf fmt "%snode(n=%d,leaf=%b,no_elts=%d)\n%s - values=[%a]\n%a" spaces node.n node.leaf node.no_elements spaces (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt "; ") (fun fmt (k, vl) -> Format.fprintf fmt "%a: %a" pp_v k f vl)) (List.init node.n (fun i -> (node.keys.!(i), node.values.!(i)))) (if pp_child then Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt "\n") (fun fmt (k, vl) -> match k with | None -> Format.fprintf fmt "%s - child(k=_):\n%a" spaces (pp_node ~pp_v (indent + 4) f) vl | Some key -> Format.fprintf fmt "%s - child(k=%a):\n%a" spaces pp_v key (pp_node ~pp_v (indent + 4) f) vl) else fun _fmt _vl -> ()) (List.init (Finite_vector.length node.children) (fun i -> ( (if i < node.n then Some node.keys.!(i) else None), node.children.!(i) ))) let pp_node_internal = pp_node let pp_node ?pp_v f fmt vl = pp_node ?pp_v 0 f fmt vl let show_node ?pp_v f vl = Format.asprintf "%a" (pp_node ?pp_v f) vl let show_node_no_children ?pp_v f vl = Format.asprintf "%a" (pp_node_internal ?pp_v ~pp_child:false 0 f) vl let pp ?pp_v f fmt t = pp_node ?pp_v f fmt t.root let show ?pp_v f vl = Format.asprintf "%a" (pp ?pp_v f) vl let init ?max_children () = let max_children = match max_children with Some v -> v | None -> !btree_max_children in let root = { n = 0; leaf = true; keys = Finite_vector.init ~capacity:((2 * max_children) - 1) (); children = Finite_vector.init ~capacity:(2 * max_children) (); values = Finite_vector.init ~capacity:((2 * max_children) - 1) (); no_elements = 0; capacity = (2 * max_children) - 1; min_child_capacity = 0; } in { root; max_children; height = 1 } let rec fold_int_range ~start ~stop f acc = if start >= stop then f acc start else let acc = f acc start in fold_int_range ~start:(start + 1) ~stop f acc let rec find_int_range ~start ~stop f = if stop < start then None else if start = stop then f start else match f start with | None -> find_int_range ~start:(start + 1) ~stop f | res -> res let rec find_int_range_dec ~start ~stop f = if start < stop then None else if start = stop then f stop else match f start with | None -> find_int_range_dec ~start:(start - 1) ~stop f | res -> res let rec search_node x k = let index = find_int_range ~start:0 ~stop:(x.n - 1) (fun i -> if V.compare k x.keys.!(i) <= 0 then Some i else None) |> Option.value ~default:x.n in if index < x.n && V.compare x.keys.!(index) k = 0 then Some (x, index) else if x.leaf then None else search_node x.children.!(index) k let search t k = match search_node t.root k with | Some (node, i) -> Some node.values.!(i) | None -> None let min_capacity vec = Finite_vector.fold_left (fun acc vl -> match acc with | None -> Some vl.capacity | Some vl' when vl' > vl.capacity -> Some vl.capacity | _ -> acc) None vec (* pre: x.(i) has (2 * t - 1) keys *) let split_child x i = let y = x.children.!(i) in let t = (y.n + 1) / 2 in let z = let keys = Finite_vector.split_from y.keys t in let values = Finite_vector.split_from y.values t in let children = if y.leaf then Finite_vector.init ~capacity:(2 * t) () else Finite_vector.split_from y.children t in let min_child_capacity = Option.value ~default:0 (min_capacity children) in let capacity = (t * (min_child_capacity + 1)) + min_child_capacity in { n = t - 1; leaf = y.leaf; keys; values; children; no_elements = t - 1; capacity; min_child_capacity; } in z.no_elements <- t - 1; Finite_vector.iter (fun child -> z.no_elements <- z.no_elements + child.no_elements) z.children; (* insert z *) Finite_vector.insert x.keys i y.keys.!(t - 1); Finite_vector.insert x.values i y.values.!(t - 1); Finite_vector.insert x.children (i + 1) z; (* clip y *) y.n <- t - 1; Finite_vector.clip y.keys (t - 1); Finite_vector.clip y.values (t - 1); y.no_elements <- t - 1; Finite_vector.iter (fun child -> y.no_elements <- y.no_elements + child.no_elements) y.children; y.min_child_capacity <- Option.value ~default:0 (min_capacity y.children); y.capacity <- (t * (y.min_child_capacity + 1)) + y.min_child_capacity; x.n <- x.n + 1; x.min_child_capacity <- min x.min_child_capacity (min y.min_child_capacity z.min_child_capacity); x.capacity <- (((2 * t) - 1 - x.n) * (x.min_child_capacity + 1)) + x.min_child_capacity let rec insert_node ~max_children x k vl = let index = find_int_range_dec ~start:(x.n - 1) ~stop:0 (fun i -> if V.compare k x.keys.!(i) >= 0 then Some (i + 1) else None) |> Option.value ~default:0 in x.no_elements <- x.no_elements + 1; if x.leaf then ( Finite_vector.insert x.keys index k; Finite_vector.insert x.values index vl; x.capacity <- x.capacity - 1; x.n <- x.n + 1; x.capacity) else let child_capacity = if x.children.!(index).n = (2 * max_children) - 1 then ( split_child x index; if V.compare k x.keys.!(index) > 0 then insert_node ~max_children x.children.!(index + 1) k vl else insert_node ~max_children x.children.!(index) k vl) else insert_node ~max_children x.children.!(index) k vl in x.min_child_capacity <- min x.min_child_capacity child_capacity; x.capacity <- (((2 * max_children) - 1 - x.n) * (x.min_child_capacity + 1)) + x.min_child_capacity; x.capacity let insert tree k vl = let t = tree.max_children in let r = tree.root in if r.n = (2 * t) - 1 then ( let s = { n = 0; leaf = false; keys = Finite_vector.init ~capacity:((2 * t) - 1) (); children = Finite_vector.singleton ~capacity:(2 * t) tree.root; values = Finite_vector.init ~capacity:((2 * t) - 1) (); no_elements = r.no_elements; capacity = 0; min_child_capacity = r.capacity; } in tree.root <- s; tree.height <- tree.height + 1; split_child s 0; ignore (insert_node ~max_children:tree.max_children s k vl)) else ignore (insert_node ~max_children:tree.max_children r k vl) end module Batched = struct type 'a t = 'a Sequential.t type cfg = unit option type ('elt, 'ret) op = | Insert : V.t * 'elt -> ('elt, unit) op | Search : V.t -> ('elt, 'elt option) op | Size : ('elt, int) op type 'a wrapped_op = | Mk : ('a, 'b) op * 'b Picos.Computation.t -> 'a wrapped_op let init ?cfg:_ () = let max_children = !btree_max_children in Sequential.init ~max_children () let fold_left_map f accu l = let rec aux accu l_accu = function | [] -> (accu, List.rev l_accu) | x :: l -> let accu, x = f accu x in aux accu (x :: l_accu) l in aux accu [] l let drop_last ls = let rec loop acc last = function | [] -> List.rev acc | h :: t -> loop (last :: acc) h t in match ls with [] -> [] | h :: t -> loop [] h t let int_pow x y = let rec loop acc x y = if y > 0 then match y mod 2 with | 0 -> loop acc (x * x) (y / 2) | _ -> loop (acc * x) x (y - 1) else acc in loop 1 x y let find_height ~t ~no_elts = if no_elts < (2 * t) - 1 then 1 else let rec loop t no_elts h t_h t2_h = if t_h - 1 <= no_elts && no_elts <= t2_h - 1 then h else let t_h_1 = t_h * t and t2_h_1 = t2_h * (2 * t) in if t2_h - 1 < no_elts && no_elts < t2_h_1 - 1 then h + 1 else loop t no_elts (h + 1) t_h_1 t2_h_1 in loop t no_elts 1 t (2 * t) let find_split ?(root = false) ~t ~h r = let max_t = 2 * t in let min_size = int_pow t (h - 1) - 1 in let max_size = int_pow (2 * t) (h - 1) - 1 in let rec loop min_size max_size t = assert (t <= max_t); let elt_size = Int.div (r - t + 1) t in let rem_size = Int.rem (r - t + 1) t in if min_size <= elt_size && elt_size <= max_size && (rem_size = 0 || elt_size + 1 <= max_size) then (t, elt_size, rem_size) else loop min_size max_size (t + 1) in loop min_size max_size (if root then 2 else t) let partition_range ?root ~t ~h (start, stop) = let t, sub_range_size, rem = find_split ?root ~t ~h (stop - start) in let key_inds = Array.make (t - 1) 0 in let child_inds = Array.make t 0 in let rem = ref rem in let start = ref start in for i = 0 to t - 1 do let rem_comp = if !rem > 0 then ( decr rem; 1) else 0 in child_inds.(i) <- min (!start + sub_range_size + rem_comp) stop; if i < t - 1 then key_inds.(i) <- !start + sub_range_size + rem_comp; start := !start + sub_range_size + rem_comp + 1 done; child_inds.(t - 1) <- stop; (key_inds, child_inds) let rec build_node ~max_children:t ~h start stop arr = if h <= 1 then Sequential. { n = stop - start; keys = Finite_vector.init_with ~capacity:((2 * t) - 1) (stop - start) (fun i -> fst arr.(start + i)); values = Finite_vector.init_with ~capacity:((2 * t) - 1) (stop - start) (fun i -> snd arr.(start + i)); leaf = true; children = Finite_vector.init ~capacity:(2 * t) (); no_elements = stop - start; capacity = (2 * t) - 1 - (stop - start); min_child_capacity = 0; } else let key_inds, sub_ranges = partition_range ~t ~h (start, stop) in let children = let start = ref start in Array.map (fun stop -> let subtree = build_node ~max_children:t ~h:(h - 1) !start stop arr in start := stop + 1; subtree) sub_ranges in let n = Array.length key_inds in let keys = Finite_vector.init_with ~capacity:((2 * t) - 1) n (fun pos -> fst arr.(key_inds.(pos))) in let values = Finite_vector.init_with ~capacity:((2 * t) - 1) n (fun pos -> snd arr.(key_inds.(pos))) in let children = Finite_vector.init_with ~capacity:(2 * t) (Array.length children) (fun pos -> children.(pos)) in let min_child_capacity = Sequential.min_capacity children |> Option.value ~default:0 in let capacity = ((2 * t) - 1 - n) * (min_child_capacity + 1) in { n; keys; values; leaf = false; children; no_elements = stop - start; capacity; min_child_capacity; } let rec par_build_node ~max_children:t ~h start stop arr = if h <= 1 then Sequential. { n = stop - start; keys = Finite_vector.init_with ~capacity:((2 * t) - 1) (stop - start) (fun i -> fst arr.(start + i)); values = Finite_vector.init_with ~capacity:((2 * t) - 1) (stop - start) (fun i -> snd arr.(start + i)); leaf = true; children = Finite_vector.init ~capacity:(2 * t) (); no_elements = stop - start; capacity = (2 * t) - 1 - (stop - start); min_child_capacity = 0; } else let key_inds, sub_ranges = partition_range ~t ~h (start, stop) in let sub_ranges = let start = ref start in Array.map (fun stop -> let interval = (!start, stop) in start := stop + 1; interval) sub_ranges in let children = let child_arr = Array.make (Array.length sub_ranges) Sequential. { n = 0; children = Finite_vector.init (); keys = Finite_vector.init (); values = Finite_vector.init (); leaf = true; no_elements = 0; capacity = 0; min_child_capacity = 0; } in parallel_for ~start:0 ~finish:(Array.length sub_ranges - 1) (fun i -> let start, stop = sub_ranges.(i) in child_arr.(i) <- par_build_node ~max_children:t ~h:(h - 1) start stop arr); child_arr in let n = Array.length key_inds in let keys = Finite_vector.init_with ~capacity:((2 * t) - 1) n (fun pos -> fst arr.(key_inds.(pos))) in let values = Finite_vector.init_with ~capacity:((2 * t) - 1) n (fun pos -> snd arr.(key_inds.(pos))) in let children = Finite_vector.init_with ~capacity:(2 * t) (Array.length children) (fun pos -> children.(pos)) in let min_child_capacity = Sequential.min_capacity children |> Option.value ~default:0 in let capacity = (((2 * t) - 1 - n) * (min_child_capacity + 1)) + min_child_capacity in { n; keys; values; leaf = false; children; no_elements = stop - start; capacity; min_child_capacity; } let build_from_sorted ?max_children:(t = 3) arr = let h = find_height ~t ~no_elts:(Array.length arr) in let root = if Array.length arr <= (2 * t) - 1 then par_build_node ~max_children:t ~h:1 0 (Array.length arr) arr else let key_inds, sub_ranges = partition_range ~root:true ~t ~h (0, Array.length arr) in let children = let start = ref 0 in Array.map (fun stop -> let subtree = par_build_node ~max_children:t ~h:(h - 1) !start stop arr in start := stop + 1; subtree) sub_ranges in let n = Array.length key_inds in let keys = Finite_vector.init_with ~capacity:((2 * t) - 1) n (fun pos -> fst arr.(key_inds.(pos))) in let values = Finite_vector.init_with ~capacity:((2 * t) - 1) n (fun pos -> snd arr.(key_inds.(pos))) in let children = Finite_vector.init_with ~capacity:(2 * t) (Array.length children) (fun pos -> children.(pos)) in let min_child_capacity = Sequential.min_capacity children |> Option.value ~default:0 in let capacity = (((2 * t) - 1 - n) * (min_child_capacity + 1)) + min_child_capacity in { n; keys; values; leaf = false; children; no_elements = Array.length arr; min_child_capacity; capacity; } in (h, root) let rec int_range_downto start stop () = if start > stop then Seq.Nil else Seq.Cons (stop, int_range_downto start (stop - 1)) let flatten t = let open Seq in let rec aux node = if node.Sequential.leaf then let elems = Array.init (Finite_vector.length node.Sequential.keys) (fun i -> (node.Sequential.keys.!(i), node.Sequential.values.!(i))) in Array.to_seq elems else let back = int_range_downto 1 node.Sequential.n |> fold_left (fun acc i -> let tl = aux node.Sequential.children.!(i) in let kv = ( node.Sequential.keys.!(i - 1), node.Sequential.values.!(i - 1) ) in let comb = cons kv tl in append comb acc) empty in append (aux node.Sequential.children.!(0)) back in aux t let merge i1 i2 = let i1 = Seq.to_dispenser i1 in let i2 = Seq.to_dispenser i2 in let next i h = match h with None -> i () | Some v -> Some v in let rec aux i1 h1 i2 h2 f = match (next i1 h1, next i2 h2) with | None, None -> () | Some hd1, Some hd2 -> if hd1 < hd2 then ( f hd1; aux i1 None i2 (Some hd2) f) else ( f hd2; aux i1 (Some hd1) i2 None f) | Some hd1, None -> f hd1; aux i1 None i2 None f | None, Some hd2 -> f hd2; aux i1 None i2 None f in fun f -> aux i1 None i2 None f let par_rebuild ~max_children (root : 'a Sequential.node) (kv_arr : (V.t * 'a) array) = (* keys is a array of (key, index) where index is the position in the original search query *) let max_children = max_children in let batch = Array.make (Array.length kv_arr + root.no_elements) kv_arr.(0) in let i1 = kv_arr |> Array.to_seq in let i2 = flatten root in let merged = merge i1 i2 in let i = ref 0 in merged (fun vl -> batch.(!i) <- vl; incr i); build_from_sorted ~max_children batch let rec par_search_node ?(par_threshold = 6) ?(threshold = 64) node ~height ~(keys : (V.t * 'a option Picos.Computation.t) array) ~range:(rstart, rstop) = (* if the no elements in the node are greater than the number of keys we're searching for, then just do normal search in parallel *) let n = rstop - rstart in (* Format.printf "par_search batch_size is %d < threshold(%d), leaf?=%b, height=%d\n%!" *) (* n threshold node.Sequential.leaf height; *) if n <= 0 then () else if n = 1 then let k, kont = keys.(rstart) in Picos.Computation.return kont (Option.map (fun (node, i) -> node.Sequential.values.!(i)) (Sequential.search_node node k)) else if rstop - rstart < par_threshold && height > 5 then parallel_for ~start:rstart ~finish:(rstop - 1) (fun i -> let k, kont = keys.(i) in Picos.Computation.return kont (Option.map (fun (node, i) -> node.Sequential.values.!(i)) (Sequential.search_node node k))) else if (rstop - rstart < threshold && height < 3) || node.Sequential.leaf then for i = rstart to rstop - 1 do let k, kont = keys.(i) in Picos.Computation.return kont (Option.map (fun (node, i) -> node.Sequential.values.!(i)) (Sequential.search_node node k)) done else let sub_intervals = Finite_vector.init ~capacity:(Finite_vector.length node.children) () in let sub_interval_size i = let start, stop = sub_intervals.!(i) in stop - start in let last_sub_interval_end = ref rstart in (* partition batch by children *) for i = 0 to Finite_vector.length node.keys - 1 do let interval_start = !last_sub_interval_end in while !last_sub_interval_end < rstop && V.compare (fst keys.(!last_sub_interval_end)) node.keys.!(i) < 0 do incr last_sub_interval_end done; Finite_vector.insert sub_intervals i (interval_start, !last_sub_interval_end); while !last_sub_interval_end < rstop && V.compare (fst keys.(!last_sub_interval_end)) node.keys.!(i) = 0 do Picos.Computation.return (snd keys.(!last_sub_interval_end)) (Some node.values.!(i)); incr last_sub_interval_end done done; Finite_vector.insert sub_intervals (Finite_vector.length node.keys) (!last_sub_interval_end, rstop); parallel_for ~start:0 ~finish:(Finite_vector.length sub_intervals - 1) (fun i -> par_search_node ~par_threshold ~threshold node.children.!(i) ~keys ~height:(height - 1) ~range:sub_intervals.!(i)) let par_search ?par_threshold ?threshold (t : 'a t) (keys : (V.t * 'a option Picos.Computation.t) array) = let threshold = match threshold with | Some _ -> threshold | None -> !btree_search_sequential_threshold in let par_threshold = match par_threshold with | Some _ -> par_threshold | None -> !btree_search_parallel_threshold in (* keys is a array of (key, index) where index is the position in the original search query *) Array.sort (fun (k, _) (k', _) -> V.compare k k') keys; (* allocate a buffer for the results *) par_search_node ?par_threshold ?threshold t.root ~height:t.height ~keys ~range:(0, Array.length keys) let rec par_insert_node ?(threshold = 8) ~max_children (t : 'a Sequential.node) (batch : (V.t * 'a) array) start stop = if stop <= start then t.min_child_capacity else if t.leaf || stop - start < threshold then ( for i = start to stop - 1 do let key, vl = batch.(i) in ignore (Sequential.insert_node ~max_children t key vl) done; t.min_child_capacity) else ( t.no_elements <- t.no_elements + stop - start; let sub_intervals = Finite_vector.init ~capacity:(2 * max_children) () in let sub_interval_size i = let start, stop = sub_intervals.!(i) in stop - start in let last_sub_interval_end = ref start in (* partition batch by children *) for i = 0 to Finite_vector.length t.keys - 1 do let interval_start = !last_sub_interval_end in while !last_sub_interval_end < stop && V.compare (fst batch.(!last_sub_interval_end)) t.keys.!(i) < 0 do incr last_sub_interval_end done; Finite_vector.insert sub_intervals i (interval_start, !last_sub_interval_end) done; Finite_vector.insert sub_intervals (Finite_vector.length t.keys) (!last_sub_interval_end, stop); (* iterate through sub-intervals, and calculate number of splits that would be needed: *) let no_splits = ref 0 in for i = 0 to Finite_vector.length sub_intervals - 1 do if t.children.!(i).capacity < sub_interval_size i then incr no_splits done; (* now, as splitting children requires ownership of the whole node, we handle all splitting first *) let current_sub_interval = ref 0 in while !no_splits > 0 do (* skip over sub_intervals that are within capacity *) while t.children.!(!current_sub_interval).capacity >= sub_interval_size !current_sub_interval do incr current_sub_interval done; (* found a sub interval that is over-capacity *) while t.children.!(!current_sub_interval).capacity < sub_interval_size !current_sub_interval do let start, stop = sub_intervals.!(!current_sub_interval) in (* if current sub-interval's node is full *) if (2 * max_children) - 1 = t.children.!(!current_sub_interval).n then ( (* split the child *) Sequential.split_child t !current_sub_interval; (* re-calculate interval, and interval for new child *) let new_stop_interval = ref start in while !new_stop_interval < stop && V.compare (fst batch.(!new_stop_interval)) t.keys.!(!current_sub_interval) < 0 do incr new_stop_interval done; (* update intervals *) Finite_vector.set sub_intervals !current_sub_interval (start, !new_stop_interval); Finite_vector.insert sub_intervals (!current_sub_interval + 1) (!new_stop_interval, stop); (* update no splits: new child may also be over capacity *) if t.children.!(!current_sub_interval + 1).capacity < sub_interval_size (!current_sub_interval + 1) then incr no_splits) else if t.children.!(!current_sub_interval).capacity > 0 then ( let to_insert = t.children.!(!current_sub_interval).capacity in let min_capacity = par_insert_node ~threshold ~max_children t.children.!(!current_sub_interval) batch start (start + to_insert) in Finite_vector.set sub_intervals !current_sub_interval (start + to_insert, stop); t.min_child_capacity <- min min_capacity t.min_child_capacity; t.capacity <- (((2 * max_children) - 1 - t.n) * (t.min_child_capacity + 1)) + t.min_child_capacity) else let key, vl = batch.(start) in (* otherwise, just insert the current element *) let min_capacity = Sequential.insert_node ~max_children t.children.!(!current_sub_interval) key vl in (* update the interval to track the fact that the start no longer needs to be inserted *) Finite_vector.set sub_intervals !current_sub_interval (start + 1, stop); (* update capacity *) t.min_child_capacity <- min min_capacity t.min_child_capacity; t.capacity <- (((2 * max_children) - 1 - t.n) * (t.min_child_capacity + 1)) + t.min_child_capacity done; (* we have successfully dispatched one of the splits *) decr no_splits done; (* now, all splits are done, do all in parallel! *) let min_child_capacity = parallel_for_reduce ~start:0 ~finish:(Finite_vector.length sub_intervals - 1) ~body:(fun i -> let start, stop = sub_intervals.!(i) in par_insert_node ~max_children t.children.!(i) batch start stop) min t.min_child_capacity in t.min_child_capacity <- min t.min_child_capacity min_child_capacity; t.capacity <- (((2 * max_children) - 1 - t.n) * (t.min_child_capacity + 1)) + t.min_child_capacity; t.capacity) let rec par_insert ?threshold (t : 'a t) (batch : (V.t * 'a) array) start stop = let n = stop - start in if n <= 0 (* a) we are finished inserting *) then () else if t.root.leaf then ( let key, vl = batch.(start) in Sequential.insert t key vl; par_insert ?threshold t batch (start + 1) stop) else if n <= t.root.capacity (* b) we are inserting fewer elements than our capacity - good! let's go! *) then ignore (par_insert_node ?threshold ~max_children:t.max_children t.root batch start stop) else if (2 * t.max_children) - 1 = t.root.n (* c) our root has reached max capacity - split! *) then ( let s = Sequential. { n = 0; leaf = false; keys = Finite_vector.init ~capacity:((2 * t.max_children) - 1) (); children = Finite_vector.singleton ~capacity:(2 * t.max_children) t.root; values = Finite_vector.init ~capacity:((2 * t.max_children) - 1) (); no_elements = t.root.no_elements; capacity = 0; min_child_capacity = t.root.min_child_capacity; } in t.root <- s; t.height <- t.height + 1; Sequential.split_child s 0; par_insert ?threshold t batch start stop) else if n = 1 then ignore (Sequential.insert_node ~max_children:t.max_children t.root (fst batch.(start)) (snd batch.(start))) else ( (* d) insert as much as we can and repeat! *) assert (t.root.capacity > 0); let capacity = t.root.capacity in ignore (par_insert_node ?threshold ~max_children:t.max_children t.root batch start (start + capacity)); par_insert ?threshold t batch (start + capacity) stop) let par_insert ?threshold ?(can_rebuild = true) t batch = let threshold = match threshold with | Some _ -> threshold | None -> !btree_insert_sequential_threshold in if Array.length batch > 0 && Array.length batch > t.Sequential.root.no_elements && can_rebuild then ( let height, root = par_rebuild ~max_children:t.Sequential.max_children t.root batch in t.Sequential.root <- root; t.Sequential.height <- height) else par_insert ?threshold t batch 0 (Array.length batch) let run (type a) (t : a t) (ops : a wrapped_op array) : unit = let searches : (V.t * a option Picos.Computation.t) list ref = ref [] in let inserts : (V.t * a) list ref = ref [] in let start_size = t.root.no_elements in Array.iter (fun (elt : a wrapped_op) -> match elt with | Mk (Insert (key, vl), kont) -> Picos.Computation.return kont (); inserts := (key, vl) :: !inserts | Mk (Search key, kont) -> searches := (key, kont) :: !searches | Mk (Size, kont) -> Picos.Computation.return kont start_size) ops; let searches = Array.of_list !searches in if Array.length searches > 0 then par_search t searches; let inserts = Array.of_list !inserts in if Array.length inserts > 0 then ( Array.sort (fun (k1, _) (k2, _) -> V.compare k1 k2) inserts; par_insert t inserts) end include Obatcher.Make_Poly (Batched) let insert t k v = exec t (Batched.Insert (k, v)) let search t v = exec t (Batched.Search v) let size t = exec t Batched.Size end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>