package msat
Library containing a SAT solver that can be parametrized by a theory
Install
Dune Dependency
Authors
Maintainers
Sources
v0.8.2.tar.gz
md5=c02d63bf45357aa1d1b85846da373f48
sha512=e6f0d7f6e4fe69938ec2cc3233b0cb72dd577bfb4cc4824afe8247f5db0b6ffea2d38d73a65e7ede500d21ff8db27ed12f2c4f3245df4451d02864260ae2ddaf
doc/src/msat.tseitin/Msat_tseitin.ml.html
Source file Msat_tseitin.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
(**************************************************************************) (* *) (* Alt-Ergo Zero *) (* *) (* Sylvain Conchon and Alain Mebsout *) (* Universite Paris-Sud 11 *) (* *) (* Copyright 2011. This file is distributed under the terms of the *) (* Apache Software License version 2.0 *) (* *) (**************************************************************************) module type Arg = Tseitin_intf.Arg module type S = Tseitin_intf.S module Make (F : Tseitin_intf.Arg) = struct exception Empty_Or type combinator = And | Or | Imp | Not type atom = F.t type t = | True | Lit of atom | Comb of combinator * t list let rec pp fmt phi = match phi with | True -> Format.fprintf fmt "true" | Lit a -> F.pp fmt a | Comb (Not, [f]) -> Format.fprintf fmt "not (%a)" pp f | Comb (And, l) -> Format.fprintf fmt "(%a)" (pp_list "and") l | Comb (Or, l) -> Format.fprintf fmt "(%a)" (pp_list "or") l | Comb (Imp, [f1; f2]) -> Format.fprintf fmt "(%a => %a)" pp f1 pp f2 | _ -> assert false and pp_list sep fmt = function | [] -> () | [f] -> pp fmt f | f::l -> Format.fprintf fmt "%a %s %a" pp f sep (pp_list sep) l let make comb l = Comb (comb, l) let make_atom p = Lit p let f_true = True let f_false = Comb(Not, [True]) let rec flatten comb acc = function | [] -> acc | (Comb (c, l)) :: r when c = comb -> flatten comb (List.rev_append l acc) r | a :: r -> flatten comb (a :: acc) r let rec opt_rev_map f acc = function | [] -> acc | a :: r -> begin match f a with | None -> opt_rev_map f acc r | Some b -> opt_rev_map f (b :: acc) r end let remove_true l = let aux = function | True -> None | f -> Some f in opt_rev_map aux [] l let remove_false l = let aux = function | Comb(Not, [True]) -> None | f -> Some f in opt_rev_map aux [] l let make_not f = make Not [f] let make_and l = let l' = remove_true (flatten And [] l) in if List.exists ((=) f_false) l' then f_false else make And l' let make_or l = let l' = remove_false (flatten Or [] l) in if List.exists ((=) f_true) l' then f_true else match l' with | [] -> raise Empty_Or | [a] -> a | _ -> Comb (Or, l') let make_imply f1 f2 = make Imp [f1; f2] let make_equiv f1 f2 = make_and [ make_imply f1 f2; make_imply f2 f1] let make_xor f1 f2 = make_or [ make_and [ make_not f1; f2 ]; make_and [ f1; make_not f2 ] ] (* simplify formula *) let (%%) f g x = f (g x) let rec sform f k = match f with | True | Comb (Not, [True]) -> k f | Comb (Not, [Lit a]) -> k (Lit (F.neg a)) | Comb (Not, [Comb (Not, [f])]) -> sform f k | Comb (Not, [Comb (Or, l)]) -> sform_list_not [] l (k %% make_and) | Comb (Not, [Comb (And, l)]) -> sform_list_not [] l (k %% make_or) | Comb (And, l) -> sform_list [] l (k %% make_and) | Comb (Or, l) -> sform_list [] l (k %% make_or) | Comb (Imp, [f1; f2]) -> sform (make_not f1) (fun f1' -> sform f2 (fun f2' -> k (make_or [f1'; f2']))) | Comb (Not, [Comb (Imp, [f1; f2])]) -> sform f1 (fun f1' -> sform (make_not f2) (fun f2' -> k (make_and [f1';f2']))) | Comb ((Imp | Not), _) -> assert false | Lit _ -> k f and sform_list acc l k = match l with | [] -> k acc | f :: tail -> sform f (fun f' -> sform_list (f'::acc) tail k) and sform_list_not acc l k = match l with | [] -> k acc | f :: tail -> sform (make_not f) (fun f' -> sform_list_not (f'::acc) tail k) let ( @@ ) l1 l2 = List.rev_append l1 l2 (* let ( @ ) = `Use_rev_append_instead (* prevent use of non-tailrec append *) *) (* let distrib l_and l_or = let l = if l_or = [] then l_and else List.rev_map (fun x -> match x with | Lit _ -> Comb (Or, x::l_or) | Comb (Or, l) -> Comb (Or, l @@ l_or) | _ -> assert false ) l_and in Comb (And, l) let rec flatten_or = function | [] -> [] | Comb (Or, l)::r -> l @@ (flatten_or r) | Lit a :: r -> (Lit a)::(flatten_or r) | _ -> assert false let rec flatten_and = function | [] -> [] | Comb (And, l)::r -> l @@ (flatten_and r) | a :: r -> a::(flatten_and r) let rec cnf f = match f with | Comb (Or, l) -> begin let l = List.rev_map cnf l in let l_and, l_or = List.partition (function Comb(And,_) -> true | _ -> false) l in match l_and with | [ Comb(And, l_conj) ] -> let u = flatten_or l_or in distrib l_conj u | Comb(And, l_conj) :: r -> let u = flatten_or l_or in cnf (Comb(Or, (distrib l_conj u)::r)) | _ -> begin match flatten_or l_or with | [] -> assert false | [r] -> r | v -> Comb (Or, v) end end | Comb (And, l) -> Comb (And, List.rev_map cnf l) | f -> f let rec mk_cnf = function | Comb (And, l) -> List.fold_left (fun acc f -> (mk_cnf f) @@ acc) [] l | Comb (Or, [f1;f2]) -> let ll1 = mk_cnf f1 in let ll2 = mk_cnf f2 in List.fold_left (fun acc l1 -> (List.rev_map (fun l2 -> l1 @@ l2)ll2) @@ acc) [] ll1 | Comb (Or, f1 :: l) -> let ll1 = mk_cnf f1 in let ll2 = mk_cnf (Comb (Or, l)) in List.fold_left (fun acc l1 -> (List.rev_map (fun l2 -> l1 @@ l2)ll2) @@ acc) [] ll1 | Lit a -> [[a]] | Comb (Not, [Lit a]) -> [[F.neg a]] | _ -> assert false let rec unfold mono f = match f with | Lit a -> a::mono | Comb (Not, [Lit a]) -> (F.neg a)::mono | Comb (Or, l) -> List.fold_left unfold mono l | _ -> assert false let rec init monos f = match f with | Comb (And, l) -> List.fold_left init monos l | f -> (unfold [] f)::monos let make_cnf f = let sfnc = cnf (sform f) in init [] sfnc *) let mk_proxy = F.fresh let acc_or = ref [] let acc_and = ref [] (* build a clause by flattening (if sub-formulas have the same combinator) and proxy-ing sub-formulas that have the opposite operator. *) let rec cnf f = match f with | Lit a -> None, [a] | Comb (Not, [Lit a]) -> None, [F.neg a] | Comb (And, l) -> List.fold_left (fun (_, acc) f -> match cnf f with | _, [] -> assert false | _cmb, [a] -> Some And, a :: acc | Some And, l -> Some And, l @@ acc (* let proxy = mk_proxy () in *) (* acc_and := (proxy, l) :: !acc_and; *) (* proxy :: acc *) | Some Or, l -> let proxy = mk_proxy () in acc_or := (proxy, l) :: !acc_or; Some And, proxy :: acc | None, l -> Some And, l @@ acc | _ -> assert false ) (None, []) l | Comb (Or, l) -> List.fold_left (fun (_, acc) f -> match cnf f with | _, [] -> assert false | _cmb, [a] -> Some Or, a :: acc | Some Or, l -> Some Or, l @@ acc (* let proxy = mk_proxy () in *) (* acc_or := (proxy, l) :: !acc_or; *) (* proxy :: acc *) | Some And, l -> let proxy = mk_proxy () in acc_and := (proxy, l) :: !acc_and; Some Or, proxy :: acc | None, l -> Some Or, l @@ acc | _ -> assert false ) (None, []) l | _ -> assert false let cnf f = let acc = match f with | True -> [] | Comb(Not, [True]) -> [[]] | Comb (And, l) -> List.rev_map (fun f -> snd(cnf f)) l | _ -> [snd (cnf f)] in let proxies = ref [] in (* encore clauses that make proxies in !acc_and equivalent to their clause *) let acc = List.fold_left (fun acc (p,l) -> proxies := p :: !proxies; let np = F.neg p in (* build clause [cl = l1 & l2 & ... & ln => p] where [l = [l1;l2;..]] also add clauses [p => l1], [p => l2], etc. *) let cl, acc = List.fold_left (fun (cl,acc) a -> (F.neg a :: cl), [np; a] :: acc) ([p],acc) l in cl :: acc ) acc !acc_and in (* encore clauses that make proxies in !acc_or equivalent to their clause *) let acc = List.fold_left (fun acc (p,l) -> proxies := p :: !proxies; (* add clause [p => l1 | l2 | ... | ln], and add clauses [l1 => p], [l2 => p], etc. *) let acc = List.fold_left (fun acc a -> [p; F.neg a]::acc) acc l in (F.neg p :: l) :: acc ) acc !acc_or in acc let make_cnf f = acc_or := []; acc_and := []; cnf (sform f (fun f' -> f')) (* Naive CNF XXX remove??? let make_cnf f = mk_cnf (sform f) *) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>