package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/universal_iterators/intraproc.ml.html
Source file intraproc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Intra-procedural iterator for blocks, assignments and tests *) open Mopsa open Sig.Abstraction.Stateless open Ast open Numeric.Common (******************) (** Trace markers *) (******************) type marker += M_if of bool * expr let () = register_marker { marker_print = (fun next fmt -> function | M_if(true, cond) -> Format.fprintf fmt "if (%a)" pp_expr cond | M_if(false, cond) -> Format.fprintf fmt "if (!%a)" pp_expr cond | m -> next fmt m ); marker_compare = (fun next m1 m2 -> match m1, m2 with | M_if(branch1, cond1), M_if(branch2, cond2) -> Compare.pair Bool.compare compare_expr (branch1, cond1) (branch2, cond2) | _ -> next m1 m2 ); marker_print_name = (fun next -> function | M_if _ -> "if" | m -> next m ); marker_name = "if"; } (**********************) (** Domain definition *) (**********************) module Domain = struct include GenStatelessDomainId( struct let name = "universal.iterators.intraproc" end ) let checks = [] let init prog man flow = None let rec negate_bool_expr e = match ekind e with | E_constant (C_bool true) -> mk_false e.erange | E_constant (C_bool false) -> mk_true e.erange | E_constant (C_top T_bool) -> e | E_unop(O_log_not, ee) -> ee | E_binop(O_log_and,e1,e2) -> mk_log_or (negate_bool_expr e1) (negate_bool_expr e2) e.erange | E_binop(O_log_or,e1,e2) -> mk_log_and (negate_bool_expr e1) (negate_bool_expr e2) e.erange | E_binop(O_log_xor, e1, e2) -> mk_log_xor (negate_bool_expr e1) e2 e.erange | E_binop(op,e1,e2) when is_comparison_op op -> mk_binop e1 (negate_comparison_op op) e2 e.erange ~etyp:T_bool | _ -> mk_not e e.erange let rec to_bool_expr e = match ekind e with | E_constant (C_bool _) -> e | E_constant (C_top T_bool) -> e | E_var _ -> e | E_unop(O_log_not,e) -> negate_bool_expr (to_bool_expr e) | E_unop(op,_) when is_predicate_op op -> e | E_binop(op,_,_) when is_comparison_op op -> e | E_binop(op,e1,e2) when is_logic_op op -> mk_binop (to_bool_expr e1) op (to_bool_expr e2) e.erange ~etyp:T_bool | _ -> assert false let rec eval_bool_expr e ~ftrue ~ffalse ~fboth range man flow = let ee = match expr_to_const e with | Some c -> { e with ekind = E_constant c } | None -> e in match ekind ee with | E_constant (C_bool true) -> ftrue flow | E_constant (C_bool false) -> ffalse flow | E_constant (C_int n) -> if Z.(n <> zero) then ftrue flow else ffalse flow | E_constant (C_top T_bool) -> fboth flow | E_constant (C_top T_int) -> fboth flow | E_unop(O_log_not,ee) -> eval_bool_expr ee ~ftrue:ffalse ~ffalse:ftrue ~fboth range man flow | _ -> assume (to_bool_expr ee) man flow ~route:(Below name) ~translate:"Universal" ~fthen:ftrue ~felse:ffalse let exec stmt man flow = match skind stmt with | S_expression e -> man.eval e flow >>$? fun e flow -> Post.return flow |> OptionExt.return | S_assign(x,e) when is_universal_type (etyp x) -> man.eval e flow ~translate:"Universal" >>$? fun e flow -> man.exec (mk_assign x e stmt.srange) flow ~route:(Below name) |> OptionExt.return | S_assume{ekind = E_constant (C_bool b)} -> Post.return (if b then flow else Flow.remove T_cur flow) |> OptionExt.return | S_assume{ekind = E_unop(O_log_not, {ekind = E_constant (C_bool b)})} -> Post.return (if not b then flow else Flow.remove T_cur flow) |> OptionExt.return | S_assume{ekind = E_constant (C_int n)} -> Post.return (if Z.(n <> zero) then flow else Flow.remove T_cur flow) |> OptionExt.return | S_assume{ekind = E_unop(O_log_not, {ekind = E_constant (C_int n)})} -> Post.return (if Z.(n = zero) then flow else Flow.remove T_cur flow) |> OptionExt.return | S_assume e when is_universal_type (etyp e) -> man.eval e flow ~translate:"Universal" >>$? fun e' flow -> man.exec (mk_assume e' stmt.srange) flow ~route:(Below name) |> OptionExt.return (* Skip the analysis of the block if there is no indirect flow and the current environment is empty *) | S_block (b, cleaner) when Flow.is_empty flow || (* no indirect flow *) ( Flow.is_singleton flow && Flow.mem T_cur flow && (* empty environment *) man.lattice.is_bottom (Flow.get T_cur man.lattice flow) ) -> Post.return flow |> OptionExt.return | S_block(block,local_vars) -> Some ( let post = List.fold_left (fun acc stmt -> acc >>% man.exec stmt) (Post.return flow) block in let end_range = if is_orig_range stmt.srange then set_range_start stmt.srange (get_range_end stmt.srange) else stmt.srange in let post = List.fold_left (fun acc var -> acc >>% man.exec (mk_remove_var var end_range)) post local_vars in post ) (* Skip the analysis of if there is no flow *) | S_if(cond, s1, s2) when Flow.is_empty flow -> Post.return flow |> OptionExt.return (* Use [assume], that skips the analyis of a branch if its input environment is empty. *) (* This is sound if there is no inderct flow, because [assume] will not execute the branch if its [cur] environment is empty, while an indirect flow may have an empty [cur] environment. *) | S_if(cond, s1, s2) when Flow.is_singleton flow && Flow.mem T_cur flow -> assume cond man flow ~fthen:(fun flow -> man.exec (mk_add_marker (M_if(true, cond)) stmt.srange) flow >>% man.exec s1) ~felse:(fun flow -> man.exec (mk_add_marker (M_if(false, cond)) stmt.srange) flow >>% man.exec s2) |> OptionExt.return | S_if(cond, s1, s2) -> (* Use this function to execute a branch when the other one is not reachable. In addition to the execution of the body of the reachable branch, this function executes the unreachable branch with an empty T_cur environment. This ensures that indirect flows in the branch are executed. *) let exec_one_branch stmt other branch flow = let post1 = man.exec (mk_add_marker (M_if(branch, cond)) stmt.srange) flow >>% man.exec stmt in let ctx1 = Cases.get_ctx post1 in let flow2 = Flow.set_ctx ctx1 flow |> Flow.remove T_cur in let post2 = man.exec other flow2 in Post.join post1 post2 in (* Execute both branches and ensure proper propagation of the context *) let exec_both_branches flow1 flow2 = let post1 = man.exec (mk_add_marker (M_if(true, cond)) stmt.srange) flow1 >>% man.exec s1 in let ctx1 = Cases.get_ctx post1 in let flow2 = Flow.set_ctx ctx1 flow2 in let post2 = man.exec (mk_add_marker (M_if(false, cond)) stmt.srange) flow2 >>% man.exec s2 in Post.join post1 post2 in assume cond man flow ~fthen:(exec_one_branch s1 s2 true) ~felse:(exec_one_branch s2 s1 false) ~fboth:(exec_both_branches) (* When both environment are empty, we still need to execute both branches because of eventual indirect flows *) ~fnone:(exec_both_branches) |> OptionExt.return | S_print_state -> let printer = empty_printer () in Flow.print man.lattice.print printer flow; Framework.Output.Factory.print printer (srange stmt); Some (Post.return flow) | S_print_expr el -> let printer = empty_printer () in List.iter (man.print_expr flow printer) el; Framework.Output.Factory.print printer (srange stmt); Some (Post.return flow) | _ -> None let is_not_universal e = not (is_universal_type e.etyp) let eval exp man flow = match ekind exp with | E_binop (O_log_and, e1, e2) when is_universal_type exp.etyp -> assume_num e1 man flow ~fthen:(fun flow -> (* Since we didn't check the type of the sub-expression [e1], we need to translate to Universal (if this isn't the case already). That way, we can handle expressions from other semantics, as long as they can be translated to Universal. Note that we need to do that because we checked that the type of the whole expression is Universal. *) man.eval e2 flow ~translate:"Universal" ) ~felse:(fun flow -> Eval.singleton (mk_false exp.erange) flow) |> OptionExt.return | E_binop (O_log_or, e1, e2) when is_universal_type exp.etyp -> assume_num e1 man flow ~fthen:(fun flow -> Eval.singleton (mk_true exp.erange) flow) ~felse:(fun flow -> man.eval e2 flow ~translate:"Universal") |> OptionExt.return | E_binop (O_log_xor, e1, e2) when is_universal_type exp.etyp -> let s1 = assume_num e1 man flow ~fthen:(fun flow -> man.eval (mk_not e2 exp.erange) ~translate:"Universal" flow) ~felse:(fun flow -> man.eval e2 flow ~translate:"Universal") in let s2 = assume_num (mk_not e1 exp.erange) man flow ~fthen:(fun flow -> man.eval e2 flow ~translate:"Universal") ~felse:(fun flow -> man.eval (mk_not e2 exp.erange) ~translate:"Universal" flow) in Eval.join s1 s2 |> OptionExt.return | E_unop (O_log_not, { ekind = E_binop (O_log_and, e1, e2) }) when is_universal_type exp.etyp -> man.eval (mk_log_or (mk_not e1 e1.erange) (mk_not e2 e2.erange) exp.erange) flow |> OptionExt.return | E_unop (O_log_not, { ekind = E_binop (O_log_or, e1, e2) }) when is_universal_type exp.etyp -> man.eval (mk_log_and (mk_not e1 e1.erange) (mk_not e2 e2.erange) exp.erange) flow |> OptionExt.return | E_binop(op,e1,e2) when is_comparison_op op && is_universal_type exp.etyp -> eval_bool_expr exp exp.erange man flow ~ftrue:(fun flow -> Eval.singleton (mk_true exp.erange) flow) ~ffalse:(fun flow -> Eval.singleton (mk_false exp.erange) flow) ~fboth:(fun flow -> Eval.singleton (mk_top T_bool exp.erange) flow) |> OptionExt.return | E_unop(op,ee) when is_predicate_op op && is_universal_type exp.etyp -> eval_bool_expr exp exp.erange man flow ~ftrue:(fun flow -> Eval.singleton (mk_true exp.erange) flow) ~ffalse:(fun flow -> Eval.singleton (mk_false exp.erange) flow) ~fboth:(fun flow -> Eval.singleton (mk_top T_bool exp.erange) flow) |> OptionExt.return | _ -> None let ask query man flow = None let print_expr man flow printer exp = () end let () = register_stateless_domain (module Domain)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>