package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/stubs/body.ml.html
Source file body.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Inter-procedural iterator of stubs by inlining. *) open Mopsa open Sig.Abstraction.Stateless open Universal.Ast open Ast open Alarms (******************) (** Trace markers *) (******************) type marker += M_stub_case of stub_func * case let () = register_marker { marker_print = (fun next fmt -> function | M_stub_case(stub, case) -> Format.fprintf fmt "stub-case (%s.%s)" stub.stub_func_name case.case_label | m -> next fmt m ); marker_compare = (fun next m1 m2 -> match m1, m2 with | M_stub_case(stub1, case1), M_stub_case(stub2, case2) -> Compare.pair String.compare String.compare (stub1.stub_func_name, case1.case_label) (stub2.stub_func_name, case2.case_label) | _ -> next m1 m2 ); marker_print_name = (fun next -> function | M_stub_case _ -> "stub-case" | m -> next m ); marker_name = "stub-case" } (********************) (** Abstract domain *) (********************) module Domain = struct include GenStatelessDomainId(struct let name = "stubs.iterators.body" end) let checks = [CHK_STUB_CONDITION] (** Initialization of environments *) (** ============================== *) let init prog man flow = None (** {2 Command-line options} *) (** ************************ *) let opt_stub_ignored_cases : string list ref = ref [] (** List of ignored stub cases *) let () = register_builtin_option { key = "-stub-ignore-case"; doc = " list of stub cases to ignore"; category = "Stubs"; spec = String (ArgExt.set_string_list_lifter opt_stub_ignored_cases, ArgExt.empty); default = ""; } (** Check whether a case is ignored *) let is_case_ignored stub case : bool = match stub with | None -> false | Some s -> List.mem (s.stub_func_name ^ "." ^ case.case_label) !opt_stub_ignored_cases (** Evaluation of expressions *) (** ========================= *) (** Negate a formula *) let rec negate_formula (f:formula with_range) : formula with_range = match f.content with | F_expr e -> with_range (F_expr (mk_not e e.erange)) f.range | F_binop (IMPLIES, f1, f2) -> with_range ( F_binop ( AND, f1, negate_formula f2 )) f.range | F_binop (op, f1, f2) -> with_range (F_binop ( negate_log_binop op, negate_formula f1, negate_formula f2 )) f.range | F_not f -> f | F_forall (var, set, ff) -> with_range (F_exists ( var, set, negate_formula ff )) f.range | F_exists (var, set, ff) -> with_range (F_forall ( var, set, negate_formula ff )) f.range | F_in (e, S_interval(l,u)) -> with_range ( F_expr ( mk_binop (mk_binop e O_lt l ~etyp:T_bool f.range) O_log_or (mk_binop e O_gt u ~etyp:T_bool f.range) ~etyp:T_bool f.range ) ) f.range | F_in (e, S_resource res) -> with_range ( F_expr ( mk_not (mk_stub_resource_mem e res f.range) f.range ) ) f.range | F_otherwise _ -> panic_at f.range "negation of 'otherwise' formulas not possible" | F_if(c,f1,f2) -> with_range (F_if (c, negate_formula f1, negate_formula f2)) f.range (** Translate a formula into prenex normal form *) let rec formula_to_prenex f = match f.content with | F_expr cond -> [], cond | F_binop (AND, f1, f2) -> let quants1,cond1 = formula_to_prenex f1 in let quants2,cond2 = formula_to_prenex f2 in quants1@quants2, mk_log_and cond1 cond2 f.range | F_binop (OR, f1, f2) -> let quants1,cond1 = formula_to_prenex f1 in let quants2,cond2 = formula_to_prenex f2 in quants1@quants2, mk_log_or cond1 cond2 f.range | F_binop (IMPLIES, f1, f2) -> let quants1,cond1 = formula_to_prenex (negate_formula f1) in let quants2,cond2 = formula_to_prenex f2 in quants1@quants2, mk_log_or cond1 cond2 f.range | F_not ff -> formula_to_prenex (negate_formula ff) | F_in (e, S_interval (l, u)) -> [], mk_in e l u f.range | F_in (e, S_resource res) -> [], mk_stub_resource_mem e res f.range | F_forall(v,s,ff) -> let quants,cond = formula_to_prenex ff in (FORALL,v,s)::quants, cond | F_exists(v,s,ff) -> let quants,cond = formula_to_prenex ff in (EXISTS,v,s)::quants, cond | F_otherwise(ff, e) -> let quants,cond = formula_to_prenex ff in quants, mk_stub_otherwise cond (Some e) f.range | F_if(c,f1,f2) -> let quants,cond = formula_to_prenex c in let quants1,cond1 = formula_to_prenex f1 in let quants2,cond2 = formula_to_prenex f2 in quants@quants1@quants2, mk_stub_if cond cond1 cond2 f.range (* Function to get variables in a condition (and avoid the alarm expression in `otherwise` *) let rec vars_of_condition cond = fold_expr (fun acc e -> match ekind e with | E_var (v,_) -> Keep (VarSet.add v acc) | E_stub_otherwise(ee, _) -> Keep (VarSet.union (vars_of_condition ee) acc) | _ -> VisitParts acc ) (fun acc s -> assert false) VarSet.empty cond (* Check if a variable is used in an expression *) let var_in_expr v e = exists_expr (fun ee -> match ekind ee with | E_var (vv,_) -> compare_var v vv = 0 | _ -> false ) (fun s -> false) e (* Function to remove unnecessary quantifiers not used in an expression *) let remove_unnecessary_quantifiers quants e = let vars = vars_of_condition e in (* A quantified var is necessary if (i) it used in the condition, or (ii) used in the bounds of an other necessary quantifier *) let quants = List.map (fun ((_,v,_) as q) -> (q, VarSet.mem v vars)) quants in let rec iter = function | [] -> [] | (_,true) as hd::tl -> (* Already used quantifier => keep it *) hd::iter tl | ((_,v,_) as q,false) as hd::tl -> (* Check if this unused quantifier is present in the bounds of an already used quantifier *) if List.exists (function | ((_,_,S_interval(lo,hi)),true) -> var_in_expr v lo || var_in_expr v hi | _ -> false ) tl then (q,true)::iter tl else hd::iter tl in (* Iterate [iter] until no new used quantifier is found *) let rec fp quants = let quants' = iter quants in if List.exists (fun ((_,b1),(_,b2)) -> b1 != b2) (List.combine quants quants') then fp quants' else quants in fp quants |> (* Keep only used quantifiers *) List.filter (fun (_,b) -> b) |> List.map fst (** Translate a prenex encoding (i.e. quantifiers and a condition) into an expression *) let rec prenex_to_expr quants cond range = if quants = [] then cond else match ekind cond with | E_binop(O_log_and, e1, e2) -> let quants1 = remove_unnecessary_quantifiers quants e1 in let quants2 = remove_unnecessary_quantifiers quants e2 in let e1' = prenex_to_expr quants1 e1 e1.erange in let e2' = prenex_to_expr quants2 e2 e2.erange in mk_log_and e1' e2' range | E_binop(O_log_or, e1, e2) -> let quants1 = remove_unnecessary_quantifiers quants e1 in let quants2 = remove_unnecessary_quantifiers quants e2 in let e1' = prenex_to_expr quants1 e1 e1.erange in let e2' = prenex_to_expr quants2 e2 e2.erange in mk_log_or e1' e2' range | E_stub_if(c,e1,e2) -> let quants' = remove_unnecessary_quantifiers quants c in if quants' = [] then let e1' = prenex_to_expr quants e1 e1.erange in let e2' = prenex_to_expr quants e2 e2.erange in { cond with ekind = E_stub_if(c, e1', e2') } else mk_stub_quantified_formula quants cond range | E_stub_otherwise(e,a) -> mk_stub_otherwise (prenex_to_expr quants e e.erange) a range | _ -> let quants' = remove_unnecessary_quantifiers quants cond in if quants' = [] then cond else mk_stub_quantified_formula quants' cond range (** Evaluate a formula *) let eval_formula (cond_to_stmt: expr -> range -> stmt) (f: formula with_range) man flow = (* Write formula in prenex normal form *) let quants,cond = formula_to_prenex f in (* Translate the prenex encoding into an expression *) let cond' = prenex_to_expr quants cond f.range in (* Constrain the environment with the obtained condition *) man.exec (cond_to_stmt cond' f.range) flow (** Initialize the parameters of the stubbed function *) let rec init_params args params range man flow = match params, args with | [], _ -> Post.return flow | param::tl_params, arg::tl_args -> man.exec (mk_add_var param range) flow >>% man.exec (mk_assign (mk_var param range) arg range) >>% init_params tl_args tl_params range man | _, [] -> panic "stubs: insufficent number of arguments" (** Remove parameters from the returned flow *) let remove_params params range man flow = man.exec (mk_block (List.map (fun param -> mk_remove_var param range) params) range) flow (** Evaluate the formula of the `assumes` section *) let exec_assumes assumes man flow = eval_formula mk_assume assumes.content man flow (** Evaluate the formula of the `requires` section *) let exec_requires req man flow = eval_formula mk_stub_requires req.content man flow (** Execute an allocation of a new resource *) let exec_local_new v res range man flow : 'a post = (* Evaluation the allocation request *) man.eval (mk_stub_alloc_resource res range) flow >>$ fun addr flow -> (* Assign the address to the variable *) man.exec (mk_assign (mk_var v range) addr range) flow (** Execute a function call *) (* FIXME: check the purity of f *) let exec_local_call v f args range man flow = man.exec (mk_assign (mk_var v range) (mk_expr (E_call(f, args)) ~etyp:v.vtyp range) range ) flow (** Execute the `local` section *) let exec_local l man flow = match l.content.lval with | L_new res -> exec_local_new l.content.lvar res l.range man flow | L_call (f, args) -> exec_local_call l.content.lvar f args l.range man flow let exec_ensures e return man flow = (* Replace E_stub_return expression with the fresh return variable *) let f = match return with | None -> e.content | Some v -> visit_expr_in_formula (fun e -> match ekind e with | E_stub_return -> Keep { e with ekind = E_var (v, None) } | _ -> VisitParts e ) e.content in (* Evaluate ensure body and return flows that verify it *) eval_formula mk_assume f man flow let exec_assigns assigns man flow = let stmt = mk_stub_assigns assigns.content.assign_target assigns.content.assign_offset assigns.range in match assigns.content.assign_offset with | [] -> man.exec stmt flow | (l,u)::tl -> (* Check that offsets intervals are not empty *) let range = tag_range assigns.range "condition" in let cond = List.fold_left (fun acc (l,u) -> log_and acc (le l u range) assigns.range) (le l u range) tl in assume cond ~fthen:(fun flow -> man.exec stmt flow) ~felse:(fun flow -> Post.return flow) man flow (** Remove locals *) let clean_post locals range man flow = let block = List.fold_left (fun block l -> mk_remove_var l.content.lvar range :: block ) [] locals in man.exec (mk_block block range) flow let exec_free free man flow = let e = free.content in let stmt = mk_stub_free e free.range in man.exec stmt flow let exec_message msg man flow = if Flow.get T_cur man.lattice flow |> man.lattice.is_bottom then Post.return flow else match msg.content.message_kind with | WARN -> Exceptions.warn_at msg.range "%s" msg.content.message_body; Post.return flow | UNSOUND -> Post.return @@ Flow.add_local_assumption (Soundness.A_stub_soundness_message msg.content.message_body) msg.range flow (** Execute a leaf section *) let exec_leaf leaf return man flow : 'a post = match leaf with | S_local local -> exec_local local man flow | S_assumes assumes -> exec_assumes assumes man flow | S_requires requires -> exec_requires requires man flow | S_assigns assigns -> exec_assigns assigns man flow | S_ensures ensures -> exec_ensures ensures return man flow | S_free free -> exec_free free man flow | S_message msg -> exec_message msg man flow (** Execute the body of a case section *) let exec_case ?(stub=None) case return man flow : 'a post = let post = match stub with | None -> Post.return flow | Some stub -> man.exec (mk_add_marker (M_stub_case(stub, case)) case.case_range) flow in let post = List.fold_left (fun acc leaf -> acc >>% fun flow -> exec_leaf leaf return man flow ) post case.case_body in post >>% (* Clean case post state *) clean_post case.case_locals case.case_range man (** Execute the body of a stub *) let exec_body ?(stub=None) body return range man (flow : 'a flow) = (* Execute leaf sections *) let post = List.fold_left (fun post section -> match section with | S_leaf leaf -> post >>% fun flow -> exec_leaf leaf return man flow | _ -> post ) (Post.return flow) body in post >>% fun flow -> (* Execute case sections separately *) let flows, ctx = List.fold_left (fun (acc,ctx) section -> match section with | S_case case when not (is_case_ignored stub case) -> let flow = Flow.set_ctx ctx flow in let flow' = exec_case ~stub case return man flow in flow':: acc, Cases.get_ctx flow' | _ -> acc, ctx ) ([], Flow.get_ctx flow) body in let flows = List.map (Cases.set_ctx ctx) flows in (* Join flows *) (* FIXME: when the cases do not define a partitioning, we need to do something else *) Cases.join_list flows ~empty:(fun () -> Post.return flow) let prepare_all_assigns assigns range man flow = (* Check if there are assigned variables *) if assigns = [] then Post.return flow else man.exec (mk_stub_prepare_all_assigns assigns range) flow let clean_all_assigns assigns range man flow = (* Check if there are assigned variables *) if assigns = [] then Post.return flow else man.exec (mk_stub_clean_all_assigns assigns range) flow (** Evaluate a call to a stub *) let eval_stub_call stub args return range man flow = (* Update the callstack *) let cs = Flow.get_callstack flow in let flow = Flow.push_callstack stub.stub_func_name range flow in (* Initialize parameters *) init_params args stub.stub_func_params range man flow >>% fun flow -> (* Prepare assignments *) prepare_all_assigns stub.stub_func_assigns (tag_range stub.stub_func_range "prepare") man flow >>% fun flow -> (* Create the return variable *) (match return with | None -> Post.return flow | Some v -> man.exec (mk_add_var v range) flow) >>% fun flow -> (* Evaluate the body of the stb *) exec_body ~stub:(Some stub) stub.stub_func_body return range man flow >>% fun flow -> (* Clean locals *) clean_post stub.stub_func_locals (tag_range stub.stub_func_range "clean") man flow >>% fun flow -> (* Clean assignments *) clean_all_assigns stub.stub_func_assigns (tag_range stub.stub_func_range "clean") man flow >>% fun flow -> (* Restore the callstack *) let flow = Flow.set_callstack cs flow in let clean_range = tag_range range "clean" in let cleaners = List.map (fun param -> mk_remove_var param clean_range) stub.stub_func_params in match return with | None -> Eval.singleton (mk_unit range) flow ~cleaners | Some v -> man.eval (mk_var v range) flow |> Cases.add_cleaners (mk_remove_var v range :: cleaners) (** Evaluate an otherwise expression *) let eval_otherwise cond alarm range man flow = assume cond man flow ~fthen:(fun flow -> safe_stub_condition cond.erange man flow |> Eval.singleton (mk_true range)) ~felse:(fun flow -> match alarm with | Some e -> man.eval e flow | None -> raise_stub_invalid_requirement ~bottom:false cond range man flow |> Eval.singleton (mk_false range) ) (* Remove flows where a quantification interval is empty *) let discard_empty_quantification_intervals quants cond range man flow = let remove_quant_vars vars evl = if vars = [] then evl else evl >>$ fun e flow -> List.fold_left (fun acc v -> acc >>% man.exec (mk_remove_var v range) ) (Post.return flow) vars >>% fun flow -> Eval.singleton e flow in let rec iter added l flow = match l with | [] -> man.eval ~route:(Below name) (mk_stub_quantified_formula quants cond range) flow |> remove_quant_vars added | (_,_,S_resource _)::tl -> iter added tl flow | (FORALL,v,S_interval(lo,hi))::tl -> assume (mk_le lo hi range) man flow ~fthen:(fun flow -> man.exec (mk_add_var v range) flow >>% man.exec (mk_assume (mk_in (mk_var v range) lo hi range) range) >>% iter (v::added) tl ) ~felse:(fun flow -> Eval.singleton (mk_true range) flow |> remove_quant_vars added ) | (EXISTS,v,S_interval(lo,hi))::tl -> assume (mk_le lo hi range) man flow ~fthen:(fun flow -> man.exec (mk_add_var v range) flow >>% man.exec (mk_assume (mk_in (mk_var v range) lo hi range) range) >>% iter (v::added) tl ) ~felse:(fun flow -> Eval.singleton (mk_false range) flow |> remove_quant_vars added ) in iter [] quants flow (** Check if a condition contains an otherwise expression *) let rec otherwise_in_condition cond = match ekind cond with | E_stub_otherwise _ -> true | E_binop((O_log_and | O_log_or), cond1, cond2) -> otherwise_in_condition cond1 || otherwise_in_condition cond2 | E_stub_quantified_formula(_, qcond) -> otherwise_in_condition qcond | E_stub_if(_,fthen,felse) -> otherwise_in_condition fthen || otherwise_in_condition felse | _ -> false (** Remove newly introduced checks *) let remove_new_checks old flow = let report = fold2zo_report (fun diag1 acc -> acc) (fun diag2 acc -> remove_diagnostic diag2 acc ) (fun diag1 diag2 acc -> acc) (Flow.get_report old) (Flow.get_report flow) (Flow.get_report flow) in Flow.set_report report flow (** Move newly introduced checks to a new range *) let move_new_checks range old flow = let report = fold2zo_report (fun diag1 acc -> acc) (fun diag2 acc -> remove_diagnostic diag2 acc |> add_diagnostic {diag2 with diag_range = range} ) (fun diag1 diag2 acc -> acc) (Flow.get_report old) (Flow.get_report flow) (Flow.get_report flow) in Flow.set_report report flow (** Entry point of expression evaluations *) let eval exp man flow = match ekind exp with | E_stub_call (stub, args) -> if man.lattice.is_bottom (Flow.get T_cur man.lattice flow) then Cases.empty flow |> OptionExt.return else (* Create the return variable *) let return = match stub.stub_func_return_type with | None -> None | Some t -> Some (Universal.Iterators.Interproc.Common.mk_return exp) in eval_stub_call stub args return exp.erange man flow |> OptionExt.return | E_stub_otherwise(cond, alarm) -> eval_otherwise cond alarm exp.erange man flow |> OptionExt.return | E_stub_raise msg -> raise_stub_alarm ~bottom:false msg exp.erange man flow |> Eval.singleton (mk_false exp.erange) |> OptionExt.return | E_binop(O_log_and, e1, e2) when otherwise_in_condition e1 && otherwise_in_condition e2 -> (* To evaluate a requirement e1 ∧ e2, we evaluate e1 and e2 and then we lift checks on e1 and e2 to e1 ∧ e2: - If both e1 and e2 are valid, then we mark e1 ∧ e2 as safe. We also remove checks on e1 and e2, since they are redundant with the check on e1 ∧ e2. - If e1 or e2 is invalid, we move the alarms to the range of e1 ∧ e2, but we keep the same alarm message. *) let flow0 = flow in assume e1 man flow ~fthen:(fun flow -> assume e2 man flow ~fthen:(fun flow -> remove_new_checks flow0 flow |> safe_stub_condition exp.erange man |> Eval.singleton (mk_true exp.erange) ) ~felse:(fun flow -> move_new_checks exp.erange flow0 flow |> Eval.singleton (mk_false exp.erange) ) ) ~felse:(fun flow -> move_new_checks exp.erange flow0 flow |> Eval.singleton (mk_false exp.erange) ) |> OptionExt.return | E_binop(O_log_or, e1, e2) when otherwise_in_condition e1 && otherwise_in_condition e2 -> (* To evaluate a requirement e1 ∨ e2, we evaluate e1 and e2 and then we lift checks on e1 and e2 to e1 ∨ e2: - If e1 or e2 is valid, then we mark e1 ∨ e2 as safe. We also remove checks on e1 and e2, since they are redundant with the check on e1 ∨ e2. - If e1 and e2 are invalid, we move the alarms to the range of e1 ∨ e2, but we keep the same alarm message. *) let flow0 = flow in assume e1 man flow ~fthen:(fun flow -> remove_new_checks flow0 flow |> safe_stub_condition exp.erange man |> Eval.singleton (mk_true exp.erange) ) ~felse:(fun flow -> assume e2 man flow ~fthen:(fun flow -> remove_new_checks flow0 flow |> safe_stub_condition exp.erange man |> Eval.singleton (mk_true exp.erange) ) ~felse:(fun flow -> move_new_checks exp.erange flow0 flow |> Eval.singleton (mk_false exp.erange) ) ) |> OptionExt.return | E_stub_quantified_formula(quants, cond) when List.exists (function (_,_,S_interval _) -> true | _ -> false) quants -> discard_empty_quantification_intervals quants cond exp.erange man flow |> OptionExt.return | E_stub_if(c,f1,f2) -> assume c man flow ~fthen:(man.eval f1) ~felse:(man.eval f2) |> OptionExt.return | _ -> None (** Computation of post-conditions *) (** ============================== *) (** Execute a global stub directive *) let exec_directive stub range man flow = (* Prepare assignments *) prepare_all_assigns stub.stub_directive_assigns stub.stub_directive_range man flow >>% fun flow -> (* Evaluate the body of the stub *) exec_body stub.stub_directive_body None range man flow >>% fun flow -> (* Clean locals *) clean_post stub.stub_directive_locals stub.stub_directive_range man flow >>% fun flow -> (* Clean assignments *) clean_all_assigns stub.stub_directive_assigns stub.stub_directive_range man flow (** Normalize a requirement condition by adding missing otherwise decorations *) let rec normalize_requirement_condition cond = match ekind cond with | E_stub_otherwise _ -> cond | E_binop(O_log_and, e1, e2) -> let e1' = normalize_requirement_condition e1 in let e2' = normalize_requirement_condition e2 in mk_log_and e1' e2' cond.erange | E_binop(O_log_or, e1, e2) -> let e1' = normalize_requirement_condition e1 in let e2' = normalize_requirement_condition e2 in mk_log_or e1' e2' cond.erange | E_stub_quantified_formula(quants, {ekind = E_stub_otherwise(qcond, alarm)}) -> mk_stub_otherwise (mk_stub_quantified_formula quants qcond cond.erange) alarm cond.erange | E_stub_if(c,e1,e2) -> let e1' = normalize_requirement_condition e1 in let e2' = normalize_requirement_condition e2 in { cond with ekind = E_stub_if(c,e1',e2') } | _ -> mk_stub_otherwise cond None cond.erange (** Check a stub requirement *) let exec_requires cond range man flow = (* Normalize the condition so that all sub-conditions are decorated with an adequate `otherwise` expression *) let cond' = normalize_requirement_condition cond in (* Evaluate the condition. Note that the evaluation of otherwise expression is responsible for raising the alarm if a condition is not satisified. *) man.eval cond' flow >>$ fun r flow -> match ekind r with | E_constant (C_bool true) -> Post.return flow | E_constant (C_bool false) -> Flow.remove T_cur flow |> Post.return | _ -> assert false let exec stmt man flow = match skind stmt with | S_stub_directive (stub) -> exec_directive stub stmt.srange man flow |> OptionExt.return | S_stub_requires cond -> exec_requires cond stmt.srange man flow |> OptionExt.return | _ -> None (** Handler of queries *) (** ================== *) let ask query man flow = None (** Pretty printer *) (** ============== *) let print_expr man flow printer exp = () end let () = register_stateless_domain (module Domain)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>