package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/relational/domain.ml.html
Source file domain.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Relational numeric abstract domain, based on APRON. *) open Mopsa open Sig.Abstraction.Simplified open Common open Ast open Apron_manager open Apron_transformer let opt_show_relational_domain = ref false let () = register_domain_option "universal.numeric.relational" { key = "-show-relational-def-domain"; category = "Numeric"; doc = " display the domain on which the relational abstract state is defined"; spec = Set opt_show_relational_domain; default = "false"; } let opt_enforce_sign_constraints = ref false let () = register_shared_option "universal.numeric.relational" { key = "-enforce-sign-constraints"; category = "Numeric"; doc = " enforce sign constraints of variables in the relational domain"; spec = Set opt_enforce_sign_constraints; default = "false"; } (** Query to retrieve relational variables *) type ('a,_) query += | Q_constant_vars : ('a,var list) query let () = register_query { join = ( let f : type a r. query_pool -> (a,r) query -> r -> r -> r = fun next query a b -> match query with | Q_related_vars _ -> a @ b | Q_constant_vars -> a @ b | _ -> next.pool_join query a b in f ); meet = ( let f : type a r. query_pool -> (a,r) query -> r -> r -> r = fun next query a b -> match query with | Q_related_vars _ -> a @ b | Q_constant_vars -> a @ b | _ -> next.pool_meet query a b in f ); } (** Factory functor *) module Make(ApronManager : APRONMANAGER) = struct include ApronTransformer(ApronManager) type t = ApronManager.t Apron.Abstract1.t (** Abstract element *) * Binding.t (** Bindings between Mopsa and Apron variables *) include GenDomainId(struct type nonrec t = t let name = ApronManager.name end) let numeric_name = ApronManager.numeric_name (** {2 Command-line options} *) (** ************************ *) let () = import_shared_option rounding_option_name name (** {2 Environment utility functions} *) (** ********************************* *) (* boolean of return triple is true iff unify had no effect *) let unify abs1 abs2 = let env1 = Apron.Abstract1.env abs1 and env2 = Apron.Abstract1.env abs2 in let env, o1, o2 = Apron.Environment.lce_change env1 env2 in (Apron.Abstract1.change_environment ApronManager.man abs1 env false), (Apron.Abstract1.change_environment ApronManager.man abs2 env false), o1 = None && o2 = None let add_missing_vars (a,bnd) lv = let env = Apron.Abstract1.env a in let lv = List.sort_uniq compare lv in let lv = List.filter (fun v -> not (Apron.Environment.mem_var env (Binding.mopsa_to_apron_var v bnd |> fst))) lv in let int_vars, bnd = let lv' = List.filter (fun v -> vtyp v = T_int || vtyp v = T_bool) lv in Binding.mopsa_to_apron_vars lv' bnd in let float_vars, bnd = let lv' = List.filter (function { vtyp = T_float _} -> true | _ -> false) lv in Binding.mopsa_to_apron_vars lv' bnd in let env' = Apron.Environment.add env (Array.of_list int_vars) (Array.of_list float_vars) in Apron.Abstract1.change_environment ApronManager.man a env' false, bnd let print_state printer a = if !opt_show_relational_domain then let dom = Binding.Equiv.fold (fun (a, _) acc -> a::acc) (snd a) [] in pp_obj_map printer [ (String "domain", List (List.map (fun v -> String (Format.asprintf "%a" pp_var v)) dom, { sopen = "{"; ssep = ","; sclose = "}"; sbind = "" })); (String "relations", pbox (Apron_pp.pp_env ApronManager.man) a); ] ~path:[Key "numeric-relations"] else pprint printer (pbox (Apron_pp.pp_env ApronManager.man) a) ~path:[Key "numeric-relations"] (** {2 Lattice operators} *) (** ********************* *) let top = Apron.Abstract1.top ApronManager.man empty_env, Binding.empty let bottom = Apron.Abstract1.bottom ApronManager.man empty_env, Binding.empty let is_bottom (abs,_) = Apron.Abstract1.is_bottom ApronManager.man abs let subset (abs1,_) (abs2,_) = let abs1', abs2', _ = unify abs1 abs2 in Apron.Abstract1.is_leq ApronManager.man abs1' abs2' let join (abs1,bnd1) (abs2,bnd2) = let abs1', abs2', unchanged = unify abs1 abs2 in if not unchanged then Debug.debug ~channel:(name ^ ".join") "Heterogenous case detected@\na1 = %a@\n~> a1' (after unification) = %a@\na1 = %a@\n~> a1' (after unification) = %a@\n" (format print_state) (abs1, bnd1) (format print_state) (abs1', bnd1) (format print_state) (abs2, bnd2) (format print_state) (abs2, bnd2); Apron.Abstract1.join ApronManager.man abs1' abs2', Binding.concat bnd1 bnd2 let meet (abs1,bnd1) (abs2,bnd2) = let abs1', abs2', _ = unify abs1 abs2 in Apron.Abstract1.meet ApronManager.man abs1' abs2', Binding.concat bnd1 bnd2 let widen bnd (abs1,bnd1) (abs2,bnd2) = let abs1', abs2', _ = unify abs1 abs2 in Apron.Abstract1.widening ApronManager.man abs1' abs2', Binding.concat bnd1 bnd2 (** {2 Transfer functions} *) (** ********************** *) let init prog = top let remove_var (v:var) (a,bnd) = let env = Apron.Abstract1.env a in if is_env_var v (a,bnd) then let vv,bnd = Binding.mopsa_to_apron_var v bnd in let env = Apron.Environment.remove env [|vv|] in let bnd = Binding.remove_apron_var vv bnd in (Apron.Abstract1.change_environment ApronManager.man a env true, bnd) else (a,bnd) let forget_var v (a,bnd) = let v,bnd = Binding.mopsa_to_apron_var v bnd in Apron.Abstract1.forget_array ApronManager.man a [|v|] false, bnd let bound_var v (abs,bnd) = if is_env_var v (abs,bnd) then let vv,_ = Binding.mopsa_to_apron_var v bnd in Apron.Abstract1.bound_variable ApronManager.man abs vv |> Values.Intervals.Integer.Value.of_apron else Values.Intervals.Integer.Value.top let is_var_numeric_type v = is_numeric_type (vtyp v) let assume stmt ask (a, bnd) = match skind stmt with | S_assume e -> begin let a, bnd = add_missing_vars (a,bnd) (Visitor.expr_vars e) in try let dnf, a, bnd, l = bexp_to_apron (fun exp -> ask (Common.mk_float_maybenan_query exp)) e (a,bnd) [] in let env = Apron.Abstract1.env a in let a' = Dnf.reduce_conjunction (fun conj -> let tcons_list = List.map (fun (op,e1,typ1,e2,typ2) -> let typ = if is_float_type typ1 || is_float_type typ2 then Apron.Texpr1.Real else if is_int_type typ1 && is_int_type typ2 then Apron.Texpr1.Int else Exceptions.panic_at (srange stmt) "Unsupported case (%a, %a) in stmt @[%a@]" pp_typ typ1 pp_typ typ2 pp_stmt stmt in let diff = Apron.Texpr1.Binop(Apron.Texpr1.Sub, e1, e2, typ, !opt_float_rounding) in let diff_texpr = Apron.Texpr1.of_expr env diff in Apron.Tcons1.make diff_texpr op ) conj in tcons_array_of_tcons_list env tcons_list |> Apron.Abstract1.meet_tcons_array ApronManager.man a ) ~join:(Apron.Abstract1.join ApronManager.man) dnf |> remove_tmp l in Some (a', bnd) with ImpreciseExpression -> Some (a,bnd) | UnsupportedExpression -> None end | _ -> assert false let merge (pre,bnd) ((a1,bnd1),e1) ((a2,bnd2),e2) = let bnd = Binding.concat bnd1 bnd2 in let x1,x2 = generic_merge ~add:(fun v itv x -> if is_numerical_var v then let range = tag_range (Location.R_fresh (-1)) "relational merge" in add_missing_vars x [v] |> forget_var v |> assume (mk_assume (constraints_of_itv (mk_var v range) itv range) range) (fun _ -> assert false) |> OptionExt.none_to_exn else x ) ~find:(fun v x -> bound_var v x) ~remove:(fun v x -> if is_numerical_var v then remove_var v x else x) ((a1,bnd),e1) ((a2,bnd),e2) in let () = Debug.debug ~channel:(name ^ ".merge") "after generic merge@\na1 = %a@\na2 = %a@\nnow meeting results" (format print_state) x1 (format print_state) x2 in meet x1 x2 (** Add the sign contraint (if existing) of a given variable into the relationnal domain *) let enforce_sign_constraint var ask ctx range = if not !opt_enforce_sign_constraints then Fun.id else let fake_range = mk_tagged_range (String_tag "var sign constraint") range in match Framework.Combiners.Value.Nonrel.find_var_bounds_ctx_opt var ctx with | Some (C_int_interval (Finite l, Finite u)) when Z.equal l u -> let stmt = mk_assume (mk_binop ~etyp:T_int (mk_var var fake_range) O_eq (mk_constant ~etyp:T_int (C_int l) fake_range) fake_range) fake_range in OptionExt.bind (assume stmt ask) | Some (C_int_interval (Finite l, _)) when Z.leq Z.zero l -> let stmt = mk_assume (mk_binop ~etyp:T_int (mk_var var fake_range) O_ge (mk_constant ~etyp:T_int (C_int l) fake_range) fake_range) fake_range in OptionExt.bind (assume stmt ask) | Some (C_int_interval (_, Finite u)) when Z.geq Z.zero u -> let stmt = mk_assume (mk_binop ~etyp:T_int (mk_var var fake_range) O_le (mk_constant ~etyp:T_int (C_int u) fake_range) fake_range) fake_range in OptionExt.bind (assume stmt ask) | _ -> Fun.id let rec exec stmt man ctx (a,bnd) = match skind stmt with | S_add { ekind = E_var (var, _) } when is_var_numeric_type var -> add_missing_vars (a,bnd) [var] |> OptionExt.return |> enforce_sign_constraint var man.ask ctx stmt.srange | S_remove { ekind = E_var (var, _) } when is_var_numeric_type var -> remove_var var (a,bnd) |> OptionExt.return | S_forget { ekind = E_var (var, _) } when is_var_numeric_type var -> forget_var var (a,bnd) |> OptionExt.return | S_rename ({ ekind = E_var (var1, _) }, { ekind = E_var (var2, _) }) when is_var_numeric_type var1 && is_var_numeric_type var2 -> let a, bnd' = add_missing_vars (a,bnd) [var1] in let a, bnd' = remove_var var2 (a,bnd') in let v1, _ = Binding.mopsa_to_apron_var var1 bnd in let bnd' = Binding.remove_apron_var v1 bnd in let v2, bnd' = Binding.mopsa_to_apron_var var2 bnd' in (Apron.Abstract1.rename_array ApronManager.man a [| v1 |] [| v2 |], bnd') |> OptionExt.return | S_project vars when List.for_all (function { ekind = E_var (v, _) } -> is_var_numeric_type v | _ -> false) vars -> let vars = List.map (function | { ekind = E_var (v, _) } -> v | _ -> assert false ) vars in let env = Apron.Abstract1.env a in let vars, bnd = Binding.mopsa_to_apron_vars vars bnd in let old_vars1, old_vars2 = Apron.Environment.vars env in let old_vars = Array.to_list old_vars1 @ Array.to_list old_vars2 in let to_remove = List.filter (fun v -> not (List.mem v vars)) old_vars in let bnd = Binding.remove_apron_vars to_remove bnd in let new_env = Apron.Environment.remove env (Array.of_list to_remove) in Some ( Apron.Abstract1.change_environment ApronManager.man a new_env true, bnd ) | S_assign({ ekind = E_var (var, mode) }, e) when var_mode var mode = STRONG && is_var_numeric_type var -> let a, bnd = add_missing_vars (a,bnd) (var :: (Visitor.expr_vars e)) in let v, bnd = Binding.mopsa_to_apron_var var bnd in begin try let e, a, bnd, l = exp_to_apron (fun exp -> man.ask (Common.mk_float_maybenan_query exp)) e (a,bnd) [] in let aenv = Apron.Abstract1.env a in let texp = Apron.Texpr1.of_expr aenv e in let a' = Apron.Abstract1.assign_texpr ApronManager.man a v texp None |> remove_tmp l in Some (a', bnd) with | ImpreciseExpression -> exec (mk_forget_var var stmt.srange) man ctx (a,bnd) |> enforce_sign_constraint var man.ask ctx stmt.srange | UnsupportedExpression -> None end | S_assign({ ekind = E_var (var, mode) } as lval, e) when var_mode var mode = WEAK && is_var_numeric_type var -> (* let's suppose we have x:w >= constant in the interval domain but NOT here and now we do x:w := e the naive join will not fetch the previous bounds of x:w, which will just keep x:w to top... *) let lval' = { lval with ekind = E_var(var, Some STRONG) } in let (a, bnd) = if Binding.Equiv.mem_l var bnd then let itv = man.ask (mk_int_interval_query ~fast:true lval) in let range = erange lval in exec {stmt with skind = S_assume (constraints_of_itv lval' itv range)} man ctx (a, bnd) |> OptionExt.none_to_exn else (a, bnd) in exec {stmt with skind = S_assign(lval', e)} man ctx (a,bnd) |> OptionExt.lift @@ fun (a',bnd') -> join (a,bnd) (a', bnd') | S_expand({ekind = E_var (v, _)}, vl) when is_var_numeric_type v && List.for_all (function { ekind = E_var (v, _) } -> is_var_numeric_type v | _ -> false) vl -> let vl = List.map (function | { ekind = E_var (v, _) } -> v | _ -> assert false ) vl in let v, bnd = Binding.mopsa_to_apron_var v bnd in let vl, bnd = Binding.mopsa_to_apron_vars vl bnd in let abs' = Apron.Abstract1.expand ApronManager.man a v (Array.of_list vl) in Some (abs', bnd) | S_fold({ekind = E_var (v, _)}, vl) when is_var_numeric_type v && List.for_all (function { ekind = E_var (v, _) } -> is_var_numeric_type v | _ -> false) vl -> let vl = List.map (function | { ekind = E_var (v, _) } -> v | _ -> assert false ) vl in let a, bnd = add_missing_vars (a,bnd) (v::vl) in let v, bnd = Binding.mopsa_to_apron_var v bnd in let vl, bnd = Binding.mopsa_to_apron_vars vl bnd in let bnd = Binding.remove_apron_vars vl bnd in let abs' = try Apron.Abstract1.fold ApronManager.man a (Array.of_list (v::vl)) with Apron.Manager.Error exc -> panic_at stmt.srange "Apron.Manager.Error(%a)" Apron.Manager.print_exclog exc in Some (abs', bnd) | S_assume(e) when is_numeric_type (etyp e) -> assume stmt man.ask (a, bnd) | _ -> None let vars (abs,bnd) = fold_env (fun v acc -> let vv = Binding.apron_to_mopsa_var v bnd in vv :: acc ) (Apron.Abstract1.env abs) [] let rec eval_interval man e (abs,bnd) = match ekind e with | E_var (v,_) -> (* we meet with the interval computed by non-relational domains so that the interval of `unsigned x` is positive *) let int_nonrel = man.ask (Q_avalue(e, Common.V_int_interval_fast)) in let int_rel = bound_var v (abs,bnd) in Some (ItvUtils.IntItv.meet_bot int_nonrel int_rel) | E_binop (O_mult, e1, e2) -> let int1 = eval_interval man e1 (abs,bnd) in let int2 = eval_interval man e2 (abs,bnd) in begin match int1, int2 with | Some int1, Some int2 -> Bot.bot_lift2 ItvUtils.IntItv.mul int1 int2 |> OptionExt.return | _ -> None end | E_binop (O_convex_join, e1, e2) -> let int1 = eval_interval man e1 (abs,bnd) in let int2 = eval_interval man e2 (abs,bnd) in begin match int1, int2 with | Some int1, Some int2 -> ItvUtils.IntItv.join_bot int1 int2 |> OptionExt.return | _ -> None end | _ -> try let abs, bnd = add_missing_vars (abs,bnd) (Visitor.expr_vars e) in let e, abs, bnd, _ = exp_to_apron (fun exp -> man.ask (Common.mk_float_maybenan_query exp)) e (abs,bnd) [] in let env = Apron.Abstract1.env abs in let e = Apron.Texpr1.of_expr env e in Apron.Abstract1.bound_texpr ApronManager.man abs e |> Values.Intervals.Integer.Value.of_apron |> OptionExt.return with ImpreciseExpression -> Some (Values.Intervals.Integer.Value.top) | UnsupportedExpression -> None let ask : type r. ('a,r) query -> ('a,t) simplified_man -> 'a ctx -> t -> r option = fun query man ctx (abs,bnd) -> match query with | Q_avalue(e, Common.V_int_interval) -> eval_interval man e (abs,bnd) | Q_related_vars v -> related_vars v (abs,bnd) |> OptionExt.return | Q_constant_vars -> constant_vars (abs,bnd) |> OptionExt.return | _ -> None let print_expr man ctx a printer exp = if exists_expr (fun e -> not (is_numeric_type e.etyp)) (fun s -> false) exp then () else let vars = expr_vars exp |> VarSet.of_list in let vars' = VarSet.fold (fun v acc -> all_related_vars v a |> VarSet.of_list |> VarSet.union acc ) vars vars in match VarSet.elements vars' with | [] -> () | l -> match exec (mk_project_vars l exp.erange) man ctx a with | None -> () | Some a -> print_state printer a end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>