package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/powersets/excluded.ml.html
Source file excluded.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Finite sets of possibly included or definitely excluded integer constants *) open Mopsa open Sig.Abstraction.Simplified_value open Ast open Common module SimplifiedValue = struct (** {2 Types} *) (** ********* *) module Set = SetExt.Make( struct type t = Z.t let compare = Z.compare let print = unformat Z.pp_print end ) type t = | In of Set.t | NotIn of Set.t let print printer a = let print_set prefix s = if Set.is_empty s then pp_string printer (prefix^"∅") else pp_set (unformat Z.pp_print) printer (Set.to_poly_set s) ~sopen:(prefix ^ "{") ~ssep:"," ~sclose:"}" in match a with | In s -> print_set "∈ " s | NotIn s -> print_set "∉ " s (** {2 Header of the abstraction} *) (** ***************************** *) include GenValueId( struct type nonrec t = t let name = "universal.numeric.values.powersets.excluded" let display = "excluded" end) let accept_type = function | T_int | T_bool -> true | _ -> false let bottom = In Set.empty let top = NotIn Set.empty let is_bottom a = match a with | In s -> Set.is_empty s | NotIn _ -> false let is_top a = match a with | In _ -> false | NotIn s -> Set.is_empty s (** {2 Options} *) (** *********** *) let opt_max_intset = ref 10 let () = register_domain_option name { key = "-max-excluded-set-size"; category = "Numeric"; doc = " maximum size of integer sets for the excluded powerset"; spec = Set_int (opt_max_intset,ArgExt.empty); default = string_of_int !opt_max_intset; } (** {2 Utilities} *) (** ************* *) let zero = In (Set.singleton Z.zero) let one = In (Set.singleton Z.one) (** [bound a] is [a] if the number of elements in [a] is lesser or equal to the maximum number of elements allowed, otherwise it is [top]. Does not bound the size of [NotIn], as there are no infinite ascending chains for [NotIn]. *) let bound_size (a:t) : t = match a with | NotIn _ -> a | In s -> if Set.cardinal s <= !opt_max_intset then a else top (** [of_bounds l r] is [{l, l+1, ..., r}] if this set has size up to the maximum number of elements, otherwise it is [NotIn {l-1, r+1}]. This is a precision optimization compared to simply return top, as we already know that [l - 1] and [r + 1] will not be in the set of elements. Due to this optimization, top is often represented as [∉{MININT - 1, MAXINT + 1}] in C programs. *) let of_bounds (l:Z.t) (h:Z.t) : t = let rec doit acc i = if Z.gt i h then In acc else doit (Set.add i acc) (Z.succ i) in if Z.sub h l >= Z.of_int !opt_max_intset then NotIn (Set.of_list [Z.pred l; Z.succ h]) else doit Set.empty l let is_zero = function | In s -> Set.equal s (Set.singleton Z.zero) | NotIn _ -> false let contains_zero = function | In s -> Set.mem Z.zero s | NotIn s -> Set.mem Z.zero s |> not let contains_non_zero = function | In s -> Set.remove Z.zero s |> Set.is_empty |> not | NotIn s -> true (* An infinite set always contains non-zero values. *) let remove_zero = function | In s -> In (Set.remove Z.zero s) | NotIn s -> NotIn (Set.add Z.zero s) (** [of_bool t f] is: - [∅] if [t = false] and [f = false] - [{0}] if [t = false] and [f = true] - [{1}] if [t = true] and [f = false] - [{0,1}] if [t = true] and [f = true] *) let of_bool t f = match t,f with | false, false -> bottom | true, false -> In (Set.singleton Z.one) | false, true -> In (Set.singleton Z.zero) | true, true -> In (Set.of_list [Z.zero; Z.one]) |> bound_size let to_itv (a:t) : int_itv = if is_top a then Nb I.minf_inf else if is_bottom a then BOT else match a with | In s -> Nb (I.of_z (Set.min_elt s) (Set.max_elt s)) | NotIn _ -> Nb I.minf_inf let map f = function | In s -> In (Set.map f s) | NotIn s -> NotIn (Set.map f s) (** [combine combiner s1 s2] is [{combiner x1 x2 | x1 ∈ s1, x2 ∈ s2}]. *) let combine combiner (s1:Set.t) (s2:Set.t) = Set.fold (fun n1 acc -> Set.fold (fun n2 -> Set.add (combiner n1 n2)) s2 acc ) s1 Set.empty let combine_opt combiner (s1:Set.t) (s2:Set.t) = Set.fold (fun n1 acc -> Set.fold (fun n2 acc -> match combiner n1 n2 with | None -> acc | Some r -> Set.add r acc) s2 acc ) s1 Set.empty (** {2 Lattice operators} *) (** ********************* *) let subset (a1:t) (a2:t) : bool = match a1,a2 with | In s1, In s2 -> Set.subset s1 s2 | NotIn s1, NotIn s2 -> Set.subset s2 s1 | In s1, NotIn s2 -> Set.inter s1 s2 |> Set.is_empty (* [NotIn s1] is an infinite set, so that is cannot be smaller than a finite set. *) | NotIn s1, In s2 -> false let join (a1:t) (a2:t) : t = match a1,a2 with | In s1, In s2 -> In (Set.union s1 s2) | NotIn s1, NotIn s2 -> NotIn (Set.inter s1 s2) (* From the excluded values, we add those that are possibly included. *) | In s1, NotIn s2 -> NotIn (Set.diff s2 s1) | NotIn s1, In s2 -> NotIn (Set.diff s1 s2) let meet (a1:t) (a2:t) : t = match a1,a2 with | In s1, In s2 -> In (Set.inter s1 s2) | NotIn s1, NotIn s2 -> NotIn (Set.union s1 s2) (* From the known values, we remove those that are excluded. *) | In s1, NotIn s2 -> In (Set.diff s1 s2) | NotIn s1, In s2 -> In (Set.diff s2 s1) let widen ctx (a1:t) (a2:t) : t = match a1,a2 with | NotIn _, _ | _, NotIn _ -> (* If any of the two is an exclusion set, the join will result in an exclusion set. Once we have an exclusion set, there are no infinite ascending chains, as the joins will result in intersections of finite sets. *) join a1 a2 | In s1, In s2 -> (* If the size is under the maximum number of finite elements in the union, we keep it as a set of constants. Otherwise, we go to top. This might be improved by selecting a finite set of elements that are not in the union, and returning the excluded set of those elements. *) if Set.cardinal s1 + Set.cardinal s2 <= !opt_max_intset then In (Set.union s1 s2) else top (** {2 Forward semantics} *) (** ********************* *) let constant (c: constant) (t: typ) : t = match c with | C_bool true -> In (Set.singleton Z.one) | C_bool false -> In (Set.singleton Z.zero) | C_top T_bool -> In (Set.of_list [Z.zero; Z.one]) |> bound_size | C_top T_int -> top | C_int n -> In (Set.singleton n) | C_int_interval (Finite i1, Finite i2) -> of_bounds i1 i2 | _ -> top let unop (op: operator) (t: typ) (a: t) (type_return: typ) = match op with | O_plus -> a | O_minus -> map Z.neg a | O_log_not -> of_bool (contains_zero a) (contains_non_zero a) | _ -> top (** [combine_with combiner a1 a2] combines the elements of [a1] and [a2] with [combiner]. If [a1] and [a2] are finite sets, it applies [combiner] to the cartesian product of the two. If [a1] and [a2] are both exclued powersets, returns [top]. If one of the two is a finite set of size exactly one (and therefore, it is a definite value), returns an excluded set where the constant is combined with the excluded powerset. Otherwise, returns [top]. *) let combine_with combine combiner a1 a2 = match a1,a2 with | In s1, In s2 -> In (combine combiner s1 s2) |> bound_size | NotIn s1, NotIn s2 -> top | NotIn notin_set, In in_set -> begin match Set.cardinal in_set with | 0 -> bottom | 1 -> NotIn (combine combiner notin_set in_set) | _ -> top end | In in_set, NotIn notin_set -> begin match Set.cardinal in_set with | 0 -> bottom | 1 -> NotIn (combine combiner in_set notin_set) | _ -> top end let binop (op:operator) (t1:typ) (a1:t) (t2:typ) (a2:t) (type_return:typ) = if is_bottom a1 || is_bottom a2 then bottom else if is_top a1 || is_top a2 then top else let with_int f a b = f a (Z.to_int b) in try match op with | O_plus -> combine_with combine Z.add a1 a2 | O_minus -> combine_with combine Z.sub a1 a2 | O_mult -> if is_zero a1 || is_zero a2 then zero else combine_with combine Z.mul a1 a2 | O_div -> let () = debug "%a O_div %a@." (format print) a1 (format print) a2 in if is_zero a1 then a1 else (* We remove 0 from both the in and the notin to prevent division by zero. *) let a2 = match a2 with | In s2 -> In (Set.remove Z.zero s2) | NotIn s2 -> NotIn (Set.remove Z.zero s2) in combine_with combine_opt (fun x y -> if Z.(x mod y = zero) then Some (Z.div x y) else None) a1 a2 | O_pow -> begin match a1,a2 with | In s1, In s2 -> combine_with combine (with_int Z.pow) a1 a2 | _ -> top end | O_bit_and -> begin match a1,a2 with | In s1, In s2 -> combine_with combine Z.logand a1 a2 | _ -> top end | O_bit_or -> begin match a1,a2 with | In s1, In s2 -> combine_with combine Z.logor a1 a2 | _ -> top end | O_bit_xor -> begin match a1,a2 with | In s1, In s2 -> combine_with combine Z.logxor a1 a2 | _ -> top end | O_bit_lshift -> if is_zero a1 then a1 else begin match a1,a2 with | In s1, In s2 -> combine_with combine (with_int Z.shift_left) a1 a2 | _ -> top end | O_bit_rshift -> if is_zero a1 then a1 else begin match a1,a2 with | In s1, In s2 -> combine_with combine (with_int Z.shift_right) a1 a2 | _ -> top end | O_mod -> begin match a1,a2 with | In s1, In s2 -> if is_zero a1 then a1 else combine_with combine Z.rem a1 (remove_zero a2) | _ -> top end | O_log_or -> of_bool (contains_non_zero a1 || contains_non_zero a2) (contains_zero a1 && contains_zero a2) | O_log_and -> of_bool (contains_non_zero a1 && contains_non_zero a2) (contains_zero a1 || contains_zero a2) | O_log_xor -> of_bool ((contains_non_zero a1 && contains_zero a2) || (contains_zero a1 && contains_non_zero a2)) ((contains_zero a1 && contains_zero a2) || (contains_non_zero a1 && contains_non_zero a2)) | _ -> top with Z.Overflow -> top include DefaultValueFunctions let avalue : type r. r avalue_kind -> t -> r option = fun aval a -> match aval with | Common.V_int_interval -> Some (to_itv a) | Common.V_int_interval_fast -> Some (to_itv a) | Common.V_int_congr_interval -> Some (to_itv a, Bot.Nb Common.C.minf_inf) | _ -> None let rec compare (op:operator) (b:bool) (t1:typ) (a1:t) (t2:typ) (a2:t) : (t*t) = if is_bottom a1 || is_bottom a2 then (bottom, bottom) else let op = if b then op else negate_comparison_op op in match op with | O_eq -> begin match a1,a2 with | In s1, In s2 -> let a = In (Set.inter s1 s2) in a,a | NotIn s1, NotIn s2 -> let a = NotIn (Set.union s1 s2) in a,a | In in_set, NotIn notin_set -> In (Set.diff in_set notin_set), a2 | NotIn notin_set, In in_set -> a1, In (Set.diff in_set notin_set) end | O_ne -> begin match a1,a2 with | In s1, In s2 -> let s1 = if Set.cardinal s2 = 1 then Set.diff s1 s2 else s1 in let s2 = if Set.cardinal s1 = 1 then Set.diff s2 s1 else s2 in In s1, In s2 | NotIn notin_set, In in_set -> if Set.cardinal in_set = 1 then (* [x=∉{x1,x2} != y=∈{y1} ⟹ x=∉{x1,x2,y1}]*) let notin_set' = Set.union notin_set in_set in let in_set' = in_set in NotIn notin_set', In in_set' else a1,a2 | In in_set, NotIn notin_set -> if Set.cardinal in_set = 1 then let notin_set' = Set.union notin_set in_set in let in_set' = in_set in In in_set', NotIn notin_set' else a1,a2 | NotIn _, NotIn _ -> a1, a2 end | O_le -> begin match a1,a2 with | In s1, In s2 -> let min_s1 = Set.min_elt s1 in let max_s2 = Set.max_elt s2 in In (Set.filter (fun n -> Z.leq n max_s2) s1), In (Set.filter (fun n -> Z.geq n min_s1) s2) | In s1, NotIn s2 -> (* To the excluded set we can add the successor of the largest set on the left: [x=∈{1,3} <= y=∉{2} ⟹ y=∉{0,2}], as [y] cannot have value [0]. This is a simple precision improvement. *) a1, NotIn (Set.add (Set.min_elt s1 |> Z.pred) s2) | NotIn s1, In s2 -> NotIn (Set.add (Set.max_elt s2 |> Z.succ) s1), a2 | NotIn _, NotIn _ -> a1, a2 end | O_ge -> begin match a1,a2 with | In s1, In s2 -> let max_s1 = Set.max_elt s1 in let min_s2 = Set.min_elt s2 in In (Set.filter (fun n -> Z.geq n min_s2) s1), In (Set.filter (fun n -> Z.leq n max_s1) s2) | In s1, NotIn s2 -> a1, NotIn (Set.add (Set.max_elt s1 |> Z.succ) s2) | NotIn s1, In s2 -> NotIn (Set.add (Set.min_elt s2 |> Z.pred) s1), a2 | NotIn _, NotIn _ -> a1, a2 end | O_lt -> begin match a1,a2 with | In s1, In s2 -> let min_s1 = Set.min_elt s1 in let max_s2 = Set.max_elt s2 in In (Set.filter (fun n -> Z.lt n max_s2) s1), In (Set.filter (fun n -> Z.gt n min_s1) s2) | In s1, NotIn s2 -> a1, NotIn (Set.add (Set.min_elt s1) s2) | NotIn s1, In s2 -> NotIn (Set.add (Set.max_elt s2) s1), a2 | NotIn _, NotIn _ -> a1, a2 end | O_gt -> begin match a1,a2 with | In s1, In s2 -> let max_s1 = Set.max_elt s1 in let min_s2 = Set.min_elt s2 in In (Set.filter (fun n -> Z.gt n min_s2) s1), In (Set.filter (fun n -> Z.lt n max_s1) s2) | In s1, NotIn s2 -> a1, NotIn (Set.add (Set.max_elt s1) s2) | NotIn s1, In s2 -> NotIn (Set.add (Set.min_elt s2) s1), a2 | NotIn _, NotIn _ -> a1, a2 end | _ -> default_compare op b t1 a1 t2 a2 end let () = register_simplified_value_abstraction (module SimplifiedValue)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>