package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/lattices/pointwise.ml.html
Source file pointwise.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Pointwise lattice construction. Lattice of partial maps 𝕂 ⇀ 𝕍 where 𝕂 is a key set and 𝕍 is a value lattice. Unlink Partial_map, ⊥ values is not coalescent. Bindings that map keys to ⊥ values are not represented. We use Maps, so 𝕂 needs to be totally ordered. ⊥ map is represented as the empty map. ⊤ map is represented as a special TOP element. *) open Mopsa_utils open Top open Core.All let debug fmt = Debug.debug ~channel:"framework.lattices.pointwise" fmt module type KEY = sig type t val compare: t -> t -> int val print : printer -> t -> unit end module Make (Key : KEY) (Value : LATTICE) = struct module M = MapExt.Make(Key) type nt_t = Value.t M.t type t = nt_t with_top let bottom : t = Nt M.empty let empty : t = bottom let top : t = TOP let is_bottom (a:t) : bool = top_dfl1 false M.is_empty a let is_empty (a:t) : bool = is_bottom a let is_top (a:t) : bool = a = TOP let subset (a:t) (b:t) : bool = if a == b then true else top_included (M.for_all2zo (fun _ _ -> false) (fun _ _ -> true) (fun _ x y -> Value.subset x y)) a b let join (a:t) (b:t) : t = if a == b then a else top_lift2 (M.map2zo (fun _ x -> x) (fun _ x -> x) (fun _ x y -> Value.join x y) ) a b let widen ctx (a:t) (b:t) : t = if a == b then a else top_lift2 (M.map2zo (fun _ x -> x) (fun _ x -> x) (fun _ x y -> Value.widen ctx x y) ) a b let meet (a:t) (b:t) : t = if a == b then a else top_neutral2 (M.map2zo (fun _ x -> x) (fun _ x -> x) (fun _ x y -> Value.meet x y) ) a b let print printer (a:t) : unit = match a with | TOP -> pp_string printer "⊤" | Nt m when M.is_empty m -> pp_string printer "⊥" | Nt m -> pp_map Key.print Value.print printer (M.bindings m) (** Returns ⊥ value if either k is not found, or a is the ⊤ map. *) let find (k: Key.t) (a:t) : Value.t = top_dfl1 Value.top (fun m -> try M.find k m with Not_found -> Value.bottom) a let remove (k: Key.t) (a:t) : t = top_lift1 (fun m -> M.remove k m) a (* Internal function . Call this instead of M.add to ensure that no binding to the ⊥ value is ever added to the map. *) let m_add (k: Key.t) (v:Value.t) (a:nt_t) : nt_t = if Value.is_bottom v then M.remove k a else M.add k v a let add (k: Key.t) (v:Value.t) (a:t) : t = top_lift1 (fun m -> m_add k v m) a (** Returns false of a is the ⊤ map, or k is mapped to the ⊥ value. *) let mem (k: Key.t) (a:t) : bool = top_dfl1 false (M.mem k) a let rename (k: Key.t) (k': Key.t) (a:t) : t = let v = find k a in let a = remove k a in add k' v a let apply (k: Key.t) (f:Value.t -> Value.t) (a:t) : t = add k (f (find k a)) a let singleton (k:Key.t) (v:Value.t) : t = add k v bottom let filter (f : Key.t -> Value.t -> bool) (a :t) : t = top_lift1 (M.filter f) a (** Raises a Top_encountered exception for the ⊤ map. *) let bindings (a:t) : (Key.t * Value.t) list = M.bindings (detop a) (** Returns None for a ⊤ or ⊥ map. *) let max_binding (a:t) : (Key.t * Value.t) option = top_dfl1 None (fun m -> try Some (M.max_binding m) with Not_found -> None) a (** Raises a Top_encountered exception for the ⊤ map. *) let cardinal (a:t) : int = M.cardinal (detop a) let of_list (l : (Key.t * Value.t) list) : t = Nt (M.of_list l) (** Iterator functions. These functions do nothing for the ⊤ map, which is equivalent here to the empty map. *) let iter (f:Key.t -> Value.t -> unit) (a:t) : unit = top_apply (M.iter f) () a let fold (f:Key.t -> Value.t -> 'a -> 'a) (a:t) (x:'a) : 'a = top_dfl1 x (fun a -> M.fold f a x) a let map (f:Value.t -> Value.t) (a:t) : t = top_lift1 (fun m -> M.fold (fun k v n -> m_add k (f v) n) m M.empty) a let mapi (f:Key.t -> Value.t -> Value.t) (a:t) : t = top_lift1 (fun m -> M.fold (fun k v n -> m_add k (f k v) n) m M.empty) a let for_all (f:Key.t -> Value.t -> bool) (a:t) : bool = top_dfl1 false (M.for_all f) a let exists (f:Key.t -> Value.t -> bool) (a:t) : bool = top_dfl1 false (M.exists f) a (** Binary iterators. If a key is bound in only one map, the function is called with the ⊥ value as missing argument. These functions do nothing if either map is the ⊤ map. *) let map2 (f:Key.t -> Value.t -> Value.t -> Value.t) (m1:t) (m2:t) : t = top_lift2 (fun m1 m2 -> M.fold2o (fun k v1 n -> m_add k (f k v1 Value.bottom) n) (fun k v2 n -> m_add k (f k Value.bottom v2) n) (fun k v1 v2 n -> m_add k (f k v1 v2) n) m1 m2 M.empty ) m1 m2 let iter2 (f:Key.t -> Value.t -> Value.t -> unit) (m1:t) (m2:t) : unit = top_apply2 () () (M.iter2o (fun k v1 -> f k v1 Value.bottom) (fun k v2 -> f k Value.bottom v2) f) m1 m2 let fold2 (f:Key.t -> Value.t -> Value.t -> 'a -> 'a) (m1:t) (m2:t) (acc:'a) : 'a = top_apply2 acc acc (fun m1 m2 -> M.fold2o (fun k v1 acc -> f k v1 Value.bottom acc) (fun k v2 acc -> f k Value.bottom v2 acc) f m1 m2 acc ) m1 m2 let for_all2 (f:Key.t -> Value.t -> Value.t -> bool) (m1:t) (m2:t) : bool = top_dfl2 false (M.for_all2o (fun k v1 -> f k v1 Value.bottom) (fun k v2 -> f k Value.bottom v2) f ) m1 m2 let exists2 (f:Key.t -> Value.t -> Value.t -> bool) (m1:t) (m2:t) : bool = top_dfl2 false (M.exists2o (fun k v1 -> f k v1 Value.bottom) (fun k v2 -> f k Value.bottom v2) f ) m1 m2 let map2z (f:Key.t -> Value.t -> Value.t -> Value.t) (m1:t) (m2:t) : t = top_lift2 (fun m1 m2 -> M.fold2zo (fun k v1 n -> m_add k (f k v1 Value.bottom) n) (fun k v2 n -> m_add k (f k Value.bottom v2) n) (fun k v1 v2 n -> m_add k (f k v1 v2) n) m1 m2 M.empty ) m1 m2 let iter2z (f:Key.t -> Value.t -> Value.t -> unit) (m1:t) (m2:t) : unit = top_apply2 () () (M.iter2zo (fun k v1 -> f k v1 Value.bottom) (fun k v2 -> f k Value.bottom v2) f) m1 m2 let fold2z (f:Key.t -> Value.t -> Value.t -> 'a -> 'a) (m1:t) (m2:t) (acc:'a) : 'a = top_apply2 acc acc (fun m1 m2 -> M.fold2z f m1 m2 acc ) m1 m2 let fold2zo (f1:Key.t -> Value.t -> 'a -> 'a) (f2:Key.t -> Value.t -> 'a -> 'a) (f:Key.t -> Value.t -> Value.t -> 'a -> 'a) (m1:t) (m2:t) (acc:'a) : 'a = top_apply2 acc acc (fun m1 m2 -> M.fold2zo f1 f2 f m1 m2 acc ) m1 m2 let for_all2z (f:Key.t -> Value.t -> Value.t -> bool) (m1:t) (m2:t) : bool = top_dfl2 false (M.for_all2zo (fun k v1 -> f k v1 Value.bottom) (fun k v2 -> f k Value.bottom v2) f ) m1 m2 let exists2z (f:Key.t -> Value.t -> Value.t -> bool) (m1:t) (m2:t) : bool = top_dfl2 false (M.exists2zo (fun k v1 -> f k v1 Value.bottom) (fun k v2 -> f k Value.bottom v2) f ) m1 m2 (** Slice iterations. *) let map_slice (f:Key.t -> Value.t -> Value.t) (m:t) (lo:Key.t) (hi:Key.t) : t = top_lift1 (fun m -> M.fold_slice (fun k v n -> m_add k (f k v) n) m lo hi M.empty) m let iter_slice (f:Key.t -> Value.t -> unit) (m:t) (lo:Key.t) (hi:Key.t) : unit = top_apply (fun m -> M.iter_slice f m lo hi) () m let fold_slice (f:Key.t -> Value.t -> 'a -> 'a) (m:t) (lo:Key.t) (hi:Key.t) (acc:'a) : 'a = top_apply (fun m -> M.fold_slice f m lo hi acc) acc m let for_all_slice (f:Key.t -> Value.t -> bool) (m:t) (lo:Key.t) (hi:Key.t) : bool = top_dfl1 false (fun m -> M.for_all_slice f m lo hi) m let exists_slice (f:Key.t -> Value.t -> bool) (m:t) (lo:Key.t) (hi:Key.t) : bool = top_dfl1 false (fun m -> M.exists_slice f m lo hi) m end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>