package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/lattices/partial_inversible_map.ml.html
Source file partial_inversible_map.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Lattice of partial inversible maps. Sets of partial maps M ∈ ℘(𝕂 ⇀ 𝕍) from concrete keys set 𝕂 to concrete values set 𝕍 are abstracted as a set of partial maps ℳ ∈ 𝕂 ⇀ (℘(𝕍) ∪ {⊤}). *) open Mopsa_utils open Bot_top open Top open Core.All (** Signature of ordered types with printers *) module type ORDER = sig type t val compare: t -> t -> int val print : Print.printer -> t -> unit end module Make (Key : ORDER) (Value : ORDER) = struct (** Inversible relations between keys and values *) module Relation = InvRelation.Make(Key)(Value) (** Set of keys *) module KeySet = Relation.DomSet (** Set of values *) module ValueSet = Relation.CoDomSet (** Inversible maps are represented as a set of relations between keys and values, in addition to a set of keys mapped to ⊤ *) type map = { relations: Relation.t; top_keys: Relation.DomSet.t } (** Type of inversible maps with ⊤ and ⊥ *) type t = map with_bot_top (** ⊥ element *) let bottom : t = BOT (** ⊤ element *) let top : t = TOP (** Check whether [a] is ⊥ *) let is_bottom (a:t) : bool = match a with | BOT -> true | TOP -> false | Nbt m -> false (** Printing. *) let print printer (a:t) : unit = match a with | BOT -> pp_string printer "⊥" | TOP -> pp_string printer "⊤" | Nbt m when Relation.is_empty m.relations && KeySet.is_empty m.top_keys -> pp_string printer "∅" | Nbt m -> Relation.iter_domain (fun k vs -> pprint printer ~path:[pkey Key.print k] (pbox (pp_list Value.print ~lopen:"{" ~lsep:", " ~lclose:"}") (ValueSet.elements vs)) ) m.relations; KeySet.iter (fun k -> pp_string printer "⊤" ~path:[pkey Key.print k] ) m.top_keys (** Singleton of empty map *) let empty : t = Nbt { relations = Relation.empty; top_keys = KeySet.empty } (** Remove a set of keys from a relation *) let remove_relation_keys (keys:KeySet.t) (rel:Relation.t) : Relation.t = KeySet.fold Relation.remove_image keys rel (** Inclusion test. *) let subset (a1:t) (a2:t) : bool = if a1 == a2 then true else match a1, a2 with | BOT, _ -> true | _, BOT -> false | _, TOP -> true | TOP, _ -> false | Nbt m1, Nbt m2 -> (* Remove keys of m1 that valuate to ⊤ in m2 *) let m1' = { m1 with relations = remove_relation_keys m2.top_keys m1.relations } in Relation.subset m1'.relations m2.relations && KeySet.subset m1'.top_keys m2.top_keys (** Join two sets of partial maps. *) let join (a1:t) (a2:t) : t = if a1 == a2 then a1 else match a1, a2 with | BOT, x | x, BOT -> x | TOP, _ | _, TOP -> TOP | Nbt m1, Nbt m2 -> (* Remove keys that valuate to ⊤ in m1 or m2 *) let m1' = { m1 with relations = remove_relation_keys m2.top_keys m1.relations } in let m2' = { m2 with relations = remove_relation_keys m1.top_keys m2.relations } in Nbt { relations = Relation.union m1'.relations m2'.relations; top_keys = KeySet.union m1.top_keys m2.top_keys; } (** Meet. *) let meet (a1:t) (a2:t) : t = if a1 == a2 then a1 else match a1, a2 with | BOT, x | x, BOT -> BOT | TOP, x | x, TOP -> x | Nbt m1, Nbt m2 -> (* In addition to bindings that are part of the two relations, keep the bindings that are in one relation only if the key belongs to ⊤ keys of the other abstract element. *) try Nbt ( let relations = Relation.map2zo_domain (fun k1 vs1 -> (* Check if k1 is mapped to ⊤ in m2 *) if KeySet.mem k1 m2.top_keys then vs1 else raise Bot.Found_BOT ) (fun k2 vs2 -> (* Check if k2 is mapped to ⊤ in m1 *) if KeySet.mem k2 m1.top_keys then vs2 else raise Bot.Found_BOT ) (fun k vs1 vs2 -> let vs = ValueSet.inter vs1 vs2 in if ValueSet.is_empty vs then raise Bot.Found_BOT else vs ) m1.relations m2.relations in let top_keys = KeySet.inter m1.top_keys m2.top_keys in { relations; top_keys } ) with Bot.Found_BOT -> bottom (** Widening operator *) let widen ctx (a1:t) (a2:t) : t = let a2 = join a1 a2 in if a1 == a2 then a1 else match a1, a2 with | BOT, x | x, BOT -> x | TOP, x | x, TOP -> TOP | Nbt m1, Nbt m2 -> (* Find the keys that belong only to m2, i.e. new relations. These keys will be mapped to ⊤. *) let instable_keys = Relation.fold2_diff (fun _ _ acc -> acc) (fun k _ acc -> KeySet.add k acc) m1.relations m2.relations KeySet.empty in (* Remove instable_keys from m2 relations and add them to top_keys *) Nbt { relations = remove_relation_keys instable_keys m2.relations; top_keys = KeySet.union m2.top_keys instable_keys } (** Find the set of values attached to a key. Raise [Not_found] of the key is not found. *) let find (k: Key.t) (a:t) : ValueSet.t with_top = match a with | BOT -> Nt ValueSet.empty | TOP -> TOP | Nbt m -> if KeySet.mem k m.top_keys then TOP else Nt (Relation.image k m.relations) (** Find keys attached to value [v] in [a] *) let find_inverse (v:Value.t) (a:t) : KeySet.t with_top = match a with | BOT -> Nt (KeySet.empty) | TOP -> TOP | Nbt m -> let s1 = Relation.inverse v m.relations in let s2 = m.top_keys in Nt (KeySet.union s1 s2) (** Remove all bindings [(k,-)] in [a] *) let remove (k: Key.t) (a:t) : t = match a with | BOT -> BOT | TOP -> TOP | Nbt m -> Nbt { relations = Relation.remove_image k m.relations; top_keys = KeySet.remove k m.top_keys } (** Remove all bindings [(-,v)] in [a] *) let remove_inverse (v:Value.t) (a:t) : t = match a with | BOT -> BOT | TOP -> TOP | Nbt m -> Nbt { m with relations = Relation.remove_inverse v m.relations } (** [filter f a] keeps all bindings [(k,vs)] in [a] such that [f k vs] is true *) let filter (f:Key.t -> ValueSet.t with_top -> bool) (a:t) : t = match a with | BOT -> BOT | TOP -> TOP | Nbt m -> Nbt { relations = Relation.filter_domain (fun k vs -> f k (Top.Nt vs)) m.relations; top_keys = KeySet.filter (fun k -> f k Top.TOP) m.top_keys } (** [filter_inverse f a] keeps all inverse bindings [(v,ks)] in [a] such that [f v ks] is true *) let filter_inverse (f:Value.t -> KeySet.t -> bool) (a:t) : t = match a with | BOT -> BOT | TOP -> TOP | Nbt m -> Nbt { m with relations = Relation.filter_codomain f m.relations } (* val filter_inverse : (value -> KeySet.t -> bool) -> t * (\** [filter_inverse f a] keeps all inverse bindings [(v,ks)] in [a] such that [f v ks] is true *\) *) (** Add bindings [(k,vs)] to [a]. Previous bindings are overwritten. *) let set (k: Key.t) (vs:ValueSet.t with_top) (a:t) : t = match vs with | Nt s when ValueSet.is_empty s -> BOT | _ -> match a with | BOT -> BOT | TOP -> TOP | Nbt m -> match vs with | TOP -> Nbt { top_keys = KeySet.add k m.top_keys; relations = Relation.remove_image k m.relations } | Nt vs -> Nbt { top_keys = KeySet.remove k m.top_keys; relations = Relation.set_image k vs m.relations } (** [add_inverse v ks a] adds the binding [(k,{v} ∪ find k a)] to [a], where [k] ∈ [ks]. *) let add_inverse (v:Value.t) (ks:KeySet.t) (a:t) : t = match a with | BOT -> BOT | TOP -> TOP | Nbt m -> (* Do not add bindings for keys k ∈ m.top_keys *) let ks' = KeySet.diff ks m.top_keys in Nbt { m with relations = Relation.add_inverse_set v ks' m.relations } (** Rename key [k] to [k'] *) let rename (k: Key.t) (k': Key.t) (a:t) : t = let v = find k a in let a = remove k a in set k' v a (** Rename value [v] to [v'] *) let rename_inverse (v: Value.t) (v': Value.t) (a:t) : t = let ks = find_inverse v a in let a = remove_inverse v a in match ks with | TOP -> assert(a = TOP); TOP | Nt ks -> add_inverse v' ks a (** Create a map with singleton binding [(k,{v})] *) let singleton (k:Key.t) (v:Value.t) : t = Nbt { top_keys = KeySet.empty; relations = Relation.singleton k v; } (** Check whether a binding [(k,-)] exists in [a] *) let mem (k:Key.t) (a:t) : bool = match a with | BOT -> false | TOP -> true | Nbt m -> Relation.mem_domain k m.relations || KeySet.mem k m.top_keys (** Check whether a binding [(-,v)] exists in [a] *) let mem_inverse (v:Value.t) (a:t) : bool = match a with | BOT -> false | TOP -> true | Nbt m -> Relation.mem_codomain v m.relations || not @@ Relation.DomSet.is_empty m.top_keys (** [fold f a init] folds function [f] over elements [(k,vs)] *) let fold (f:Key.t -> ValueSet.t with_top -> 'a -> 'a) (a:t) (init:'a) : 'a = match a with | BOT -> init | TOP -> raise Found_TOP | Nbt m -> KeySet.fold (fun k acc -> f k TOP acc) m.top_keys init |> Relation.fold_domain (fun k vs acc -> f k (Nt vs) acc) m.relations (** Replace bindings [(k,vs)] in [a] with [(k,f vs)] *) let map (f:ValueSet.t with_top -> ValueSet.t with_top) (a:t) : t = match a with | BOT -> BOT | TOP -> TOP | Nbt m -> fold (fun k vs acc -> set k (f vs) acc ) a empty end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>