package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/intervals/integer.ml.html
Source file integer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Interval abstraction of integer values. *) open Mopsa open Ast open Bot open Sig.Abstraction.Simplified_value open Common (** Use the simplified signature for handling homogenous operators *) module SimplifiedValue = struct type t = Common.int_itv module I = ItvUtils.IntItv module FI = ItvUtils.FloatItv include GenValueId(struct type nonrec t = t let name = "universal.numeric.values.intervals.integer" let display = "int-itv" end) let accept_type = function | T_int | T_bool -> true | _ -> false let bottom = BOT let top = Nb (I.minf_inf) let top_of_typ = function | T_int -> top | T_bool -> Nb (I.of_int 0 1) | _ -> assert false let is_bottom abs = bot_dfl1 true (fun itv -> not (I.is_valid itv)) abs let subset (a1:t) (a2:t) : bool = I.included_bot a1 a2 let join (a1:t) (a2:t) : t = I.join_bot a1 a2 let meet (a1:t) (a2:t) : t = I.meet_bot a1 a2 let widen ctx (a1:t) (a2:t) : t = (* Retrieve thresholds if any *) match find_ctx_opt Common.widening_thresholds_ctx_key ctx with | None -> I.widen_bot a1 a2 | Some thresholds -> bot_neutral2 (fun (a,b) (c,d) -> (* Translate constants to bounds *) let thresholds = SetExt.ZSet.elements thresholds |> List.map (fun n -> I.B.Finite n) in (* Apply the definition of the widening with thresholds *) (if I.B.leq a c then a else List.filter (I.B.geq c) thresholds |> List.fold_left I.B.max I.B.MINF), (if I.B.geq b d then b else List.filter (I.B.leq d) thresholds |> List.fold_left I.B.min I.B.PINF) ) a1 a2 let print printer (a:t) = unformat I.fprint_bot printer a let constant c t = match c with | C_bool true -> Nb (I.cst_int 1) | C_bool false -> Nb (I.cst_int 0) | C_top T_bool -> Nb (I.of_int 0 1) | C_int i -> Nb (I.of_z i i) | C_int_interval (i1,i2) -> Nb (I.of_bound i1 i2) | C_avalue(V_int_interval, itv) -> itv | C_avalue(V_int_interval_fast, itv) -> itv | _ -> top_of_typ t let unop op t a tr = match op with | O_log_not -> bot_lift1 I.log_not a | O_minus -> bot_lift1 I.neg a | O_plus -> a | O_abs -> bot_lift1 I.abs a | O_wrap(l, u) -> bot_lift1 (fun itv -> I.wrap itv l u) a | O_bit_invert -> bot_lift1 I.bit_not a | _ -> top_of_typ tr let binop op t1 a1 t2 a2 tr = match op with | O_plus -> bot_lift2 I.add a1 a2 | O_minus -> bot_lift2 I.sub a1 a2 | O_mult -> bot_lift2 I.mul a1 a2 | O_div -> bot_absorb2 I.div a1 a2 | O_ediv -> bot_absorb2 I.ediv a1 a2 | O_pow -> bot_lift2 I.pow a1 a2 | O_eq -> bot_lift2 I.log_eq a1 a2 | O_ne -> bot_lift2 I.log_neq a1 a2 | O_lt -> bot_lift2 I.log_lt a1 a2 | O_le -> bot_lift2 I.log_leq a1 a2 | O_gt -> bot_lift2 I.log_gt a1 a2 | O_ge -> bot_lift2 I.log_geq a1 a2 | O_log_or -> bot_lift2 I.log_or a1 a2 | O_log_and -> bot_lift2 I.log_and a1 a2 | O_log_xor -> bot_lift2 I.log_xor a1 a2 | O_mod -> bot_absorb2 I.rem a1 a2 | O_erem -> bot_absorb2 I.erem a1 a2 | O_bit_and -> bot_lift2 I.bit_and a1 a2 | O_bit_or -> bot_lift2 I.bit_or a1 a2 | O_bit_xor -> bot_lift2 I.bit_xor a1 a2 | O_bit_rshift -> bot_absorb2 I.shift_right a1 a2 | O_bit_lshift -> bot_absorb2 I.shift_left a1 a2 | O_convex_join -> bot_lift2 I.join a1 a2 | _ -> top_of_typ tr let filter b t a = if b then bot_absorb1 I.meet_nonzero a else bot_absorb1 I.meet_zero a let backward_unop op t a t r = try let a, r = bot_to_exn a, bot_to_exn r in let aa = match op with | O_minus -> bot_to_exn (I.bwd_neg a r) | O_wrap(l,u) -> bot_to_exn (I.bwd_wrap a (l,u) r) | O_bit_invert -> bot_to_exn (I.bwd_bit_not a r) | _ -> bot_to_exn (I.bwd_default_unary a r) in Nb aa with Found_BOT -> bottom let backward_binop op t1 a1 t2 a2 tr r = try let a1, a2, r = bot_to_exn a1, bot_to_exn a2, bot_to_exn r in let aa1, aa2 = match op with | O_plus -> bot_to_exn (I.bwd_add a1 a2 r) | O_minus -> bot_to_exn (I.bwd_sub a1 a2 r) | O_mult -> bot_to_exn (I.bwd_mul a1 a2 r) | O_div -> bot_to_exn (I.bwd_div a1 a2 r) | O_ediv -> bot_to_exn (I.bwd_ediv a1 a2 r) | O_mod -> bot_to_exn (I.bwd_rem a1 a2 r) | O_erem -> bot_to_exn (I.bwd_erem a1 a2 r) | O_pow -> bot_to_exn (I.bwd_pow a1 a2 r) | O_eq -> bot_to_exn (I.bwd_log_eq a1 a2 r) | O_ne -> bot_to_exn (I.bwd_log_neq a1 a2 r) | O_lt -> bot_to_exn (I.bwd_log_lt a1 a2 r) | O_le -> bot_to_exn (I.bwd_log_leq a1 a2 r) | O_gt -> bot_to_exn (I.bwd_log_gt a1 a2 r) | O_ge -> bot_to_exn (I.bwd_log_geq a1 a2 r) | O_bit_and -> bot_to_exn (I.bwd_bit_and a1 a2 r) | O_bit_or -> bot_to_exn (I.bwd_bit_or a1 a2 r) | O_bit_xor -> bot_to_exn (I.bwd_bit_xor a1 a2 r) | O_bit_rshift -> bot_to_exn (I.bwd_shift_right a1 a2 r) | O_bit_lshift -> bot_to_exn (I.bwd_shift_left a1 a2 r) | O_convex_join -> bot_to_exn (I.bwd_convex_join a1 a2 r) | _ -> Exceptions.panic "bwd_binop: unknown operator %a" pp_operator op in Nb aa1, Nb aa2 with Found_BOT -> bottom, bottom let compare op b t1 a1 t2 a2 = try let a1, a2 = bot_to_exn a1, bot_to_exn a2 in let op = if b then op else negate_comparison_op op in let aa1, aa2 = match op with | O_eq -> bot_to_exn (I.filter_eq a1 a2) | O_ne -> bot_to_exn (I.filter_neq a1 a2) | O_lt -> bot_to_exn (I.filter_lt a1 a2) | O_gt -> bot_to_exn (I.filter_gt a1 a2) | O_le -> bot_to_exn (I.filter_leq a1 a2) | O_ge -> bot_to_exn (I.filter_geq a1 a2) | _ -> Exceptions.panic "compare: unknown operator %a" pp_operator op in Nb aa1, Nb aa2 with Found_BOT -> bottom, bottom let avalue : type r. r avalue_kind -> t -> r option = fun aval a -> match aval with | Common.V_int_interval -> Some a | Common.V_int_interval_fast -> Some a | Common.V_int_congr_interval -> Some (a, Bot.Nb Common.C.minf_inf) | _ -> None end (** We lift now to the advanced signature to handle casts and queries *) open Sig.Abstraction.Value module Value = struct include SimplifiedValue module V = MakeValue(SimplifiedValue) include V (** Cast a non-integer value to an integer *) let cast man e = match e.etyp with | T_float p -> (* Get the value of the float *) let v = man.eval e in (* Convert it to a float interval *) let float_itv = man.avalue (Common.V_float_interval p) v in (* Perform the cast to an integer interval *) ItvUtils.FloatItvNan.to_int_itv float_itv | _ -> top (* Evaluation of integer expressions *) let eval man e = match ekind e with (* Casts *) | E_unop(O_cast,ee) -> cast man ee | _ -> (* Other expressions are handled by the simplified domain *) let r = V.eval man e in (* Ensure that boolean values are in [0,1] *) match e.etyp with | T_bool -> meet r (top_of_typ T_bool) | _ -> r (* Extended backward refinement of casts to integers. *) let backward_ext_cast man e ve r = match e.etyp with | T_float p -> begin match r with | BOT -> None | Nb iitv -> (* Get the float value *) let v,_ = find_vexpr e ve in (* Convert it to a float interval *) let fitv = man.avalue (Common.V_float_interval p) v in (* Refine it with the integer result *) let fitv' = ItvUtils.FloatItvNan.bwd_to_int_itv fitv iitv in (* Evaluate the float interval to a float value *) let v' = man.eval (mk_avalue_expr (Common.V_float_interval p) fitv' e.erange) in (* Refine the expression [e] with the new value [v'] *) refine_vexpr e (man.meet v v') ve |> OptionExt.return end | _ -> None (* Extended backward evaluations *) let backward_ext man e ve r = match ekind e with | E_unop(O_cast,ee) -> (* We use the extended transfer function because we need to refine a non-integer value *) backward_ext_cast man ee ve (man.get r) | _ -> V.backward_ext man e ve r (** {2 Utility functions} *) let zero = Nb (I.zero) let one = Nb (I.one) let of_z z1 z2 : t = Nb (I.of_z z1 z2) let of_int n1 n2 : t = Nb (I.of_int n1 n2) let z_of_z2 z z' round = let open Z in let d, r = div_rem z z' in if equal r zero then d else begin if round then d + one else d end let z_of_mpzf mp = Z.of_string (Mpzf.to_string mp) let z_of_mpqf mp round = let open Mpqf in let l, r = to_mpzf2 mp in let lz, rz = z_of_mpzf l, z_of_mpzf r in z_of_z2 lz rz round let z_of_apron_scalar a r = let open Apron.Scalar in match a, r with | Float f, true -> Z.of_float (ceil f) | Float f, false -> Z.of_float (floor f) | Mpqf q, _ -> z_of_mpqf q r | Mpfrf mpf, _ -> z_of_mpqf (Mpfr.to_mpq mpf) r let of_apron (itv: Apron.Interval.t) : t = if Apron.Interval.is_bottom itv then bottom else let mi = itv.Apron.Interval.inf in let ma = itv.Apron.Interval.sup in let to_b m r = let x = Apron.Scalar.is_infty m in if x = 0 then I.B.Finite (z_of_apron_scalar m r) else if x > 0 then I.B.PINF else I.B.MINF in Nb (to_b mi false, to_b ma true) let to_apron (itv:t) : Apron.Interval.t = match itv with | BOT -> Apron.Interval.bottom | Nb(a,b) -> let bound_to_scalar b = match b with | I.B.MINF -> Apron.Scalar.of_infty (-1) | I.B.PINF -> Apron.Scalar.of_infty 1 | I.B.Finite z -> Apron.Scalar.of_float (Z.to_float z) in Apron.Interval.of_infsup (bound_to_scalar a) (bound_to_scalar b) let is_bounded (itv:t) : bool = bot_dfl1 true I.is_bounded itv let bounds (itv:t) : Z.t * Z.t = bot_dfl1 (Z.one, Z.zero) (function | I.B.Finite a, I.B.Finite b -> (a, b) | _ -> panic "bounds called on a unbounded interval %a" (format print) itv ) itv let bounds_opt (itv:t) : Z.t option * Z.t option = bot_dfl1 (None, None) (function | I.B.Finite a, I.B.Finite b -> (Some a, Some b) | I.B.Finite a, _ -> (Some a, None) | _, I.B.Finite b -> (None, Some b) | _ -> (None, None) ) itv let mem (i: Z.t) (itv:t) : bool = bot_dfl1 true (fun (a, b) -> let open I.B in let i = Finite i in geq i a && leq i b ) itv let compare_interval itv1 itv2 = bot_compare (I.compare) itv1 itv2 let map (f: Z.t -> 'a) (itv:t) : 'a list = if not (is_bounded itv) then panic ~loc:__LOC__ "map: unbounded interval %a" (format print) itv else if is_bottom itv then [] else let a, b = bounds itv in let rec iter i = if Z.equal i b then [f i] else f i :: iter (Z.succ i) in iter a end let () = register_value_abstraction (module Value)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>