package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/intervals/float.ml.html
Source file float.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Interval abstraction of float values. *) open Mopsa open Sig.Abstraction.Simplified_value open Ast open Bot open Common module I = ItvUtils.FloatItvNan module FI = ItvUtils.FloatItv module II = ItvUtils.IntItv let prec_of_type = function | T_float p -> p | _ -> assert false (* We first use the simplified signature to handle float operations *) module SimplifiedValue = struct (** Types *) type t = I.t include GenValueId( struct type nonrec t = t let name = "universal.numeric.values.intervals.float" let display = "float-itv" end ) let () = import_shared_option rounding_option_name name let accept_type = function | T_float _ -> true | _ -> false (** Lattice operations *) let bottom = I.bot let top_of_prec = function | F_SINGLE -> I.single_special | F_DOUBLE -> I.double_special | F_LONG_DOUBLE -> I.extra | F_FLOAT128 -> I.extra | F_REAL -> I.real (* Relative precision of float types. If prec_level t1 >= prec_level t2, then t1 can represent all values that t2 can, and there is no rounding error. *) let prec_level = function | F_SINGLE -> 1 | F_DOUBLE -> 2 | F_LONG_DOUBLE -> 3 | F_FLOAT128 -> 4 | F_REAL -> 5 let top = top_of_prec F_LONG_DOUBLE let is_bottom = I.is_bot let subset (a1:t) (a2:t) : bool = I.included a1 a2 let join (a1:t) (a2:t) : t = I.join a1 a2 let meet (a1:t) (a2:t) : t = I.meet a1 a2 let widen ctx (a1:t) (a2:t) : t = I.widen a1 a2 let print printer (a:t) = unformat (I.fprint I.dfl_fmt) printer a let filter_class itv c = { I.itv = if c.float_valid then itv.I.itv else BOT; I.pinf = c.float_inf && itv.I.pinf; I.minf = c.float_inf && itv.I.minf; I.nan = c.float_nan && itv.I.nan; } (** Arithmetic operators *) let constant c tr = let p = prec_of_type tr in match c with | C_float i -> I.of_float_prec (prec p) (round ()) i i | C_float_interval (lo,up) -> I.of_float_prec (prec p) (round ()) lo up | C_avalue(V_float_interval _, itv) -> (itv:t) | C_top (T_float p) -> top_of_prec p | _ -> top_of_prec p let unop op t a tr = let p = prec_of_type tr in match op with | O_minus -> I.neg a | O_plus -> a | O_sqrt -> I.sqrt (prec p) (round ()) a | O_cast -> if prec_level p >= prec_level (prec_of_type t) then a else I.round (prec p) (round()) a | O_filter_float_class c -> filter_class a c | _ -> top_of_prec p let binop op t1 a1 t2 a2 tr = let p = prec_of_type tr in match op with | O_plus -> I.add (prec p) (round ()) a1 a2 | O_minus -> I.sub (prec p) (round ()) a1 a2 | O_mult -> I.mul (prec p) (round ()) a1 a2 | O_div -> I.div (prec p) (round ()) a1 a2 | O_mod -> I.fmod (prec p) (round ()) a1 a2 | _ -> top_of_prec p let filter b t a = let p = prec_of_type t in if b then I.filter_nonzero (prec p) a else I.filter_nonzero_false (prec p) a let backward_unop op t a tr r = let p = prec_of_type tr in match op with | O_minus -> I.bwd_neg a r | O_plus -> I.meet a r | O_sqrt -> I.bwd_sqrt (prec p) (round ()) a r | O_cast -> if prec_level p >= prec_level (prec_of_type t) then I.meet a r else I.bwd_round (prec p) (round()) a r | _ -> a let backward_binop op t1 a1 t2 a2 tr r = let p = prec_of_type tr in match op with | O_plus -> I.bwd_add (prec p) (round ()) a1 a2 r | O_minus -> I.bwd_sub (prec p) (round ()) a1 a2 r | O_mult -> I.bwd_mul (prec p) (round ()) a1 a2 r | O_div -> I.bwd_div (prec p) (round ()) a1 a2 r | O_mod -> I.bwd_fmod (prec p) (round ()) a1 a2 r | _ -> default_backward_binop op t1 a1 t2 a2 tr r let compare op b t1 a1 t2 a2 = let p = prec_of_type t1 in match b, op with | true, O_eq | false, O_ne -> I.filter_eq (prec p) a1 a2 | true, O_ne | false, O_eq -> I.filter_neq (prec p) a1 a2 | true, O_lt -> I.filter_lt (prec p) a1 a2 | true, O_le -> I.filter_leq (prec p) a1 a2 | true, O_gt -> I.filter_gt (prec p) a1 a2 | true, O_ge -> I.filter_geq (prec p) a1 a2 | false, O_le -> I.filter_leq_false (prec p) a1 a2 | false, O_lt -> I.filter_lt_false (prec p) a1 a2 | false, O_ge -> I.filter_geq_false (prec p) a1 a2 | false, O_gt -> I.filter_gt_false (prec p) a1 a2 | _ -> a1,a2 let avalue : type r. r avalue_kind -> t -> r option = fun aval a -> match aval with | V_float_interval _ -> Some a | V_float_maybenan _ -> Some a.nan | _ -> None end (* We lift now to the advanced signature to handle mixed operations with integers *) open Sig.Abstraction.Value module Value = struct module V = MakeValue(SimplifiedValue) include SimplifiedValue include V (** Casts of integers to floats *) let cast_from_int man p e = match e.etyp with | T_int | T_bool -> (* Get the value of the intger *) let v = man.eval e in (* Convert it to an interval *) let int_itv = man.avalue V_int_interval v in (* Cast it to a float *) I.of_int_itv_bot (prec p) (round ()) int_itv | _ -> top_of_prec p (** Evaluation of float expressions *) let eval man e = match ekind e with | E_unop(O_cast,ee) when is_int_type (etyp ee) -> cast_from_int man (prec_of_type e.etyp) ee | _ -> V.eval man e (** Backward evaluation of class predicates *) let backward_float_class man c e ve (r:int_itv) = match r with (* Refine only when the truth value of the predicate is a constant *) | Bot.Nb (Finite lo, Finite hi) when Z.(lo = hi) -> let b = Z.(lo <> zero) in (* Get the float value *) let a,_ = find_vexpr e ve in let c = if b then c else inv_float_class c in (* Refine [a] depending on the class *) let a' = filter_class a c in (* Refine [e] with the new value *) refine_vexpr e (meet a a') ve | _ -> ve (* Backward evaluations of float expressions *) let backward man e ve r = match ekind e with | E_unop(O_float_class cls, ee) -> backward_float_class man cls ee ve (man.avalue V_int_interval r) | _ -> backward man e ve r (* Extended backward evaluation of casts of integers *) let backward_ext_cast man p e ve r = match e.etyp with | T_int | T_bool -> (* Get the intger value *) let v,_ = find_vexpr e ve in (* Convert to an interval *) let iitv = man.avalue V_int_interval v in begin match iitv with | BOT -> None | Nb itv -> (* Refine it knowing that the result of the cast is [r] *) let iitv' = ItvUtils.FloatItvNan.bwd_of_int_itv (prec p) (round ()) itv r in (* Evaluate the new float value *) let v' = man.eval (mk_avalue_expr V_int_interval iitv' e.erange) in (* Put it in the evaluation tree *) refine_vexpr e (man.meet v v') ve |> OptionExt.return end | _ -> None (** Extended backward evaluation of mixed-types expressions *) let backward_ext man e ve r = match ekind e with | E_unop(O_cast,ee) -> backward_ext_cast man (prec_of_type e.etyp) ee ve (man.get r) | _ -> V.backward_ext man e ve r end let () = register_value_abstraction (module Value)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>