package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/domain/simplified_product.ml.html
Source file simplified_product.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Reduced product of simplified (leaf) domains *) open Mopsa_utils open Core.All open Common open Sig.Reduction.Simplified open Sig.Combiner.Simplified (** Create a product of two domains *) module MakeDomainPair(D1:SIMPLIFIED_COMBINER)(D2:SIMPLIFIED_COMBINER) : SIMPLIFIED_COMBINER with type t = D1.t * D2.t = struct type t = D1.t * D2.t let id = C_pair(Product,D1.id,D2.id) let name = D1.name ^ " ∧ " ^ D2.name let domains = DomainSet.union D1.domains D2.domains let semantics = SemanticSet.union D1.semantics D2.semantics let routing_table = join_routing_table D1.routing_table D2.routing_table let bottom : t = D1.bottom, D2.bottom let top : t = D1.top, D2.top let is_bottom ((a,b):t) : bool = D1.is_bottom a || D2.is_bottom b let subset ((a1,b1):t) ((a2,b2):t) : bool = D1.subset a1 a2 && D2.subset b1 b2 let apply f1 f2 ((v1,v2) as v) = let r1 = f1 v1 in let r2 = f2 v2 in if r1 == v1 && r2 == v2 then v else (r1,r2) let apply2 f1 f2 ((v1,v2) as v) ((w1,w2) as w) = let r1 = f1 v1 w1 in let r2 = f2 v2 w2 in if r1 == v1 && r2 == v2 then v else if r1 == w1 && r2 == w2 then w else (r1,r2) let join ((v1,v2) as v:t) ((w1,w2) as w:t) : t = if v1 == w1 && v2 == w2 then v else apply2 D1.join D2.join v w let meet ((v1,v2) as v:t) ((w1,w2) as w:t) : t = if v1 == w1 && v2 == w2 then v else apply2 D1.meet D2.meet v w let widen ctx ((v1,v2) as v:t) ((w1,w2) as w:t) : t = if v1 == w1 && v2 == w2 then v else apply2 (D1.widen ctx) (D2.widen ctx) v w let merge path (p1,p2) (a1,e1) (a2,e2) = apply2 (fun v1 w1 -> D1.merge path p1 (v1,e1) (w1,e2)) (fun v2 w2 -> D2.merge path p2 (v2,e1) (w2,e2)) a1 a2 let hdman (man:('a,t) Sig.Abstraction.Simplified.simplified_man) : (('a,D1.t) Sig.Abstraction.Simplified.simplified_man) = { man with exec = (fun stmt -> man.exec stmt |> fst); } let tlman (man:('a,t) Sig.Abstraction.Simplified.simplified_man) : (('a,D2.t) Sig.Abstraction.Simplified.simplified_man) = { man with exec = (fun stmt -> man.exec stmt |> snd); } let init prog = D1.init prog, D2.init prog let exec targets = let recompose_pair ((a1,a2) as a) r1 r2 = match r1, r2 with | None, None -> None | Some r1, None -> if a1 == r1 then Some a else Some (r1,a2) | None, Some r2 -> if a2 == r2 then Some a else Some (a1,r2) | Some r1, Some r2 -> if r1 == a1 && r2 == a2 then Some a else Some (r1,r2) in match sat_targets ~targets ~domains:D1.domains, sat_targets ~targets ~domains:D2.domains with | false, false -> raise Not_found | true, false -> let f1 = D1.exec targets in (fun stmt man ctx ((a1,a2) as a) -> recompose_pair a (f1 stmt (hdman man) ctx a1) None) | false, true -> let f2 = D2.exec targets in (fun stmt man ctx ((a1,a2) as a) -> recompose_pair a None (f2 stmt (tlman man) ctx a2)) | true, true -> let f1 = D1.exec targets in let f2 = D2.exec targets in (fun stmt man ctx ((a1,a2) as a) -> recompose_pair a (f1 stmt (hdman man) ctx a1) (f2 stmt (tlman man) ctx a2)) let ask targets = match sat_targets ~targets ~domains:D1.domains, sat_targets ~targets ~domains:D2.domains with | false, false -> raise Not_found | true, false -> let f1 = D1.ask targets in (fun q man ctx (a1,_) -> f1 q (hdman man) ctx a1) | false, true -> let f2 = D2.ask targets in (fun q man ctx (_,a2) -> f2 q (tlman man) ctx a2) | true, true -> let f1 = D1.ask targets in let f2 = D2.ask targets in (fun q man ctx (a1,a2) -> OptionExt.neutral2 (meet_query q) (f1 q (hdman man) ctx a1) (f2 q (tlman man) ctx a2)) let print_state targets = match sat_targets ~targets ~domains:D1.domains, sat_targets ~targets ~domains:D2.domains with | false, false -> raise Not_found | true, false -> let f1 = D1.print_state targets in (fun printer (a1,_) -> f1 printer a1) | false, true -> let f2 = D2.print_state targets in (fun printer (_,a2) -> f2 printer a2) | true, true -> let f1 = D1.print_state targets in let f2 = D2.print_state targets in (fun printer (a1,a2) -> f1 printer a1; f2 printer a2) let print_expr targets = match sat_targets ~targets ~domains:D1.domains, sat_targets ~targets ~domains:D2.domains with | false, false -> raise Not_found | true, false -> let f1 = D1.print_expr targets in (fun man ctx (a1,_) printer e -> f1 (hdman man) ctx a1 printer e) | false, true -> let f2 = D2.print_expr targets in (fun man ctx (_,a2) printer e -> f2 (tlman man) ctx a2 printer e) | true, true -> let f1 = D1.print_expr targets in let f2 = D2.print_expr targets in (fun man ctx (a1,a2) printer e -> f1 (hdman man) ctx a1 printer e; f2 (tlman man) ctx a2 printer e) end (** Create a reduced product from a domain representing a product of domains and a list of reduction rules *) module Make (D:SIMPLIFIED_COMBINER) (R:sig val rules : (module SIMPLIFIED_REDUCTION) list end) : SIMPLIFIED_COMBINER with type t = D.t = struct include D let reduction_man man : ('a,D.t) simplified_reduction_man = { (* Get the abstract element of a domain *) get_env = (fun (type a) (idx:a id) (a:t) -> let rec aux : type b. b id -> b -> a = fun idy aa -> match idy, aa with | C_empty, () -> raise Not_found | C_pair(_,hd,tl), (ahd,atl) -> begin match equal_id hd idx with | Some Eq -> ahd | None -> aux tl atl end | _ -> match equal_id idx idy with | Some Eq -> aa | None -> raise Not_found in aux id a ); (* Set the abstract element of a domain *) set_env = (fun (type a) (idx:a id) (x:a) (a:t) -> let rec aux : type b. b id -> b -> b = fun idy aa -> match idy, aa with | C_empty, () -> raise Not_found | C_pair(_,hd,tl), (ahd,atl) -> begin match equal_id hd idx with | Some Eq -> x,atl | None -> ahd, aux tl atl end | _ -> match equal_id idx idy with | Some Eq -> x | None -> raise Not_found in aux id a ); (* Get the abstract value of a variable *) get_value = (fun (type v) (idx:v id) var a -> let open Value.Nonrel in let open Bot_top in let open Lattices.Partial_map in let rec aux : type a. a id -> a -> v = fun idy aa -> match idy, aa with (* The value is extracted from non-relational environments *) | D_nonrel vmodule, aa -> let module V = (val vmodule) in (* Extract the value of the variable. This is not the final result, as the required value may be embedded in a product *) let v = match aa with | TOP -> V.top | BOT -> V.bottom | Nbt map -> PMap.find var map in (* Iterate over combiners to find the required id *) let rec iter : type w. w id -> w -> v = fun id' v' -> (* Check if id' corresponds to what we are searching for *) match equal_id id' idx with | Some Eq -> v' | None -> (* Otherwise, search in the arguments of the combiner *) match id', v' with | V_pair(id1,id2), (v1,v2) -> begin try iter id1 v1 with Not_found -> iter id2 v2 end | _ -> raise Not_found in iter V.id v | C_pair(_,hd,tl), (ahd,atl) -> begin try aux hd ahd with Not_found -> aux tl atl end | _ -> raise Not_found in aux id a ); set_value = (fun (type v) (idx:v id) var (v:v) a -> let open Value.Nonrel in let open Bot_top in let open Lattices.Partial_map in let rec aux : type a. a id -> a -> a = fun idy aa -> match idy, aa with (* The value is set in non-relational environments *) | D_nonrel vmodule, aa -> let module V = (val vmodule) in (* Get the old value of the variable. The given value [v] will be put *inside* it (in case of composed values). *) let old = match aa with | TOP -> V.top | BOT -> V.bottom | Nbt map -> PMap.find var map in (* Iterate over the structure of [old] to put [v] in the right place *) let rec iter: type w. w id -> w -> w = fun id' v'-> (* Check if id' corresponds to what we are searching for *) match equal_id id' idx with | Some Eq -> v | None -> (* Otherwise, search in the operands of value combiners *) match id',v' with | V_pair(id1,id2), (v1,v2) -> begin try iter id1 v1,v2 with Not_found -> v1,iter id2 v2 end | _ -> raise Not_found in let update = iter V.id old in if V.is_bottom update then BOT else begin match aa with | TOP -> TOP | BOT -> BOT | Nbt map -> Nbt (PMap.add var update map) end | C_pair(_,hd,tl), (ahd,atl) -> begin try aux hd ahd, atl with Not_found -> ahd, aux tl atl end | _ -> raise Not_found in aux id a ); ask = (fun q ctx a -> match D.ask None q man ctx a with None -> raise Not_found | Some r -> r); } let reduce stmt man ctx pre post = let rman = reduction_man man in List.fold_left (fun acc rule -> let module Rule = (val rule : SIMPLIFIED_REDUCTION) in Rule.reduce stmt rman ctx pre acc ) post R.rules let exec targets = let f = D.exec targets in (fun stmt man ctx a -> match f stmt man ctx a with | None -> None | Some r -> Some (reduce stmt man ctx a r)) end let make (domains:(module SIMPLIFIED_COMBINER) list) ~(rules:(module SIMPLIFIED_REDUCTION) list) : (module SIMPLIFIED_COMBINER) = let rec aux = function | [] -> assert false | [d] -> d | hd::tl -> (module MakeDomainPair(val hd:SIMPLIFIED_COMBINER)(val (aux tl):SIMPLIFIED_COMBINER) : SIMPLIFIED_COMBINER) in (module Make(val (aux domains):SIMPLIFIED_COMBINER)(struct let rules = rules end))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>