package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/containers/setExt.ml.html
Source file setExt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
(* This file is derived from the set.ml file from the OCaml distribution. Changes are marked with the [MOPSA] symbol. Modifications are Copyright (C) 2017-2019 The MOPSA Project. Original copyright follows. *) (**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* [MOPSA] module signatures moved to a separate file *) open SetExtSig module Make(Ord: OrderedType) = struct type elt = Ord.t type t = Empty | Node of {l:t; v:elt; r:t; h:int} (* Sets are represented by balanced binary trees (the heights of the children differ by at most 2 *) let height = function Empty -> 0 | Node {h} -> h (* Creates a new node with left son l, value v and right son r. We must have all elements of l < v < all elements of r. l and r must be balanced and | height l - height r | <= 2. Inline expansion of height for better speed. *) let create l v r = let hl = match l with Empty -> 0 | Node {h} -> h in let hr = match r with Empty -> 0 | Node {h} -> h in Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)} (* Same as create, but performs one step of rebalancing if necessary. Assumes l and r balanced and | height l - height r | <= 3. Inline expansion of create for better speed in the most frequent case where no rebalancing is required. *) let bal l v r = let hl = match l with Empty -> 0 | Node {h} -> h in let hr = match r with Empty -> 0 | Node {h} -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Set.bal" | Node{l=ll; v=lv; r=lr} -> if height ll >= height lr then create ll lv (create lr v r) else begin match lr with Empty -> invalid_arg "Set.bal" | Node{l=lrl; v=lrv; r=lrr}-> create (create ll lv lrl) lrv (create lrr v r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Set.bal" | Node{l=rl; v=rv; r=rr} -> if height rr >= height rl then create (create l v rl) rv rr else begin match rl with Empty -> invalid_arg "Set.bal" | Node{l=rll; v=rlv; r=rlr} -> create (create l v rll) rlv (create rlr rv rr) end end else Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)} (* Insertion of one element *) let rec add x = function Empty -> Node{l=Empty; v=x; r=Empty; h=1} | Node{l; v; r} as t -> let c = Ord.compare x v in if c = 0 then t else if c < 0 then let ll = add x l in if l == ll then t else bal ll v r else let rr = add x r in if r == rr then t else bal l v rr let singleton x = Node{l=Empty; v=x; r=Empty; h=1} (* Beware: those two functions assume that the added v is *strictly* smaller (or bigger) than all the present elements in the tree; it does not test for equality with the current min (or max) element. Indeed, they are only used during the "join" operation which respects this precondition. *) let rec add_min_element x = function | Empty -> singleton x | Node {l; v; r} -> bal (add_min_element x l) v r let rec add_max_element x = function | Empty -> singleton x | Node {l; v; r} -> bal l v (add_max_element x r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v r = match (l, r) with (Empty, _) -> add_min_element v r | (_, Empty) -> add_max_element v l | (Node{l=ll; v=lv; r=lr; h=lh}, Node{l=rl; v=rv; r=rr; h=rh}) -> if lh > rh + 2 then bal ll lv (join lr v r) else if rh > lh + 2 then bal (join l v rl) rv rr else create l v r (* Smallest and greatest element of a set *) let rec min_elt = function Empty -> raise Not_found | Node{l=Empty; v} -> v | Node{l} -> min_elt l let rec min_elt_opt = function Empty -> None | Node{l=Empty; v} -> Some v | Node{l} -> min_elt_opt l let rec max_elt = function Empty -> raise Not_found | Node{v; r=Empty} -> v | Node{r} -> max_elt r let rec max_elt_opt = function Empty -> None | Node{v; r=Empty} -> Some v | Node{r} -> max_elt_opt r (* Remove the smallest element of the given set *) let rec remove_min_elt = function Empty -> invalid_arg "Set.remove_min_elt" | Node{l=Empty; r} -> r | Node{l; v; r} -> bal (remove_min_elt l) v r (* Merge two trees l and r into one. All elements of l must precede the elements of r. Assume | height l - height r | <= 2. *) let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2) (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2) (* Splitting. split x s returns a triple (l, present, r) where - l is the set of elements of s that are < x - r is the set of elements of s that are > x - present is false if s contains no element equal to x, or true if s contains an element equal to x. *) let rec split x = function Empty -> (Empty, false, Empty) | Node{l; v; r} -> let c = Ord.compare x v in if c = 0 then (l, true, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v r) else let (lr, pres, rr) = split x r in (join l v lr, pres, rr) (* Implementation of the set operations *) let empty = Empty let is_empty = function Empty -> true | _ -> false let rec mem x = function Empty -> false | Node{l; v; r} -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec remove x = function Empty -> Empty | (Node{l; v; r} as t) -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then let ll = remove x l in if l == ll then t else bal ll v r else let rr = remove x r in if r == rr then t else bal l v rr let rec union s1 s2 = if s1 == s2 then s1 (* [MOPSA] *) else match (s1, s2) with (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Node{l=l1; v=v1; r=r1; h=h1}, Node{l=l2; v=v2; r=r2; h=h2}) -> if h1 >= h2 then if h2 = 1 then add v2 s1 else begin let (l2, _, r2) = split v1 s2 in join (union l1 l2) v1 (union r1 r2) end else if h1 = 1 then add v1 s2 else begin let (l1, _, r1) = split v2 s1 in join (union l1 l2) v2 (union r1 r2) end let rec inter s1 s2 = if s1 == s2 then s1 (* [MOPSA] *) else match (s1, s2) with (Empty, _) -> Empty | (_, Empty) -> Empty | (Node{l=l1; v=v1; r=r1}, t2) -> match split v1 t2 with (l2, false, r2) -> concat (inter l1 l2) (inter r1 r2) | (l2, true, r2) -> join (inter l1 l2) v1 (inter r1 r2) let rec diff s1 s2 = if s1 == s2 then Empty (* [MOPSA] *) else match (s1, s2) with (Empty, _) -> Empty | (t1, Empty) -> t1 | (Node{l=l1; v=v1; r=r1}, t2) -> match split v1 t2 with (l2, false, r2) -> join (diff l1 l2) v1 (diff r1 r2) | (l2, true, r2) -> concat (diff l1 l2) (diff r1 r2) type enumeration = End | More of elt * t * enumeration let rec cons_enum s e = match s with Empty -> e | Node{l; v; r} -> cons_enum l (More(v, r, e)) let rec iter f = function Empty -> () | Node{l; v; r} -> iter f l; f v; iter f r let rec fold f s accu = match s with Empty -> accu | Node{l; v; r} -> fold f r (f v (fold f l accu)) let rec for_all p = function Empty -> true | Node{l; v; r} -> p v && for_all p l && for_all p r let rec exists p = function Empty -> false | Node{l; v; r} -> p v || exists p l || exists p r let rec filter p = function Empty -> Empty | (Node{l; v; r}) as t -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pv = p v in let r' = filter p r in if pv then if l==l' && r==r' then t else join l' v r' else concat l' r' let rec partition p = function Empty -> (Empty, Empty) | Node{l; v; r} -> (* call [p] in the expected left-to-right order *) let (lt, lf) = partition p l in let pv = p v in let (rt, rf) = partition p r in if pv then (join lt v rt, concat lf rf) else (concat lt rt, join lf v rf) let rec cardinal = function Empty -> 0 | Node{l; r} -> cardinal l + 1 + cardinal r let rec elements_aux accu = function Empty -> accu | Node{l; v; r} -> elements_aux (v :: elements_aux accu r) l let elements s = elements_aux [] s let choose = min_elt let choose_opt = min_elt_opt let rec find x = function Empty -> raise Not_found | Node{l; v; r} -> let c = Ord.compare x v in if c = 0 then v else find x (if c < 0 then l else r) let rec find_first_aux v0 f = function Empty -> v0 | Node{l; v; r} -> if f v then find_first_aux v f l else find_first_aux v0 f r let rec find_first f = function Empty -> raise Not_found | Node{l; v; r} -> if f v then find_first_aux v f l else find_first f r let rec find_first_opt_aux v0 f = function Empty -> Some v0 | Node{l; v; r} -> if f v then find_first_opt_aux v f l else find_first_opt_aux v0 f r let rec find_first_opt f = function Empty -> None | Node{l; v; r} -> if f v then find_first_opt_aux v f l else find_first_opt f r let rec find_last_aux v0 f = function Empty -> v0 | Node{l; v; r} -> if f v then find_last_aux v f r else find_last_aux v0 f l let rec find_last f = function Empty -> raise Not_found | Node{l; v; r} -> if f v then find_last_aux v f r else find_last f l let rec find_last_opt_aux v0 f = function Empty -> Some v0 | Node{l; v; r} -> if f v then find_last_opt_aux v f r else find_last_opt_aux v0 f l let rec find_last_opt f = function Empty -> None | Node{l; v; r} -> if f v then find_last_opt_aux v f r else find_last_opt f l let rec find_opt x = function Empty -> None | Node{l; v; r} -> let c = Ord.compare x v in if c = 0 then Some v else find_opt x (if c < 0 then l else r) let try_join l v r = (* [join l v r] can only be called when (elements of l < v < elements of r); use [try_join l v r] when this property may not hold, but you hope it does hold in the common case *) if (l = Empty || Ord.compare (max_elt l) v < 0) && (r = Empty || Ord.compare v (min_elt r) < 0) then join l v r else union l (add v r) let rec map f = function | Empty -> Empty | Node{l; v; r} as t -> (* enforce left-to-right evaluation order *) let l' = map f l in let v' = f v in let r' = map f r in if l == l' && v == v' && r == r' then t else try_join l' v' r' let of_sorted_list l = let rec sub n l = match n, l with | 0, l -> Empty, l | 1, x0 :: l -> Node {l=Empty; v=x0; r=Empty; h=1}, l | 2, x0 :: x1 :: l -> Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Empty; h=2}, l | 3, x0 :: x1 :: x2 :: l -> Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Node{l=Empty; v=x2; r=Empty; h=1}; h=2}, l | n, l -> let nl = n / 2 in let left, l = sub nl l in match l with | [] -> assert false | mid :: l -> let right, l = sub (n - nl - 1) l in create left mid right, l in fst (sub (List.length l) l) let of_list l = match l with | [] -> empty | [x0] -> singleton x0 | [x0; x1] -> add x1 (singleton x0) | [x0; x1; x2] -> add x2 (add x1 (singleton x0)) | [x0; x1; x2; x3] -> add x3 (add x2 (add x1 (singleton x0))) | [x0; x1; x2; x3; x4] -> add x4 (add x3 (add x2 (add x1 (singleton x0)))) | _ -> of_sorted_list (List.sort_uniq Ord.compare l) (* [MOPSA] additions *) (* ***************** *) (* internal function *) (* similar to split, but returns unbalanced trees *) let rec cut k = function Empty -> Empty,false,Empty | Node {l=l1; v=k1; r=r1; h=h1; } -> let c = Ord.compare k k1 in if c < 0 then let l2,d2,r2 = cut k l1 in (l2,d2,Node {l=r2; v=k1; r=r1; h=h1}) else if c > 0 then let l2,d2,r2 = cut k r1 in (Node {l=l1; v=k1; r=l2; h=h1;},d2,r2) else (l1,true,r1) (* binary operations *) let rec iter2 f1 f2 f s1 s2 = match s1 with | Empty -> iter f2 s2 | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in iter2 f1 f2 f l1 l2; if t then f k else f1 k; iter2 f1 f2 f r1 r2 let rec fold2 f1 f2 f s1 s2 acc = match s1 with | Empty -> fold f2 s2 acc | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in let acc = fold2 f1 f2 f l1 l2 acc in let acc = if t then f k acc else f1 k acc in fold2 f1 f2 f r1 r2 acc let rec for_all2 f1 f2 f s1 s2 = match s1 with | Empty -> for_all f2 s2 | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in (for_all2 f1 f2 f l1 l2) && (if t then f k else f1 k) && (for_all2 f1 f2 f r1 r2) let rec exists2 f1 f2 f s1 s2 = match s1 with | Empty -> exists f2 s2 | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in (exists2 f1 f2 f l1 l2) || (if t then f k else f1 k) || (exists2 f1 f2 f r1 r2) (* the _diff functions ignore elements present in both sets; they can thus skip physically equal subtrees, which improves efficiency when the two sets are similar *) let rec iter2_diff f1 f2 s1 s2 = if s1 == s2 then () else match s1 with | Empty -> iter f2 s2 | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in iter2_diff f1 f2 l1 l2; if not t then f1 k; iter2_diff f1 f2 r1 r2 let rec fold2_diff f1 f2 s1 s2 acc = if s1 == s2 then acc else match s1 with | Empty -> fold f2 s2 acc | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in let acc = fold2_diff f1 f2 l1 l2 acc in let acc = if t then acc else f1 k acc in fold2_diff f1 f2 r1 r2 acc let rec for_all2_diff f1 f2 s1 s2 = if s1 == s2 then true else match s1 with | Empty -> for_all f2 s2 | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in (for_all2_diff f1 f2 l1 l2) && (t || f1 k) && (for_all2_diff f1 f2 r1 r2) let rec exists2_diff f1 f2 s1 s2 = if s1 == s2 then true else match s1 with | Empty -> exists f2 s2 | Node { l=l1; r=r1; v=k; } -> let l2,t,r2 = cut k s2 in (exists2_diff f1 f2 l1 l2) || (f1 k) || (exists2_diff f1 f2 r1 r2) let diff_list s1 s2 = fold2_diff (fun x l -> x::l) (fun _ l -> l) s1 s2 [] let sym_diff_list s1 s2 = fold2_diff (fun x (l1,l2) -> x::l1, l2) (fun x (l1,l2) -> l1, x::l2) s1 s2 ([],[]) let add_sym_diff s2 (a,r) = List.fold_left (fun s x -> add x s) (List.fold_left (fun s x -> remove x s) s2 r) a (* these versions are limited to elements between two bounds *) let rec iter_slice f m lo hi = match m with | Empty -> () | Node {l;v;r} -> let c1, c2 = Ord.compare v lo, Ord.compare v hi in if c1 > 0 then iter_slice f l lo hi; if c1 >= 0 && c2 <= 0 then f v; if c2 < 0 then iter_slice f r lo hi let rec fold_slice f m lo hi acc = match m with | Empty -> acc | Node {l;v;r} -> let c1, c2 = Ord.compare v lo, Ord.compare v hi in let acc = if c1 > 0 then fold_slice f l lo hi acc else acc in let acc = if c1 >= 0 && c2 <= 0 then f v acc else acc in if c2 < 0 then fold_slice f r lo hi acc else acc let rec for_all_slice f m lo hi = match m with | Empty -> true | Node {l;v;r} -> let c1, c2 = Ord.compare v lo, Ord.compare v hi in (c1 <= 0 || for_all_slice f l lo hi) && (c1 < 0 || c2 > 0 || f v) && (c2 >= 0 || for_all_slice f r lo hi) let rec exists_slice f m lo hi = match m with | Empty -> false | Node {l;v;r} -> let c1, c2 = Ord.compare v lo, Ord.compare v hi in (c1 > 0 && exists_slice f l lo hi) || (c1 >= 0 && c2 <= 0 && f v) || (c2 < 0 && exists_slice f r lo hi) (* new versions, optimised with _diff functions *) let equal s1 s2 = for_all2_diff (fun _ -> false) (fun _ -> false) s1 s2 let subset s1 s2 = for_all2_diff (fun _ -> false) (fun _ -> true) s1 s2 let compare s1 s2 = let r = ref 0 in try iter2_diff (fun _ -> r := 1; raise Exit) (fun _ -> r := -1; raise Exit) s1 s2; !r with Exit -> !r (* printing *) let print_gen o printer key ch s = if s = Empty then o ch printer.print_empty else ( let first = ref true in o ch printer.print_begin; iter (fun k -> if !first then first := false else o ch printer.print_sep; key ch k ) s; o ch printer.print_end ) (* internal printing helper *) let print printer key ch l = print_gen output_string printer key ch l let bprint printer key ch l = print_gen Buffer.add_string printer key ch l let fprint printer key ch l = print_gen (fun fmt s -> Format.fprintf fmt "%s@," s) printer key ch l let to_string printer key l = let b = Buffer.create 10 in print_gen (fun () s -> Buffer.add_string b s) printer (fun () k -> Buffer.add_string b (key k)) () l; Buffer.contents b (* Translation to polymorphic sets *) let to_poly_set s = SetExtPoly.of_list Ord.compare (elements s) end let printer_default = { print_empty="{}"; print_begin="{"; print_sep=","; print_end="}"; } (** [MOPSA] Print as set: {elem1,...,elemn} *) (* [MOPSA] A few useful instances *) module StringSet = Make(String) module IntSet = Make(struct type t = int let compare : int -> int -> int = compare end) module Int32Set = Make(Int32) module Int64Set = Make(Int64) module ZSet = Make(Z)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>