package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/ast/visitor.ml.html
Source file visitor.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** AST visitors *) open Mopsa_utils open Expr open Var open Stmt (** Parts are the direct sub-elements of an AST node *) type parts = { exprs : expr list; (** child expressions *) stmts : stmt list; (** child statements *) } (** A structure of an extensible type ['a] is a tuple composed of two elements: the parts and a builder function. *) type 'a structure = parts * (parts -> 'a) let leaf (x: 'a) : 'a structure = {exprs = []; stmts = []}, (fun _ -> x) (*==========================================================================*) (** {2 Registration} *) (*==========================================================================*) (** Information record of an AST construct with visitors *) type 'a visit_info = { compare : 'a TypeExt.compare; print : 'a TypeExt.print; visit : ('a -> 'a structure) -> 'a -> 'a structure; } let expr_visit_chain = ref (fun exp -> match ekind exp with | E_var _ -> leaf exp | E_constant _ -> leaf exp | E_unop(unop, e) -> {exprs = [e]; stmts = []}, (fun parts -> {exp with ekind = E_unop(unop, List.hd parts.exprs)}) | E_binop(binop, e1, e2) -> {exprs = [e1; e2]; stmts = []}, (fun parts -> {exp with ekind = E_binop(binop, List.hd parts.exprs, List.nth parts.exprs 1)}) | E_alloc_addr _ -> leaf exp | E_addr _ -> leaf exp | _ -> Exceptions.panic "expr visitor: unknown expression %a" pp_expr exp ) let register_expr_with_visitor (info: expr visit_info) : unit = register_expr_compare info.compare; register_expr_pp info.print; expr_visit_chain := info.visit !expr_visit_chain; () let register_expr_visitor v : unit = expr_visit_chain := v !expr_visit_chain; () let stmt_visit_chain : (stmt -> stmt structure) ref = ref (fun stmt -> match skind stmt with | S_program _ -> Exceptions.panic "visitor of S_program not supported" | S_assign(lhs, rhs) -> { exprs = [lhs; rhs]; stmts = [] } , ( function | { exprs = [lhs; rhs] } -> { stmt with skind = S_assign(lhs, rhs) } | _ -> assert false ) | S_assume cond -> { exprs = [cond]; stmts = [] } , ( function | { exprs = [cond] } -> { stmt with skind = S_assume(cond) } | _ -> assert false ) | S_rename(e,e') -> { exprs = [e;e']; stmts = [] }, (function | { exprs = [e;e'] } -> { stmt with skind = S_rename(e,e') } | _ -> assert false) | S_add(e) -> { exprs = [e]; stmts = [] }, (function | { exprs = [e] } -> { stmt with skind = S_add(e) } | _ -> assert false) | S_remove(e) -> { exprs = [e]; stmts = [] }, (function | { exprs = [e] } -> { stmt with skind = S_remove(e) } | _ -> assert false) | S_invalidate(e) -> { exprs = [e]; stmts = [] }, (function | { exprs = [e] } -> { stmt with skind = S_invalidate(e) } | _ -> assert false) | S_forget(e) -> { exprs = [e]; stmts = [] }, (function | { exprs = [e] } -> { stmt with skind = S_forget(e) } | _ -> assert false) | S_project(el) -> { exprs = el; stmts = [] }, (function | { exprs } -> { stmt with skind = S_project(exprs) }) | S_expand(e,el) -> { exprs = e::el; stmts = [] }, (function | { exprs = e::el } -> { stmt with skind = S_expand(e,el) } | _ -> assert false) | S_fold(e,el) -> { exprs = e::el; stmts = [] }, (function | { exprs = e::el } -> { stmt with skind = S_fold(e,el) } | _ -> assert false) | S_block(sl,vl) -> {exprs = []; stmts = sl}, (fun parts -> {stmt with skind = S_block(parts.stmts,vl)}) | S_breakpoint _ -> leaf stmt | _ -> Exceptions.panic "stmt_visit_chain: unknown statement" ) let register_stmt_with_visitor (info: stmt visit_info) : unit = register_stmt_compare info.compare; register_stmt_pp info.print; stmt_visit_chain := info.visit !stmt_visit_chain; () let register_stmt_visitor v : unit = stmt_visit_chain := v !stmt_visit_chain; () let structure_of_expr (expr : expr) : expr structure = !expr_visit_chain expr let structure_of_stmt (stmt : stmt) : stmt structure = !stmt_visit_chain stmt let is_leaf_expr e = let parts, _ = structure_of_expr e in parts.exprs = [] && parts.stmts = [] let rec is_atomic_expr e = let parts, _ = structure_of_expr e in parts.stmts = [] && List.for_all is_atomic_expr parts.exprs let is_atomic_stmt s = match skind s with | S_program _ -> (* FIXME: as defining visitor of the program is not always possible, we need here to give a hard-coded answer *) false | _ -> let parts, _ = structure_of_stmt s in parts.stmts = [] && List.for_all is_atomic_expr parts.exprs (*==========================================================================*) (** {2 Visitors} *) (*==========================================================================*) (** Visitor actions *) type 'a visit_action = | Keep of 'a (** Keep the result *) | VisitParts of 'a (** Continue visiting the parts of the result *) | Visit of 'a (** Iterate the visitor on the result *) let fold_map_list (f : 'a -> 'b -> ('a * 'b)) (x0 : 'a) (l : 'b list) : ('a * 'b list) = let (xe,l') = List.fold_left (fun (accx, accl) z -> let x,z' = f accx z in (x, z' :: accl) ) (x0, []) l in (xe, List.rev l') (** [map_expr fe fs e] transforms the expression [e] into a new one, by splitting [fe e] into its sub-parts, applying [map_expr fe fs] and [map_stmt fe fs] on them, and finally gathering the results with the builder of [fe e]. *) let rec map_expr (fe: expr -> expr visit_action) (fs: stmt -> stmt visit_action) (e: expr) : expr = match fe e with | Keep e' -> e' | Visit e' -> map_expr fe fs e' | VisitParts e' -> let parts, builder = structure_of_expr e' in let exprs' = List.map (map_expr fe fs) parts.exprs and stmts' = List.map (map_stmt fe fs) parts.stmts in builder {exprs = exprs'; stmts = stmts'} (** [map_stmt fe fs s] same as [map_expr] but on statements. *) and map_stmt (fe: expr -> expr visit_action) (fs: stmt -> stmt visit_action) s : stmt = match fs s with | Keep s' -> s' | Visit s' -> map_stmt fe fs s' | VisitParts s' -> let parts, builder = structure_of_stmt s' in let exprs' = List.map (map_expr fe fs) parts.exprs and stmts' = List.map (map_stmt fe fs) parts.stmts in builder {exprs = exprs'; stmts = stmts'} (** Folding function for expressions *) let rec fold_expr (fe: 'a -> expr -> 'a visit_action) (fs: 'a -> stmt -> 'a visit_action) x0 e = match fe x0 e with | Keep x1 -> x1 | Visit x1 -> fold_expr fe fs x1 e | VisitParts x1 -> let parts, _ = structure_of_expr e in let x2 = List.fold_left (fold_expr fe fs) x1 parts.exprs in List.fold_left (fold_stmt fe fs) x2 parts.stmts (** Folding function for statements *) and fold_stmt (fe: 'a -> expr -> 'a visit_action) (fs: 'a -> stmt -> 'a visit_action) x0 s = match fs x0 s with | Keep x1 -> x1 | Visit x1 -> fold_stmt fe fs x1 s | VisitParts x1 -> let parts, _ = structure_of_stmt s in let x2 = List.fold_left (fold_expr fe fs) x1 parts.exprs in List.fold_left (fold_stmt fe fs) x2 parts.stmts let fold_sub_expr (fe: 'a -> expr -> 'a visit_action) (fs: 'a -> stmt -> 'a visit_action) x0 e = let parts, _ = structure_of_expr e in let x2 = List.fold_left (fold_expr fe fs) x0 parts.exprs in List.fold_left (fold_stmt fe fs) x2 parts.stmts (** Combination of map and fold for expressions *) let rec fold_map_expr (fme : 'a -> expr -> ('a * expr) visit_action) (fms : 'a -> stmt -> ('a * stmt) visit_action) (x0 : 'a) (expr : expr) : ('a * expr) = match fme x0 expr with | Keep (x1, expr') -> x1, expr' | Visit (x1, expr') -> fold_map_expr fme fms x1 expr' | VisitParts (x1, expr') -> let parts, builder = structure_of_expr expr' in let x2, exprs = fold_map_list (fun x0 (z : expr) -> fold_map_expr fme fms x0 z ) x1 parts.exprs in let x3, (stmts : stmt list) = fold_map_list (fun x0 (z : stmt) -> fold_map_stmt fme fms x0 z ) x2 parts.stmts in (x3,builder {exprs;stmts}) (** Combination of map and fold for statements *) and fold_map_stmt (fme : 'a -> expr -> ('a * expr) visit_action) (fms : 'a -> stmt -> ('a * stmt) visit_action) (x0 : 'a) (stmt : stmt) : ('a * stmt) = match fms x0 stmt with | Keep (x1, stmt') -> x1, stmt' | Visit (x1, stmt') -> fold_map_stmt fme fms x1 stmt' | VisitParts (x1, stmt') -> let parts, builder = structure_of_stmt stmt' in let x2, exprs = fold_map_list (fun x0 z -> fold_map_expr fme fms x0 z ) x1 parts.exprs in let x3, stmts = fold_map_list (fun x0 z -> fold_map_stmt fme fms x0 z ) x2 parts.stmts in (x3,builder {exprs;stmts}) let rec exists_expr fe fs e = fe e || ( let parts,_ = structure_of_expr e in List.exists (exists_expr fe fs) parts.exprs || List.exists (exists_stmt fe fs) parts.stmts ) and exists_stmt fe fs s = fs s || ( let parts,_ = structure_of_stmt s in List.exists (exists_expr fe fs) parts.exprs || List.exists (exists_stmt fe fs) parts.stmts ) let rec for_all_expr fe fs e = fe e && ( let parts,_ = structure_of_expr e in List.for_all (for_all_expr fe fs) parts.exprs && List.for_all (for_all_stmt fe fs) parts.stmts ) and for_all_stmt fe fs s = fs s && ( let parts,_ = structure_of_stmt s in List.for_all (for_all_expr fe fs) parts.exprs && List.for_all (for_all_stmt fe fs) parts.stmts ) let exists_child_expr fe fs e = let parts,_ = structure_of_expr e in List.exists fe parts.exprs || List.exists fs parts.stmts let exists_child_stmt fe fs s = let parts,_ = structure_of_stmt s in List.exists fe parts.exprs || List.exists fs parts.stmts let for_all_child_expr fe fs e = let parts,_ = structure_of_expr e in List.for_all fe parts.exprs && List.for_all fs parts.stmts let for_all_child_stmt fe fs s = let parts,_ = structure_of_stmt s in List.for_all fe parts.exprs && List.for_all fs parts.stmts (** Extract variables from an expression *) let expr_vars (e: expr) : var list = fold_expr (fun acc e -> match ekind e with | E_var(v, m) -> Keep (v :: acc) | _ -> VisitParts acc ) (fun acc s -> VisitParts acc) [] e (** Extract variables from a statement *) let stmt_vars (s: stmt) : var list = fold_stmt (fun acc e -> match ekind e with | E_var(v, m) -> Keep (v :: acc) | _ -> VisitParts acc ) (fun acc s -> VisitParts acc) [] s let is_var_in_expr v e = fold_expr (fun acc ee -> match ekind ee with | E_var (vv,_) when compare_var v vv = 0 -> Keep true | _ -> VisitParts acc ) (fun acc s -> VisitParts acc) false e let is_var_in_stmt v s = fold_stmt (fun acc ee -> match ekind ee with | E_var (vv,_) when compare_var v vv = 0 -> Keep true | _ -> VisitParts acc ) (fun acc s -> VisitParts acc) false s
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>