package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/python_lang/operators.ml.html
Source file operators.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Mapping between operators and magic functions. *) open Mopsa open Universal.Ast open Ast (*==========================================================================*) (** {2 Binary operators} *) (*==========================================================================*) (** Binary operator of a magic function *) let fun_to_binop = function | "__add__" -> O_plus | "__sub__" -> O_minus | "__mul__" -> O_mult | "__matmul__" -> O_py_mat_mult | "__truediv__" -> O_div | "__floordiv__" -> O_py_floor_div | "__mod__" -> O_mod | "__pow__" -> O_pow | "__lshift__" -> O_bit_lshift | "__rshift__" -> O_bit_rshift | "__and__" -> O_bit_and | "__xor__" -> O_bit_xor | "__or__" -> O_bit_or | "__eq__" -> O_eq | "__ne__" -> O_ne | "__lt__" -> O_lt | "__le__" -> O_le | "__gt__" -> O_gt | "__ge__" -> O_ge | "__radd__" -> O_plus | "__rsub__" -> O_minus | "__rmul__" -> O_mult | "__rmatmul__" -> O_py_mat_mult | "__rtruediv__" -> O_div | "__rfloordiv__" -> O_py_floor_div | "__rmod__" -> O_mod | "__rpow__" -> O_pow | "__rlshift__" -> O_bit_lshift | "__rrshift__" -> O_bit_rshift | "__rand__" -> O_bit_and | "__rxor__" -> O_bit_xor | "__ror__" -> O_bit_or | "__iadd__" -> O_plus | "__isub__" -> O_minus | "__imul__" -> O_mult | "__imatmul__" -> O_py_mat_mult | "__itruediv__" -> O_div | "__ifloordiv__" -> O_py_floor_div | "__imod__" -> O_mod | "__ipow__" -> O_pow | "__ilshift__" -> O_bit_lshift | "__irshift__" -> O_bit_rshift | "__iand__" -> O_bit_and | "__ixor__" -> O_bit_xor | "__ior__" -> O_bit_or | s -> panic "Unknown operator %s" s let methfun_to_binop str = let splitted = String.split_on_char '.' str in let l = ListExt.nth splitted (ListExt.length splitted - 1) in fun_to_binop l (** Magic function of a binary operator *) let binop_to_fun = function | O_plus -> "__add__" | O_minus -> "__sub__" | O_mult -> "__mul__" | O_py_mat_mult -> "__matmul__" | O_div -> "__truediv__" | O_py_floor_div -> "__floordiv__" | O_mod -> "__mod__" | O_pow -> "__pow__" | O_bit_lshift -> "__lshift__" | O_bit_rshift -> "__rshift__" | O_bit_and -> "__and__" | O_bit_xor -> "__xor__" | O_bit_or -> "__or__" | O_eq -> "__eq__" | O_ne -> "__ne__" | O_lt -> "__lt__" | O_le -> "__le__" | O_gt -> "__gt__" | O_ge -> "__ge__" | _ -> assert false (** Right magic function of a binary operator *) let binop_to_rev_fun = function | O_plus -> "__radd__" | O_minus -> "__rsub__" | O_mult -> "__rmul__" | O_py_mat_mult -> "__rmatmul__" | O_div -> "__rtruediv__" | O_py_floor_div -> "__rfloordiv__" | O_mod -> "__rmod__" | O_pow -> "__rpow__" | O_bit_lshift -> "__rlshift__" | O_bit_rshift -> "__rrshift__" | O_bit_and -> "__rand__" | O_bit_xor -> "__rxor__" | O_bit_or -> "__ror__" | _ -> assert false (** Increment magic function of a binary operator *) let binop_to_incr_fun = function | O_plus -> "__iadd__" | O_minus -> "__isub__" | O_mult -> "__imul__" | O_py_mat_mult -> "__imatmul__" | O_div -> "__itruediv__" | O_py_floor_div -> "__ifloordiv__" | O_mod -> "__imod__" | O_pow -> "__ipow__" | O_bit_lshift -> "__ilshift__" | O_bit_rshift -> "__irshift__" | O_bit_and -> "__iand__" | O_bit_xor -> "__ixor__" | O_bit_or -> "__ior__" | _ -> assert false (** Check that a magic function corresponds to a binary operator *) let is_binop_function = function | "__add__" | "__sub__" | "__mul__" | "__matmul__" | "__truediv__" | "__floordiv__" | "__mod__" | "__pow__" | "__lshift__" | "__rshift__" | "__and__" | "__xor__" | "__or__" | "__eq__" | "__ne__" | "__lt__" | "__le__" | "__gt__" | "__ge__" | "__iadd__" | "__isub__" | "__imul__" | "__imatmul__" | "__itruediv__" | "__ifloordiv__" | "__imod__" | "__ipow__" | "__ilshift__" | "__irshift__" | "__iand__" | "__ixor__" | "__ior__" | "__radd__" | "__rsub__" | "__rmul__" | "__rmatmul__" | "__rtruediv__" | "__rfloordiv__" | "__rmod__" | "__rpow__" | "__rlshift__" | "__rrshift__" | "__rand__" | "__rxor__" | "__ror__" -> true | _ -> false (*==========================================================================*) (** {2 Unary operators} *) (*==========================================================================*) (** Unary operator of a magic function *) let fun_to_unop = function | "__not__" -> O_log_not | "__neg__" -> O_minus | "__pos__" -> O_plus | "__invert__" -> O_bit_invert | _ -> assert false let methfun_to_unop str = let splitted = String.split_on_char '.' str in let l = ListExt.nth splitted (ListExt.length splitted - 1) in fun_to_unop l (** Check that a magic function corresponds to a binary operator *) let is_unop_function = function | "__not__" | "__neg__" | "__pos__" | "__invert__" -> true | _ -> false (** Magic function of an unary operator *) let unop_to_fun = function | O_log_not -> "__not__" | O_plus -> "__pos__" | O_minus -> "__neg__" | O_bit_invert -> "__invert__" | _ -> assert false
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>