package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/numeric_common/common.ml.html
Source file common.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Common constructs for numeric abstractions. *) open Mopsa open Ast module I = ItvUtils.IntItv module C = CongUtils.IntCong (** {2 Integer intervals} *) (** ********************* *) (** Integer intervals *) type int_itv = I.t_with_bot type _ avalue_kind += V_int_interval : int_itv avalue_kind (** Query to evaluate the integer interval of an expression *) type _ avalue_kind += V_int_interval_fast : int_itv avalue_kind (** Same as [V_int_interval] but should be handled by optimized domains, such Boxes *) let mk_int_interval_query ?(fast=true) e = if fast then Q_avalue (e,V_int_interval_fast) else Q_avalue (e,V_int_interval) let pp_int_interval fmt itv = I.fprint_bot fmt itv let compare_int_interval itv1 itv2 = I.compare_bot itv1 itv2 (** Creates var \in itv constraint *) let constraints_of_itv var (itv : int_itv) range : expr = match itv with | Nb (ItvUtils.IntBound.Finite lo, ItvUtils.IntBound.Finite hi) -> mk_in var (mk_z lo range) (mk_z hi range) range | Nb (ItvUtils.IntBound.MINF, ItvUtils.IntBound.Finite hi) -> mk_le var (mk_z hi range) range | Nb (ItvUtils.IntBound.Finite lo, ItvUtils.IntBound.PINF) -> mk_ge var (mk_z lo range) range | Nb _ -> mk_true range | BOT -> assert false (** {2 Integer intervals with congruence} *) (** ************************************* *) (** Integer step intervals *) type int_congr_itv = int_itv * C.t_with_bot (** Query to evaluate the integer interval of an expression *) type _ avalue_kind += V_int_congr_interval : int_congr_itv avalue_kind let mk_int_congr_interval_query e = Q_avalue (e,V_int_congr_interval) (** {2 Rounding mode of floats} *) (** *************************** *) let opt_float_rounding = ref Apron.Texpr1.Near let rounding_option_name = "universal.numeric.rounding" let () = register_shared_option rounding_option_name { key = "-float-rounding-mode"; category = "Numeric"; spec = Symbol ( ["near"; "zero"; "up"; "down"; "rnd"], (function | "near" -> opt_float_rounding := Apron.Texpr1.Near | "zero" -> opt_float_rounding := Apron.Texpr1.Zero | "up" -> opt_float_rounding := Apron.Texpr1.Up | "down" -> opt_float_rounding := Apron.Texpr1.Down | "rnd" -> opt_float_rounding := Apron.Texpr1.Rnd | x -> Exceptions.panic "unknown rounding mode %s" x ) ); doc = "rounding mode of floating-point computations."; default = "near"; } (** {2 Float intervals} *) (** ******************* *) module F = ItvUtils.FloatItvNan (** Float intervals *) type float_itv = F.t type _ avalue_kind += | V_float_interval : float_prec -> float_itv avalue_kind (** Query to evaluate the float interval of an expression, with infinities and NaN *) | V_float_maybenan : float_prec -> bool avalue_kind let mk_float_interval_query ?(prec=F_DOUBLE) e = Q_avalue (e,V_float_interval prec) let mk_float_maybenan_query ?(prec=F_DOUBLE) e = Q_avalue (e,V_float_maybenan prec) let pp_float_interval fmt itv = F.fprint F.dfl_fmt fmt itv let compare_float_interval itv1 itv2 = F.compare itv1 itv2 let prec : Ast.float_prec -> ItvUtils.FloatItvNan.prec = function | F_SINGLE -> `SINGLE | F_DOUBLE -> `DOUBLE | F_LONG_DOUBLE -> `EXTRA | F_FLOAT128 -> `EXTRA | F_REAL -> `REAL let round () : ItvUtils.FloatItvNan.round = match !opt_float_rounding with | Apron.Texpr1.Near -> `NEAR | Apron.Texpr1.Zero -> `ZERO | Apron.Texpr1.Up -> `UP | Apron.Texpr1.Down -> `DOWN | Apron.Texpr1.Rnd -> `ANY (** {2 Fast assume on numeric conditions} *) (** ************************************* *) (** Get the intervals of a numeric expression *) let interval_of_num_expr e man flow : int_itv = match expr_to_z e with | Some n -> I.of_range_bot n n | None -> ask_and_reduce man.ask (mk_int_interval_query ~fast:true e) flow (** Evaluate a numeric condition using intervals *) let eval_num_cond cond man flow : bool option = (* Skip expressions that contain non-universal sub-expressions or statements *) if exists_expr (fun e -> not (is_universal_type e.etyp)) (fun s -> true) cond then None else (* Evaluate the interval of the condition *) match interval_of_num_expr cond man flow with | Bot.Nb itv -> begin match I.contains_zero itv, I.contains_nonzero itv with | true, false -> Some false | false, true -> Some true | _ -> None end | _ -> None (** Optimized assume function that uses intervals to check a condition or falls back to classic assume *) let assume_num cond ~fthen ~felse ?(route=toplevel) man flow = let r1 = (* Use [eval_num_cond] directly without evaluation if the expression contains only pure universal sub-expressions (no statement) *) if for_all_expr (fun e -> is_universal_type e.etyp) (fun s -> false) cond then match eval_num_cond cond man flow with | Some true -> Some (fthen flow) | Some false -> Some (felse flow) | None -> None else None in match r1 with | Some r -> r | None -> (* Evaluate the expression if it is not a pure universal expression, or when [eval_num_cond] failed *) man.eval cond flow ~translate:"Universal" >>$ fun ncond flow -> match eval_num_cond ncond man flow with | Some true -> fthen flow | Some false -> felse flow | None -> assume ncond ~fthen ~felse ~eval:false man flow (** {2 Widening thresholds} *) (** *********************** *) open Framework.Combiners.Value.Nonrel module K = GenContextKey (struct type 'a t = SetExt.ZSet.t let print pp fmt s = Format.fprintf fmt "widening thresholds: @[%a@]" (SetExt.ZSet.fprint SetExtSig.{ print_empty = "∅"; print_begin = "{"; print_sep = ", "; print_end = "}"; } Z.pp_print ) s end) (** Key for accessing widening thresholds *) let widening_thresholds_ctx_key = K.key (** Add a constant to the widening thresholds of a variable *) let add_widening_threshold var n ctx = let thresholds = try find_var_ctx var widening_thresholds_ctx_key ctx with Not_found -> SetExt.ZSet.empty in add_var_ctx var widening_thresholds_ctx_key (SetExt.ZSet.add n thresholds) ctx (** Remove all widening thresholds of a variable *) let remove_widening_thresholds var ctx = remove_var_ctx var widening_thresholds_ctx_key ctx let () = register_avalue { typ = (fun (type a) next (avk:a avalue_kind) -> match avk with | V_int_interval -> T_int | V_int_interval_fast -> T_int | V_int_congr_interval -> T_int | V_float_interval p -> T_float p | _ -> next.pool_typ avk ); bottom = ( let f : type a. avalue_pool -> a avalue_kind -> a = fun next avk -> match avk with | V_int_interval -> (Bot.BOT:int_itv) | V_int_interval_fast -> (Bot.BOT:int_itv) | V_int_congr_interval -> (Bot.BOT,Bot.BOT) | V_float_interval p -> F.bot | _ -> next.pool_bottom avk in f ); top = ( let f : type a. avalue_pool -> a avalue_kind -> a = fun next avk -> match avk with | V_int_interval -> Bot.Nb I.minf_inf | V_int_interval_fast -> Bot.Nb I.minf_inf | V_int_congr_interval -> (Bot.Nb I.minf_inf,Bot.Nb C.minf_inf) | V_float_interval p -> begin match p with | F_SINGLE -> F.single_special | F_DOUBLE -> F.double_special | F_LONG_DOUBLE -> F.extra | F_FLOAT128 -> F.extra | F_REAL -> F.real end | _ -> next.pool_top avk in f ); join = ( let f : type a. avalue_pool -> a avalue_kind -> a -> a -> a = fun next avk av1 av2 -> match avk with | V_int_interval -> I.join_bot av1 av2 | V_int_interval_fast -> I.join_bot av1 av2 | V_int_congr_interval -> I.join_bot (fst av1) (fst av2), C.join_bot (snd av1) (snd av2) | V_float_interval p -> F.join av1 av2 | _ -> next.pool_join avk av1 av2 in f ); meet = ( let f : type a. avalue_pool -> a avalue_kind -> a -> a -> a = fun next avk av1 av2 -> match avk with | V_int_interval -> I.meet_bot av1 av2 | V_int_interval_fast -> I.meet_bot av1 av2 | V_int_congr_interval -> I.meet_bot (fst av1) (fst av2), C.meet_bot (snd av1) (snd av2) | V_float_interval p -> F.meet av1 av2 | _ -> next.pool_meet avk av1 av2 in f ); print = ( let f : type a. avalue_pool -> a avalue_kind -> Format.formatter -> a -> unit = fun next avk fmt av -> match avk with | V_int_interval -> I.fprint_bot fmt av | V_int_interval_fast -> I.fprint_bot fmt av | V_int_congr_interval -> Format.fprintf fmt "%a:%a" I.fprint_bot (fst av) C.fprint_bot (snd av) | V_float_interval p -> F.fprint F.dfl_fmt fmt av | _ -> next.pool_print avk fmt av in f ); compare = ( let f : type a b. avalue_pool -> a avalue_kind -> a -> b avalue_kind -> b -> int = fun next avk1 av1 avk2 av2 -> match avk1,avk2 with | V_int_interval, V_int_interval -> I.compare_bot av1 av2 | V_int_interval_fast, V_int_interval_fast -> I.compare_bot av1 av2 | V_int_congr_interval, V_int_congr_interval -> Compare.pair I.compare_bot C.compare_bot av1 av2 | V_float_interval p1, V_float_interval p2 -> Compare.pair compare F.compare (p1,av1) (p2,av2) | _ -> next.pool_compare avk1 av1 avk2 av2 in f ) }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>