package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/mopsa.mopsa_c_parser/C_utils.ml.html
Source file C_utils.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** C_utils - Utilities to access the simple C AST *) open C_AST open C_print open Mopsa_utils module C = struct include Clang_AST include Clang_dump end (** {2 Debug} *) let log_type_unify = ref false (** verbose logging during type unification, for debugging *) let log_type_compare = false (** verbose logging during type comparison, for debugging *) (** {2 Location utilities} *) let range_of_block b = if b = [] then invalid_arg "range_of_block: empty block"; { C.range_begin = (ListExt.hd b).C.range_begin; C.range_end = (ListExt.last b).C.range_end; } (** From the begining of the first block statement to the end of the last block statement. Raises Invalid_argument for empty blocks. *) (** {2 Size and alignment} *) let sizeof_int target t : int = match t with | Char _ | UNSIGNED_CHAR | SIGNED_CHAR -> 1 | SIGNED_SHORT | UNSIGNED_SHORT -> target.C.target_short_width / 8 | SIGNED_INT | UNSIGNED_INT -> target.C.target_int_width / 8 | SIGNED_LONG | UNSIGNED_LONG -> target.C.target_long_width / 8 | SIGNED_LONG_LONG | UNSIGNED_LONG_LONG -> target.C.target_long_long_width / 8 | SIGNED_INT128 | UNSIGNED_INT128 -> 128 / 8 (** Size (in bytes) of an integer type. *) let alignof_int target t : int = match t with | Char _ | UNSIGNED_CHAR | SIGNED_CHAR -> 1 | SIGNED_SHORT | UNSIGNED_SHORT -> target.C.target_short_align / 8 | SIGNED_INT | UNSIGNED_INT -> target.C.target_int_align / 8 | SIGNED_LONG | UNSIGNED_LONG -> target.C.target_long_align / 8 | SIGNED_LONG_LONG | UNSIGNED_LONG_LONG -> target.C.target_long_long_align / 8 | SIGNED_INT128 | UNSIGNED_INT128 -> 128 / 8 (** Alignment (in bytes) of an integer type. *) let signedness_int t = match t with | Char s -> s | SIGNED_CHAR | SIGNED_SHORT | SIGNED_INT | SIGNED_LONG | SIGNED_LONG_LONG | SIGNED_INT128 -> SIGNED | UNSIGNED_CHAR | UNSIGNED_SHORT | UNSIGNED_INT | UNSIGNED_LONG | UNSIGNED_LONG_LONG | UNSIGNED_INT128 -> UNSIGNED (** Signedness of an integer type. *) let sizeof_float target t : int = match t with | FLOAT -> target.C.target_float_width / 8 | DOUBLE -> target.C.target_double_width / 8 | LONG_DOUBLE -> target.C.target_long_double_width / 8 | FLOAT128 -> target.C.target_float128_width / 8 (** Size (in bytes) of a float type. *) let alignof_float target t : int = match t with | FLOAT -> target.C.target_float_align / 8 | DOUBLE -> target.C.target_double_align / 8 | LONG_DOUBLE -> target.C.target_long_double_align / 8 | FLOAT128 -> target.C.target_float128_align / 8 (** Alignment (in bytes) of a float type. *) let rec sizeof_type target t : Z.t = match t with | T_void -> invalid_arg "sizeof_type: size of void" | T_bool -> Z.of_int (target.C.target_bool_width / 8) | T_integer i -> Z.of_int (sizeof_int target i) | T_float f -> Z.of_int (sizeof_float target f) | T_complex f -> Z.of_int (2 * (sizeof_float target f)) | T_pointer _ -> Z.of_int (target.C.target_pointer_width / 8) | T_array ((t,_),Length_cst len) -> Z.mul len (sizeof_type target t) | T_array _ -> invalid_arg "sizeof_type: size of array with unknown size" | T_bitfield (t,_) -> invalid_arg "sizeof_type: size of bitfield" | T_function _ | T_builtin_fn -> invalid_arg "sizeof_type: size of function" | T_typedef t -> sizeof_type target (fst t.typedef_def) | T_record r -> if not r.record_defined then invalid_arg "sizeof_type: size of incomplete record"; r.record_sizeof | T_enum e -> if not e.enum_defined then invalid_arg "sizeof_type: size of incomplete enum"; Z.of_int (sizeof_int target (match e.enum_integer_type with | Some s -> s | None -> assert false)) | T_vector v -> Z.mul (sizeof_type target (fst v.vector_type)) (Z.of_int v.vector_size) | T_unknown_builtin _ -> Z.zero (** Size (in bytes) of a type. Raises an Invalid_argument if the size is not a constant. *) let sizeof_expr target (range:C.range) (result_type:type_qual) (t:typ) : expr = let rec doit t = match t with | T_void -> invalid_arg "sizeof_expr: size of void" | T_bool | T_integer _ | T_float _ | T_pointer _ | T_record _ | T_enum _ | T_complex _ | T_vector _ -> E_integer_literal (sizeof_type target t), result_type, range | T_array ((t,_),l) -> let len = match l with | Length_cst len -> E_integer_literal len, result_type, range | Length_expr e -> e | No_length -> (* TODO: fix *) (* error range "sizeof" "array with no size"*) E_integer_literal Z.zero, result_type, range in E_binary (O_arithmetic MUL, doit t, len), result_type, range | T_bitfield (t,_) -> invalid_arg "sizeof_expr: size of bitfield" | T_function _ | T_builtin_fn -> invalid_arg "sizeof_expr: size of function" | T_typedef t -> doit (fst t.typedef_def) | T_unknown_builtin _ -> E_integer_literal (Z.zero), result_type, range in doit t (** Size (in bytes) of a type, as an expression. Handles variable-length ararys. *) let rec alignof_type target t : Z.t = match t with | T_void -> invalid_arg "alignof_type: align of void" | T_bool -> Z.of_int (target.C.target_bool_align / 8) | T_integer i -> Z.of_int (alignof_int target i) | T_float f | T_complex f -> Z.of_int (alignof_float target f) | T_pointer _ -> Z.of_int (target.C.target_pointer_align / 8) | T_array ((t,_),_) -> alignof_type target t | T_bitfield (t,_) -> invalid_arg "alignof_type: align of bitfield" | T_function _ | T_builtin_fn -> invalid_arg "alignof_type: align of function" | T_typedef t -> alignof_type target (fst t.typedef_def) | T_record r -> if not r.record_defined then invalid_arg "alignof_type: size of incomplete record"; r.record_alignof | T_enum e -> if not e.enum_defined then invalid_arg "alignof_type: size of incomplete enum"; Z.of_int (alignof_int target (match e.enum_integer_type with | Some s -> s | None -> assert false)) | T_vector v -> alignof_type target (fst v.vector_type) | T_unknown_builtin _ -> Z.zero (** Alignment (in bytes) of a type. *) let rec type_declarable = function | T_void -> false | T_bool | T_integer _ | T_float _ | T_complex _ -> true | T_pointer _ -> true | T_array (t,len) -> len <> No_length && type_qual_declarable t | T_bitfield (t,_) -> type_declarable t | T_function f -> false | T_builtin_fn -> false | T_typedef t -> type_qual_declarable t.typedef_def | T_record r -> r.record_defined | T_enum e -> e.enum_defined | T_vector v -> type_declarable (fst v.vector_type) | T_unknown_builtin _ -> true and type_qual_declarable (t,q) = type_declarable t (** Whether we can declare a variable of this type (sizeof defined). *) (** {2 Useful target-specific types} *) let target_int = function | C.Target_NoInt -> invalid_arg "target_int: NoInt" | C.Target_SignedChar -> SIGNED_CHAR | C.Target_UnsignedChar -> UNSIGNED_CHAR | C.Target_SignedShort -> SIGNED_SHORT | C.Target_UnsignedShort -> UNSIGNED_SHORT | C.Target_SignedInt -> SIGNED_INT | C.Target_UnsignedInt -> UNSIGNED_INT | C.Target_SignedLong -> SIGNED_LONG | C.Target_UnsignedLong -> UNSIGNED_LONG | C.Target_SignedLongLong -> SIGNED_LONG_LONG | C.Target_UnsignedLongLong -> UNSIGNED_LONG_LONG (** Converts target int to SAST int types. *) let size_type target = target_int target.C.target_size_type let intmax_type target = target_int target.C.target_intmax_type let ptrdiff_type target = target_int target.C.target_ptrdiff_type let intptr_type target = target_int target.C.target_intptr_type let int64_type target = target_int target.C.target_int64_type let wchar_type target = target_int target.C.target_wchar_type let wint_type target = target_int target.C.target_wint_type let char16_type target = target_int target.C.target_char16_type let char32_type target = target_int target.C.target_char32_type let sigatomic_type target = target_int target.C.target_sigatomic_type let processid_type target = target_int target.C.target_processid_type (** Base integer type of a derived integer type. *) (** {2 Comments} *) (** Ensure that comments are not duplicated. *) let comment_unify (c1:comment list) (c2:comment list) : comment list = match c1,c2 with | [], x | x, [] -> x | [a], [b] -> if a=b then [a] else [a;b] | _ -> (* could be improved, but we expect the lists to have length 1 at most *) List.sort_uniq compare (c1@c2) let comment_macro_unify (c1:(comment * macro StringMap.t) list) (c2:(comment * macro StringMap.t) list) : (comment * macro StringMap.t) list = match c1,c2 with | [], x | x, [] -> x | [a], [b] -> if fst a = fst b then [a] else [a;b] | _ -> (* could be improved, but we expect the lists to have length 1 at most *) List.sort_uniq (fun a b -> compare (fst a) (fst b)) (c1@c2) (** {2 Type compatibility} *) type type_cmp = { cmp_ignore_qual:bool; (** if true, type_compatible does not take qualifiers into account in comparison *) cmp_int_size: bool; (** if true, type_compatible use integer size and signess instead of name *) cmp_enum_as_int: bool; (** if true, type_compatible handles an enum as an its integer type *) cmp_ignore_name: bool; (** if true, type_compatible disregards type names in comparison *) cmp_ignore_undefined: bool; (** if true, an undefined enum, struct or union compares equal to a defined one *) cmp_ignore_typedef: bool; (** if true, a typedef is replaced with its defining type during comparison *) cmp_ignore_array_size: bool; (** if true, arrays with undefined size compare equal to that of defined size *) cmp_ignore_vector_size: bool; (** if true, the size of vector types is ignored in comparison *) cmp_ignore_vector_kind: bool; (** if true, the kind of vector types is ignored in comparison *) } (** Comfigures the test equality functions, to allow various relaxation. *) let cmp_compatible = { cmp_ignore_qual = true; cmp_int_size = false; cmp_enum_as_int = false; cmp_ignore_name = false; cmp_ignore_undefined = true; cmp_ignore_typedef = true; cmp_ignore_array_size = true; cmp_ignore_vector_size = true; cmp_ignore_vector_kind = true; } (** Type compatibility. *) let cmp_unifiable = { cmp_ignore_qual = true; cmp_int_size = false; cmp_enum_as_int = false; cmp_ignore_name = false; cmp_ignore_undefined = true; cmp_ignore_typedef = false; cmp_ignore_array_size = true; cmp_ignore_vector_size = true; cmp_ignore_vector_kind = true; } (** Unifiable compatibility. *) let cmp_equal = { cmp_ignore_qual = false; cmp_int_size = false; cmp_enum_as_int = false; cmp_ignore_name = false; cmp_ignore_undefined = false; cmp_ignore_typedef = false; cmp_ignore_array_size = false; cmp_ignore_vector_size = false; cmp_ignore_vector_kind = false; } (** Strict type equality. *) let rec type_compare cmp gray (target:C.target_info) (t1:typ) (t2:typ) = if log_type_compare then Printf.printf "type_compare: %s and %s\n" (string_of_type t1) (string_of_type t2); (t1 == t2) || match t1,t2 with | T_void, T_void -> true | T_bool, T_bool -> true | T_integer i1, T_integer i2 -> if cmp.cmp_int_size then sizeof_int target i1 = sizeof_int target i2 && signedness_int i1 = signedness_int i2 else i1 = i2 | T_float f1, T_float f2 -> f1 = f2 | T_pointer p1, T_pointer p2 -> type_qual_compare cmp gray target p1 p2 | T_array (a1,l1), T_array (a2,l2) -> type_qual_compare cmp gray target a1 a2 && (match l1,l2 with | Length_cst c1, Length_cst c2 -> c1 = c2 | Length_expr e1, Length_expr e2 -> true (* TODO *) | No_length, No_length -> true | No_length,_ -> cmp.cmp_ignore_array_size | _, No_length -> cmp.cmp_ignore_array_size | _ -> false ) | T_bitfield (t1,l1), T_bitfield (t2,l2) -> type_compare cmp gray target t1 t2 && l1 = l2 | T_function (Some f1), T_function (Some f2) -> type_qual_compare cmp gray target f1.ftype_return f2.ftype_return && List.length f1.ftype_params = List.length f2.ftype_params && List.for_all2 (type_qual_compare cmp gray target) f1.ftype_params f2.ftype_params && f1.ftype_variadic = f2.ftype_variadic | T_function None, T_function _ -> true | T_function _, T_function None -> true | T_builtin_fn, T_builtin_fn -> true | T_typedef t1, _ when cmp.cmp_ignore_typedef -> type_compare cmp gray target (fst t1.typedef_def) t2 | _, T_typedef t2 when cmp.cmp_ignore_typedef -> type_compare cmp gray target t1 (fst t2.typedef_def) | T_typedef t1, T_typedef t2 -> (cmp.cmp_ignore_name || t1.typedef_org_name = t2.typedef_org_name) && type_qual_compare cmp gray target t1.typedef_def t2.typedef_def | T_enum e1, _ when cmp.cmp_enum_as_int -> (not e1.enum_defined) || type_compare cmp gray target (T_integer (match e1.enum_integer_type with | Some s -> s | None -> assert false)) t2 | _, T_enum e2 when cmp.cmp_enum_as_int -> (not e2.enum_defined) || type_compare cmp gray target t1 (T_integer (match e2.enum_integer_type with | Some s -> s | None -> assert false)) | T_enum e1, T_enum e2 -> (cmp.cmp_ignore_name || e1.enum_org_name = e2.enum_org_name) && ((cmp.cmp_ignore_undefined && (not e1.enum_defined || not e2.enum_defined)) || (List.length e1.enum_values = List.length e2.enum_values && List.for_all2 (fun v1 v2 -> v1.enum_val_org_name = v2.enum_val_org_name && v1.enum_val_value = v2.enum_val_value ) e1.enum_values e2.enum_values ) ) | T_record r1, T_record r2 -> if Hashtbl.mem gray (r1.record_uid, r2.record_uid) then true else ( Hashtbl.add gray (r1.record_uid, r2.record_uid) (); (cmp.cmp_ignore_name || r1.record_org_name = r2.record_org_name) && (r1.record_kind = r2.record_kind) && ((cmp.cmp_ignore_undefined && (not r1.record_defined || not r2.record_defined)) || (Array.length r1.record_fields = Array.length r2.record_fields && r1.record_sizeof = r2.record_sizeof && let l1,l2 = Array.to_list r1.record_fields, Array.to_list r2.record_fields in List.for_all2 (fun f1 f2 -> (cmp.cmp_ignore_name || (f1.field_org_name = f2.field_org_name)) && f1.field_offset = f2.field_offset && f1.field_bit_offset = f2.field_bit_offset && type_qual_compare cmp gray target f1.field_type f2.field_type ) l1 l2 ) ) ) | T_vector v1, T_vector v2 -> type_qual_compare cmp gray target v1.vector_type v2.vector_type && (cmp.cmp_ignore_vector_size || v1.vector_size = v2.vector_size) && (cmp.cmp_ignore_vector_kind || v1.vector_kind = v2.vector_kind) | T_unknown_builtin s1, T_unknown_builtin s2 -> s1 = s2 | _ -> false and qual_compare cmp (q1:qualifier) (q2:qualifier) = cmp.cmp_ignore_qual || q1 = q2 and type_qual_compare cmp gray target ((t1,q1):type_qual) ((t2,q2):type_qual) = type_compare cmp gray target t1 t2 && qual_compare cmp q1 q2 (* internal functions passing along a set of gray nodes to avoid infinite loops on cyclic types *) let type_compatible ctx a b = type_compare cmp_compatible (Hashtbl.create 16) ctx a b let type_qual_compatible ctx a b = type_qual_compare cmp_compatible (Hashtbl.create 16) ctx a b (** Type compatibility. Two declarations for the same object must have compatible types. *) let type_equal ctx a b = type_compare cmp_equal (Hashtbl.create 16) ctx a b let type_qual_equal ctx a b = type_qual_compare cmp_equal (Hashtbl.create 16) ctx a b (** Strict type equality, to allow type merging. *) let type_unifiable ctx a b = type_compare cmp_unifiable (Hashtbl.create 16) ctx a b let type_qual_unifiable ctx a b = type_qual_compare cmp_unifiable (Hashtbl.create 16) ctx a b (** Arguments are eligible to call type_unify. *) let rec type_unify gray target (t1:typ) (t2:typ) = if !log_type_unify then Printf.printf "type_unify: %s and %s\n" (string_of_type t1) (string_of_type t2); if t1==t2 then t1 else match t1,t2 with | T_void, T_void -> t1 | T_bool, T_bool -> t1 | T_integer i1, T_integer i2 -> if sizeof_int target i1 = sizeof_int target i2 && signedness_int i1 = signedness_int i2 then t1 else invalid_arg (Printf.sprintf "type_unify: incompatible integer types %s and %s" (string_of_integer_type i1) (string_of_integer_type i2)) | T_float f1, T_float f2 -> if f1 <> f2 then invalid_arg (Printf.sprintf "type_unify: incompatible float types %s and %s" (string_of_float_type f1) (string_of_float_type f2)) else t1 | T_pointer p1, T_pointer p2 -> let p = type_qual_unify gray target p1 p2 in if p == p1 then t1 else T_pointer p | T_array (a1,l1), T_array (a2,l2) -> let a = type_qual_unify gray target a1 a2 in let l = match l1, l2 with | _, No_length -> l1 | No_length, _ -> l2 | Length_cst c1, Length_cst c2 when c1 = c2 -> l1 | Length_expr _, Length_expr _ -> l1 (* TODO: check expressions? *) | _ -> invalid_arg "type_unify: incompatible array length" in if a==a1 && l==l1 then t1 else T_array (a,l) | T_bitfield (b1,l1), T_bitfield (b2,l2) -> let b = type_unify gray target b1 b2 in if l1 <> l2 then invalid_arg (Printf.sprintf "type_unify: incompatible bitfield length %i and %i" l1 l2); if b == b1 then t1 else T_bitfield (b,l1) | T_function _, T_function None -> t1 | T_function None, T_function _ -> t2 | T_function (Some f1), T_function (Some f2) -> let r = type_qual_unify gray target f1.ftype_return f2.ftype_return in if List.length f1.ftype_params <> List.length f2.ftype_params then invalid_arg (Printf.sprintf "type_unify: incompatible function parameter number %i and %i" (List.length f1.ftype_params) (List.length f2.ftype_params)); let a = List.map2 (type_qual_unify gray target) f1.ftype_params f2.ftype_params in if f1.ftype_variadic <> f2.ftype_variadic then invalid_arg "type_unify: incompatible variadic function type"; f1.ftype_return <- r; f2.ftype_return <- r; f1.ftype_params <- a; f2.ftype_params <- a; t1 | T_builtin_fn, T_builtin_fn -> t1 | T_typedef d1, T_typedef d2 -> typedef_unify gray target d1 d2; t1 | T_typedef d1,_ -> let t = type_qual_unify gray target d1.typedef_def (t2,no_qual) in d1.typedef_def <- t; t1 | _, T_typedef d2 -> let t = type_qual_unify gray target (t1,no_qual) d2.typedef_def in d2.typedef_def <- t; t1 | T_enum e1, T_enum e2 -> enum_unify gray target e1 e2; t1 | T_record r1, T_record r2 -> record_unify gray target r1 r2; t1 | T_vector v1, T_vector v2 -> (* keep the minimum size and set kind to -1 if they differ *) (* TODO: is that correct? *) let t = type_qual_unify gray target v1.vector_type v2.vector_type in let size = min v1.vector_size v2.vector_size in let kind = if v1.vector_kind = v2.vector_kind then v1.vector_kind else -1 in T_vector { vector_type = t; vector_size = size; vector_kind = kind; } | T_unknown_builtin s1, T_unknown_builtin s2 when s1 = s2 -> T_unknown_builtin s1 | _ -> invalid_arg "type_unify: incompatible types" and type_qual_unify gray target (t1,q1) (t2,q2) = type_unify gray target t1 t2, merge_qualifiers q1 q2 and typedef_unify gray target d1 d2 = if d1.typedef_org_name <> d2.typedef_org_name then invalid_arg ("typedef_unify: incompatible typedef names: "^ d1.typedef_org_name^" and "^d2.typedef_org_name); let t = type_qual_unify gray target d1.typedef_def d2.typedef_def in d1.typedef_def <- t; d2.typedef_def <- t; d2.typedef_unique_name <- d1.typedef_unique_name; let c = comment_unify d1.typedef_com d2.typedef_com in d1.typedef_com <- c; d2.typedef_com <- c and record_unify gray target r1 r2 = if !log_type_unify then Printf.printf "record_unify: %s and %s\n" (string_of_type (T_record r1)) (string_of_type (T_record r2)); if Hashtbl.mem gray (r1.record_uid, r2.record_uid) then () else ( Hashtbl.add gray (r1.record_uid, r2.record_uid) (); if r1.record_org_name <> r2.record_org_name then invalid_arg (Printf.sprintf "record_unify: incompatible record names %s and %s" r1.record_org_name r2.record_org_name); if r1.record_kind <> r2.record_kind; then invalid_arg "record_unify: incompatible record kinds"; (match r1.record_defined && r1.record_sizeof <> Z.zero, r2.record_defined && r2.record_sizeof <> Z.zero with | true, false -> for i=0 to Array.length r2.record_fields-1 do let f1, f2 = r1.record_fields.(i), r2.record_fields.(i) in if f1.field_org_name <> f2.field_org_name || not (type_qual_unifiable target f1.field_type f2.field_type) then invalid_arg "record_unify: incompatible record layout" done; r2.record_uid <- r1.record_uid; r2.record_unique_name <- r1.record_unique_name; r2.record_defined <- true; r2.record_sizeof <- r1.record_sizeof; r2.record_alignof <- r1.record_alignof; r2.record_fields <- r1.record_fields; r2.record_range <- r1.record_range | false, true -> for i=0 to Array.length r1.record_fields-1 do let f1, f2 = r1.record_fields.(i), r2.record_fields.(i) in if f1.field_org_name <> f2.field_org_name || not (type_qual_unifiable target f1.field_type f2.field_type) then invalid_arg "record_unify: incompatible record layout" done; r1.record_uid <- r2.record_uid; r1.record_unique_name <- r2.record_unique_name; r1.record_defined <- true; r1.record_sizeof <- r2.record_sizeof; r1.record_alignof <- r2.record_alignof; r1.record_fields <- r2.record_fields; r1.record_range <- r2.record_range | true, true -> if r1.record_sizeof <> r2.record_sizeof then ( invalid_arg ("record_unify: incompatible record sizeof "^(Z.to_string r1.record_sizeof)^" and "^(Z.to_string r2.record_sizeof)) ); if r1.record_alignof <> r2.record_alignof then invalid_arg "record_unify: incompatible record alignof"; if not (Array.length r1.record_fields = Array.length r2.record_fields) then invalid_arg (Printf.sprintf "record_unify: incompatible record field numbers %i and %i" (Array.length r1.record_fields) (Array.length r2.record_fields)); for i=0 to Array.length r1.record_fields-1 do let f1, f2 = r1.record_fields.(i), r2.record_fields.(i) in if f1.field_org_name <> f2.field_org_name || f1.field_offset <> f2.field_offset || f1.field_bit_offset <> f2.field_bit_offset then invalid_arg "record_unify: incompatible record layout"; let t = type_qual_unify gray target f1.field_type f2.field_type in f1.field_type <- t; f2.field_type <- t; let c = comment_unify f1.field_com f2.field_com in f1.field_com <- c; f2.field_com <- c done | false, false -> () ); let c = comment_unify r1.record_com r2.record_com in r1.record_com <- c; r2.record_com <- c ) and enum_unify gray target e1 e2 = if e1.enum_org_name <> e2.enum_org_name then invalid_arg "enum_unify: incompatible enum names"; (match e1.enum_defined, e2.enum_defined with | true, false -> e2.enum_uid <- e1.enum_uid; e2.enum_unique_name <- e1.enum_unique_name; e2.enum_defined <- true; e2.enum_values <- e1.enum_values; e2.enum_integer_type <- e1.enum_integer_type; e2.enum_range <- e1.enum_range | false, true -> e1.enum_uid <- e2.enum_uid; e1.enum_unique_name <- e2.enum_unique_name; e1.enum_defined <- true; e1.enum_values <- e2.enum_values; e1.enum_integer_type <- e2.enum_integer_type; e1.enum_range <- e2.enum_range | true, true -> let enum_integer_type = match e1.enum_integer_type, e2.enum_integer_type with | None, Some r -> Some r | Some l, None -> Some l | None, None -> None | Some l, Some r -> Some (match type_unify gray target (T_integer l) (T_integer r) with | T_integer t -> t | _ -> assert false) in e1.enum_integer_type <- enum_integer_type; e2.enum_integer_type <- enum_integer_type; if not (List.length e1.enum_values = List.length e2.enum_values && List.for_all2 (fun v1 v2 -> v1.enum_val_org_name = v2.enum_val_org_name && v1.enum_val_value = v2.enum_val_value ) e1.enum_values e2.enum_values ) then invalid_arg "enum_unify: incompatible enum values"; List.iter2 (fun v1 v2 -> let c = comment_unify v1.enum_val_com v2.enum_val_com in v1.enum_val_com <- c; v2.enum_val_com <- c ) e1.enum_values e2.enum_values | false, false -> () ); let c = comment_unify e1.enum_com e2.enum_com in e1.enum_com <- c; e2.enum_com <- c let type_unify = type_unify (Hashtbl.create 16) let type_unify_qual = type_qual_unify (Hashtbl.create 16) let enum_unify target e1 e2 = enum_unify (Hashtbl.create 16) target e1 e2; e1 let record_unify target r1 r2 = record_unify (Hashtbl.create 16) target r1 r2; r1 let typedef_unify target d1 d2 = typedef_unify (Hashtbl.create 16) target d1 d2; d1 (** Type unification. *) let rec is_void ((t,_):type_qual) = match t with | T_void -> true | T_typedef t -> is_void t.typedef_def | _ -> false (** {2 Expressions utilities} *) let expr_type ((_,t,_):expr) = t (** Type of an expression. *) let expr_integer_cst range (t:integer_type) (cst:Z.t) : expr = E_integer_literal cst, (T_integer t, no_qual), range let expr_float_cst range (t:float_type) (cst:float) : expr = E_float_literal (string_of_float cst), (T_float t, no_qual), range let expr_complex_cst range (t:float_type) (cst:float) : expr = E_float_literal (string_of_float cst), (T_complex t, no_qual), range let expr_int_zero range : expr = expr_integer_cst range SIGNED_INT Z.zero let expr_int_one range : expr = expr_integer_cst range SIGNED_INT Z.one let expr_double_zero range : expr = expr_float_cst range DOUBLE 0. let expr_bool_true range : expr = E_cast (expr_int_one range, IMPLICIT), (T_bool, no_qual), range let expr_bool_false range : expr = E_cast (expr_int_zero range, IMPLICIT), (T_bool, no_qual), range let expr_null range : expr = E_cast (expr_int_zero range, IMPLICIT), (T_bool, no_qual), range (** (void* )0 *) let expr_void range : expr = E_cast (expr_int_zero range, IMPLICIT), (T_void, no_qual), range (** (void)0 *) let rec zero_init range (t:typ) : init = match t with | T_void -> invalid_arg "zero_init: void type" | T_bool -> I_init_expr (expr_bool_false range) | T_integer i -> I_init_expr (expr_integer_cst range i Z.zero) | T_float f -> I_init_expr (expr_float_cst range f 0.) | T_complex f -> I_init_expr (expr_complex_cst range f 0.) | T_pointer tq -> I_init_expr (expr_null range) | T_array ((t,_),_) -> I_init_list ([], Some (zero_init range t)) | T_bitfield (t,_) -> zero_init range t | T_function _ | T_builtin_fn -> invalid_arg "zero_init: function type" | T_typedef t -> zero_init range (fst t.typedef_def) | T_record r -> let l = if r.record_kind = UNION && r.record_fields <> [||] then [r.record_fields.(0)] else Array.to_list r.record_fields in I_init_list (List.map (fun f -> zero_init range (fst f.field_type)) l, None) | T_enum e -> I_init_expr (expr_integer_cst range (match e.enum_integer_type with | Some s -> s | None -> assert false) Z.zero) | T_vector v -> I_init_list ([], Some (zero_init range (fst v.vector_type))) | T_unknown_builtin _ -> I_init_expr (expr_integer_cst range SIGNED_INT Z.zero) (** {2 Statement utilities} *) let make_block (s:statement list) : block = let v = (* local variables declared in s, but not in sub-blocks *) ListExt.map_filter (function (S_local_declaration v,_) -> Some v | _ -> None) s in { blk_stmts = s; blk_local_vars = v; } (** Creates a block from a list of statements. Computes the list of local variables declared in the block and not in sub-blocks. *) module VarSet = SetExt.Make(struct type t = variable let compare a b = compare a.var_uid b.var_uid end) let resolve_scope (b:block) : block = let gotos = ref [] and labels = Hashtbl.create 16 in (* update a scope updated, give source and destination scopes *) let update u src dst = u.scope_var_added <- VarSet.elements (VarSet.diff dst src); u.scope_var_removed <- VarSet.elements (VarSet.diff src dst) in (* iterate on statements and expressions; fix break/continue/return scope; goto/switch scope are fixed after the iteration *) let rec stmt ((cur,brk,cnt,swt) as ctx) (s,r) = match s with | S_local_declaration _ -> () | S_expression e -> expr ctx e | S_block b -> block ctx b | S_if (e,b1,b2) -> expr ctx e; block ctx b1; block ctx b2 | S_while (e,b) | S_do_while (b,e) -> (* new scope for break and continue *) let ctx = cur, cur, cur, swt in expr ctx e; block ctx b | S_for (i,eo1,eo2,b) -> block ctx i; (* add the for init variable (if any) to the scope of the for *) let cur = VarSet.union cur (VarSet.of_list i.blk_local_vars) in (* new scope for break and continue *) let ctx = cur, cur, cur, swt in expr_opt ctx eo1; expr_opt ctx eo2; block ctx b | S_jump (S_goto (label, upd)) -> (* remember gotos to fix them later *) gotos := (label,r,upd,cur)::(!gotos) | S_jump (S_break upd) -> (* jump from current to break scope *) update upd cur brk | S_jump (S_continue upd) -> (* jump from current to continue scope *) update upd cur cnt | S_jump (S_return (_, upd)) -> (* jump from current to function return (empty scope) *) update upd cur VarSet.empty | S_jump (S_switch (e,b)) -> expr ctx e; (* new scope for break, remember the scope at switck for cases *) let ctx = cur, cur, cnt, cur in block ctx b | S_target (S_label label) -> (* remember label scopes to fix gotos later *) Hashtbl.add labels label cur | S_target (S_case (es,upd)) -> List.iter (expr ctx) es; (* jump from switch point to current scope *) update upd swt cur | S_target (S_default upd) -> (* jump from switch point to current scope *) update upd swt cur | S_asm _ -> () and block (cur,brk,cnt,swt) b = List.fold_left (fun cur sr -> stmt (cur,brk,cnt,swt) sr; (* add declated local variables to the scope along the way *) let cur = match fst sr with | S_local_declaration v -> VarSet.add v cur | _ -> cur in cur ) cur b.blk_stmts |> ignore and expr ctx (e,_,_) = match e with | E_conditional (e1,e2,e3) -> List.iter (expr ctx) [e1;e2;e3] | E_binary_conditional (e1,e2) | E_array_subscript (e1,e2) | E_compound_assign (e1,_,_,e2,_) | E_binary (_,e1,e2) | E_assign (e1,e2) | E_comma (e1,e2) | E_atomic (_,e1,e2) -> List.iter (expr ctx) [e1;e2] | E_member_access (e1,_,_) | E_arrow_access (e1,_,_) | E_unary (_,e1) | E_increment (_,_,e1) | E_address_of e1 | E_deref e1 | E_cast (e1,_) | E_var_args e1 -> expr ctx e1 | E_call (e,el) -> expr ctx e; Array.iter (expr ctx) el | E_character_literal _ | E_integer_literal _ | E_float_literal _ | E_string_literal _ | E_compound_literal _ | E_variable _ | E_function _ | E_predefined _ -> () | E_statement b -> block ctx b | E_convert_vector e -> expr ctx e | E_vector_element (e,_) -> expr ctx e | E_shuffle_vector ea -> Array.iter (expr ctx) ea and expr_opt ctx eo = match eo with | None -> () | Some e -> expr ctx e in (* update block in-place *) let e = VarSet.empty in block (e,e,e,e) b; (* fix goto *) List.iter (fun (lbl,range,upd,src) -> try let dst = Hashtbl.find labels lbl in update upd src dst with Not_found -> failwith (Printf.sprintf "%s: unknown label '%s'" (Clang_dump.string_of_range range) lbl) ) !gotos; (* return the block *) b (** Fill-in scope_update information in the AST. The block is modified in-place, and returned. Call after AST transformations that may change variable scopes. *) (** {2 Errors} *) let error range msg arg = failwith (Printf.sprintf "%s: %s: %s" (C.string_of_range range) msg arg) let warning range msg arg = (* Printf.eprintf "WARNING %s: %s: %s\n" (C.string_of_range range) msg arg *) ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>