package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/itvUtils/intBound.ml.html
Source file intBound.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** IntBound - Enriches arbitrary precision integers with +∞ and -∞. Useful as interval bounds. *) (** {2 Types} *) type t = Finite of Z.t | MINF (** -∞ *) | PINF (** +∞ *) (** {2 Internal utilities} *) (** {2 Constructors} *) let zero : t = Finite Z.zero let one : t = Finite Z.one let minus_one : t = Finite Z.minus_one (** Useful constants *) let of_int (x:int) : t = Finite (Z.of_int x) let of_int64 (x:int64) : t = Finite (Z.of_int64 x) (** Exact conversion from machine integers. *) let of_float (x:float) : t = match classify_float x with | FP_infinite -> if x >= 0. then PINF else MINF | FP_nan -> invalid_arg "IntBound.of_float" | _ -> Finite (Z.of_float x) (** Conversion with truncation from floats. Handles infinites. Raises an exception on NaNs. *) let infinite (sign:int) : t = if sign > 0 then PINF else if sign < 0 then MINF else zero (** Constructs an infinity with the given sign. Zero maps to zero. *) let pow2 (nb:int) : t = Finite (Z.shift_left Z.one nb) (** A power of two. The argument must be positive. *) (** {2 Predicates} *) let sign (x:t) : int = match x with MINF -> -1 | PINF -> 1 | Finite x -> Z.sign x (** Sign of x: -1, 0, or 1. *) let is_finite (x:t) : bool = match x with | Finite _ -> true | _ -> false (** Whether x is finite or not. *) let equal (x:t) (y:t) : bool = match x,y with | Finite a, Finite b -> Z.equal a b | MINF,MINF | PINF,PINF -> true | _ -> false (** Equality comparison. = also works. *) let compare (x:t) (y:t) : int = match x,y with | PINF,PINF | MINF,MINF -> 0 | MINF,_ | _,PINF -> -1 | PINF,_ | _,MINF -> 1 | Finite x, Finite y -> Z.compare x y (** Total order. Returns -1 (strictly smaller), 0 (equal), or 1 (strictly greater). *) let leq (x:t) (y:t) : bool = compare x y <= 0 let geq (x:t) (y:t) : bool = compare x y >= 0 let lt (x:t) (y:t) : bool = compare x y < 0 let gt (x:t) (y:t) : bool = compare x y > 0 let eq (x:t) (y:t) : bool = equal x y let neq (x:t) (y:t) : bool = not (equal x y) (** Comparison predicates. *) let min (x:t) (y:t) : t = if leq x y then x else y let max (x:t) (y:t) : t = if leq x y then y else x (** Minimum and maximum. *) let is_zero (x:t) : bool = sign x = 0 let is_nonzero (x:t) : bool = sign x <> 0 let is_positive (x:t) : bool = sign x >= 0 let is_negative (x:t) : bool = sign x <= 0 let is_positive_strict (x:t) : bool = sign x > 0 let is_negative_strict (x:t) : bool = sign x < 0 (** Sign predicates. *) let hash (a:t) : int = match a with PINF -> 1 | MINF -> -1 | Finite x -> Z.hash x (** Hashing function. *) (** {2 Printing} *) let to_string (x:t) : string = match x with | PINF -> "+∞" | MINF -> "-∞" | Finite x -> Z.to_string x let print ch (x:t) = output_string ch (to_string x) let fprint ch (x:t) = Format.pp_print_string ch (to_string x) let bprint ch (x:t) = Buffer.add_string ch (to_string x) (** {2 Operators} *) let succ (a:t) : t = match a with Finite x -> Finite (Z.succ x) | _ -> a (** +1. Infinities are left unchanged. *) let pred (a:t) :t = match a with Finite x -> Finite (Z.pred x) | _ -> a (** -1. Infinities are left unchanged. *) let neg (a:t) : t = match a with MINF -> PINF | PINF -> MINF | Finite x -> Finite (Z.neg x) (** Negation. *) let abs (a:t) : t = match a with MINF | PINF -> PINF | Finite x -> Finite (Z.abs x) (** Absolute value. *) let add (a:t) (b:t) : t = match a, b with | PINF,MINF | MINF,PINF-> invalid_arg "IntBound.add" | PINF,_ | _,PINF -> PINF | MINF,_ | _,MINF -> MINF | Finite x, Finite y -> Finite (Z.add x y) (** Addition. +∞ + -∞ is undefined (invalid argument exception). *) let sub (a:t) (b:t) : t = match a, b with | PINF,PINF | MINF,MINF-> invalid_arg "IntBound.sub" | PINF,_ | _,MINF -> PINF | MINF,_ | _,PINF -> MINF | Finite x, Finite y -> Finite (Z.sub x y) (** Subtraction. +∞ - +∞ is undefined (invalid argument exception). *) let mul (a:t) (b:t) = match a, b with | Finite x, Finite y -> Finite (Z.mul x y) | _ -> infinite (sign a * sign b) (** Multiplication. Always defined: +∞ * 0 = 0 *) let div (a:t) (b:t) :t = match b with | PINF | MINF -> zero | Finite y -> match a with | PINF -> infinite (Z.sign y) | MINF -> infinite (-(Z.sign y)) | Finite x -> if y = Z.zero then infinite (Z.sign x) else Finite (Z.div x y) (** Division. Always defined: 0 / 0 = 0, x / +∞ = 0, x / 0 = sign(x) * ∞ *) let ediv (a:t) (b:t) :t = match b with | PINF | MINF -> zero | Finite y -> match a with | PINF -> infinite (Z.sign y) | MINF -> infinite (-(Z.sign y)) | Finite x -> if y = Z.zero then infinite (Z.sign x) else Finite (Z.ediv x y) (** Euclidian division. Always defined: 0 / 0 = 0, x / +∞ = 0, x / 0 = sign(x) * ∞ *) let rem (a:t) (b:t) : t = match a with | PINF | MINF -> invalid_arg "IntBound.rem INF" | Finite x -> match b with | PINF | MINF -> a | Finite y -> if y = Z.zero then invalid_arg "IntBound.rem ZERO" else Finite (Z.rem x y) (** Remainder. rem x y has the sign of x, rem x (-y) = rem x y, and rem x +∞ = x. rem +∞ y and rem x 0 are undefined (invalid argument exception). *) let erem (a:t) (b:t) : t = match a with | PINF | MINF -> invalid_arg "IntBound.rem" | Finite x -> match b with | PINF | MINF -> a | Finite y -> if y = Z.zero then invalid_arg "IntBound.rem" else Finite (Z.erem x y) (** Euclidian remainder. erem x y >= 0, rem x y < |b| and a = b * ediv a b + erem a b. rem +∞ y and rem x 0 are undefined (invalid argument exception). *) let shift_left (a:t) (b:t) : t = match a with | PINF -> PINF | MINF -> MINF | Finite x -> match b with | PINF -> infinite (sign a) | Finite y when Z.geq y Z.zero -> (try if Z.geq y (Z.of_int 2048) then (* let's avoid allocating xx GB memory of Z.t *) raise Z.Overflow else let r = (Z.shift_left x (Z.to_int y)) in Finite r with Z.Overflow -> infinite (sign a) ) | _ -> invalid_arg "IntBound.shift_left" (** Left bitshift. Undefined if the second argument is negative (invalid argument exception). Returns an infinity if the second argument is too large. *) let shift_right (a:t) (b:t) :t = match a with | PINF -> PINF | MINF -> MINF | Finite x -> match b with | PINF -> zero | Finite y when Z.geq y Z.zero -> (try Finite (Z.shift_right x (Z.to_int y)) with Z.Overflow -> zero) | _ -> invalid_arg "IntBound.shift_right" (** Right bitshift, rounding towards -∞. Undefined if the second argument is negative (invalid argument exception). Returns zero if the second argument is too large. *) let shift_right_trunc (a:t) (b:t) : t = match a with | PINF -> PINF | MINF -> MINF | Finite x -> match b with | PINF -> zero | Finite y when Z.geq y Z.zero -> (try Finite (Z.shift_right_trunc x (Z.to_int y)) with Z.Overflow -> zero) | _ -> invalid_arg "IntBound.shift_right_trunc" (** Right bitshift, rounding towards 0 (truncation). Undefined if the second argument is negative (invalid argument exception). Returns zero if the second argument is too large. *) let only_finite msg op a b = match a,b with | Finite x, Finite y -> Finite (op x y) | _ -> invalid_arg msg let bit_or : t -> t -> t = only_finite "IntBound.bit_or" Z.logor let bit_xor : t -> t -> t = only_finite "IntBound.bit_xor" Z.logxor let bit_and : t -> t -> t = only_finite "IntBound.bit_and" Z.logand (** Bitwise operations. Undefined for infinites (invalid argument exception). *) let pow (a:t) (b:t) : t = match a, b with | Finite x, Finite y when Z.geq y Z.zero -> (try if Z.geq y (Z.of_int 2048) then (* let's avoid allocating xx GB memory of Z.t *) raise Z.Overflow else Finite (Z.pow x (Z.to_int y)) with Z.Overflow -> invalid_arg "IntBound.pow") | _ -> invalid_arg "IntBound.pow" (** Power. Undefined if the second argument is negative or too large. *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>