package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/itvUtils/float.ml.html
Source file float.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Float - Floating-point arihmetics with rounding. We rely on C code to provide functions with correct rounding (rounding direction and rounding precision). *) (** {2 Types} *) type t = float type bit_float = { sign: bool; (** sign bit (true means negative) *) fraction: Z.t; (** fraction bits *) exponent: int; (** exponent (positive, with bias) *) } (** Bit-representation of a float value. *) (** {2 Global rounding direction} *) external set_round_near: unit -> unit = "ml_round_near" [@@noalloc] external set_round_up: unit -> unit = "ml_round_up" [@@noalloc] external set_round_down: unit -> unit = "ml_round_down" [@@noalloc] external set_round_zero: unit -> unit = "ml_round_zero" [@@noalloc] (** Set the rounding mode globally. This affects the behaviors of all floating-point operations, including OCaml's native float operations, but excluding the operations in this module (and the float interval module) that specify a rounding direction. Note that the operations with specified rounding directions may change the rounding direction globally in some unspecified way, and not reset it to its former value (this is done for efficiency). *) (** {2 Operations without rounding} *) let neg (x:t) : t = -. x let abs (x:t) : t = abs_float x let fmod (x:t) (y:t) : t = mod_float x y (** Remainder (fmod, not equivalent to IEEE 754's float remainder). *) let infinite (sign:int) : t = if sign > 0 then infinity else if sign < 0 then neg_infinity else 0. (** Constructs an infinity with the given sign. Zero maps to zero. *) (** {2 Predicates} *) let is_nan (x:t) : bool = classify_float x = FP_nan let is_finite (x:t) : bool = match classify_float x with | FP_infinite | FP_nan -> false | _ -> true (** Whether x is finite or not (infinite or NaN). *) let is_infinite (x:t) : bool = classify_float x = FP_infinite let is_normal (x:t) : bool = classify_float x = FP_normal let is_denormal (x:t) : bool = classify_float x = FP_subnormal let sign (x:t) : int = if x > 0. then 1 else if x < 0. then -1 else 0 (** Sign of x: -1 (negative), 0 (zero or NaN), or 1 (positive). *) let sign_zero (x:t) : int = if x > 0. then 1 else if x < 0. then -1 else if 1. /. x > 0. then 1 else if 1. /. x < 0. then -1 else 0 (** As sign, but zero is signed. Returns -1 (negative or -0), 0 (NaN), or 1 (positive of +0) *) let equal (x:t) (y:t) : bool = x = y (** Equality comparison. Identical to =, i.e., NaN ≠ NaN *) let equal_nan (x:t) (y:t) : bool = if is_nan x then is_nan y else x=y (** As equal, but NaN equals NaN (and NaN ≠ non-NaN). *) let leq (x:t) (y:t) : bool = x <= y let geq (x:t) (y:t) : bool = x >= y let lt (x:t) (y:t) : bool = x < y let gt (x:t) (y:t) : bool = x > y let eq (x:t) (y:t) : bool = x = y let neq (x:t) (y:t) : bool = x <> y (** Comparison predicates. Returns false if one argument is NaN. *) let min (x:t) (y:t) : t = if x <= y then x else y let max (x:t) (y:t) : t = if x <= y then y else x (** Minimum and maximum. *) let is_zero (x:t) : bool = sign x = 0 let is_nonzero (x:t) : bool = sign x <> 0 let is_positive (x:t) : bool = sign x >= 0 let is_negative (x:t) : bool = sign x <= 0 let is_positive_strict (x:t) : bool = sign x > 0 let is_negative_strict (x:t) : bool = sign x < 0 (** Sign predicates. *) (** {2 Printing} *) type print_format = unit (** Control the printing of a float (precision, rounding, etc.). *) (* TODO *) let dfl_fmt : print_format = () (** Default format. *) let to_string (fmt:print_format) (x:t) : string = if is_nan x then "NaN" else if x = infinity then "+∞" else if x = neg_infinity then "-∞" else string_of_float (x+.0.) (* Note: don't remove the "+.0."; it is here to ensure we never print "-0." TODO: printing a guaranteed under/over-approximation. *) let print fmt ch (x:t) = output_string ch (to_string fmt x) let fprint fmt ch (x:t) = Format.pp_print_string ch (to_string fmt x) let bprint fmt ch (x:t) = Buffer.add_string ch (to_string fmt x) (** {2 Operations with specific rounding direction and precision} *) (** We provide the classic operations (and more) for single and double precision and all four rounding directions. *) module Single = struct (** Single precision numbers are stored inside OCaml's floats, that are actually double precion, but rounding is done to single precision. *) (** {2 Operations} *) external add_near: t -> t -> t = "ml_add_sgl_near" "ml_add_sgl_near_opt" [@@unboxed] [@@noalloc] external add_up: t -> t -> t = "ml_add_sgl_up" "ml_add_sgl_up_opt" [@@unboxed] [@@noalloc] external add_down: t -> t -> t = "ml_add_sgl_down" "ml_add_sgl_down_opt" [@@unboxed] [@@noalloc] external add_zero: t -> t -> t = "ml_add_sgl_zero" "ml_add_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Addition *) external sub_near: t -> t -> t = "ml_sub_sgl_near" "ml_sub_sgl_near_opt" [@@unboxed] [@@noalloc] external sub_up: t -> t -> t = "ml_sub_sgl_up" "ml_sub_sgl_up_opt" [@@unboxed] [@@noalloc] external sub_down: t -> t -> t = "ml_sub_sgl_down" "ml_sub_sgl_down_opt" [@@unboxed] [@@noalloc] external sub_zero: t -> t -> t = "ml_sub_sgl_zero" "ml_sub_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Subtraction *) external mul_near: t -> t -> t = "ml_mul_sgl_near" "ml_mul_sgl_near_opt" [@@unboxed] [@@noalloc] external mul_up: t -> t -> t = "ml_mul_sgl_up" "ml_mul_sgl_up_opt" [@@unboxed] [@@noalloc] external mul_down: t -> t -> t = "ml_mul_sgl_down" "ml_mul_sgl_down_opt" [@@unboxed] [@@noalloc] external mul_zero: t -> t -> t = "ml_mul_sgl_zero" "ml_mul_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Multiplication *) external mulz_near: t -> t -> t = "ml_mulz_sgl_near" "ml_mulz_sgl_near_opt" [@@unboxed] [@@noalloc] external mulz_up: t -> t -> t = "ml_mulz_sgl_up" "ml_mulz_sgl_up_opt" [@@unboxed] [@@noalloc] external mulz_down: t -> t -> t = "ml_mulz_sgl_down" "ml_mulz_sgl_down_opt" [@@unboxed] [@@noalloc] external mulz_zero: t -> t -> t = "ml_mulz_sgl_zero" "ml_mulz_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Special multiplication where 0 times an infinity is 0, not NaN. This is particularly useful for interal bounds. *) external div_near: t -> t -> t = "ml_div_sgl_near" "ml_div_sgl_near_opt" [@@unboxed] [@@noalloc] external div_up: t -> t -> t = "ml_div_sgl_up" "ml_div_sgl_up_opt" [@@unboxed] [@@noalloc] external div_down: t -> t -> t = "ml_div_sgl_down" "ml_div_sgl_down_opt" [@@unboxed] [@@noalloc] external div_zero: t -> t -> t = "ml_div_sgl_zero" "ml_div_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Division *) external divz_near: t -> t -> t = "ml_divz_sgl_near" "ml_divz_sgl_near_opt" [@@unboxed] [@@noalloc] external divz_up: t -> t -> t = "ml_divz_sgl_up" "ml_divz_sgl_up_opt" [@@unboxed] [@@noalloc] external divz_down: t -> t -> t = "ml_divz_sgl_down" "ml_divz_sgl_down_opt" [@@unboxed] [@@noalloc] external divz_zero: t -> t -> t = "ml_divz_sgl_zero" "ml_divz_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Special division where 0 / 0 is 0, not NaN. This is particularly useful for interal bounds. *) external mod_near: t -> t -> t = "ml_mod_sgl_near" "ml_mod_sgl_near_opt" [@@unboxed] [@@noalloc] external mod_up: t -> t -> t = "ml_mod_sgl_up" "ml_mod_sgl_up_opt" [@@unboxed] [@@noalloc] external mod_down: t -> t -> t = "ml_mod_sgl_down" "ml_mod_sgl_down_opt" [@@unboxed] [@@noalloc] external mod_zero: t -> t -> t = "ml_mod_sgl_zero" "ml_mod_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Remainder. *) let square_near x = mul_near x x let square_up x = mul_up x x let square_down x = mul_down x x let square_zero x = mul_zero x x (** Square. *) external sqrt_near: t -> t = "ml_sqrt_sgl_near" "ml_sqrt_sgl_near_opt" [@@unboxed] [@@noalloc] external sqrt_up: t -> t = "ml_sqrt_sgl_up" "ml_sqrt_sgl_up_opt" [@@unboxed] [@@noalloc] external sqrt_down: t -> t = "ml_sqrt_sgl_down" "ml_sqrt_sgl_down_opt" [@@unboxed] [@@noalloc] external sqrt_zero: t -> t = "ml_sqrt_sgl_zero" "ml_sqrt_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Square root. *) external round_int_near: t -> t = "ml_round_int_sgl_near" "ml_round_int_sgl_near_opt" [@@unboxed] [@@noalloc] external round_int_up: t -> t = "ml_round_int_sgl_up" "ml_round_int_sgl_up_opt" [@@unboxed] [@@noalloc] external round_int_down: t -> t = "ml_round_int_sgl_down" "ml_round_int_sgl_down_opt" [@@unboxed] [@@noalloc] external round_int_zero: t -> t = "ml_round_int_sgl_zero" "ml_round_int_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Rounding to an integer. *) external of_double_near: t -> t = "ml_to_sgl_near" "ml_to_sgl_near_opt" [@@unboxed] [@@noalloc] external of_double_up: t -> t = "ml_to_sgl_up" "ml_to_sgl_up_opt" [@@unboxed] [@@noalloc] external of_double_down: t -> t = "ml_to_sgl_down" "ml_to_sgl_down_opt" [@@unboxed] [@@noalloc] external of_double_zero: t -> t = "ml_to_sgl_zero" "ml_to_sgl_zero_opt" [@@unboxed] [@@noalloc] (** Rounding from double to single precision. *) external of_int_near: int -> t = "ml_of_int_sgl_near" "ml_of_int_sgl_near" external of_int_up: int -> t = "ml_of_int_sgl_up" "ml_of_int_sgl_up" external of_int_down: int -> t = "ml_of_int_sgl_down" "ml_of_int_sgl_down" external of_int_zero: int -> t = "ml_of_int_sgl_zero" "ml_of_int_sgl_zero" external of_int_cur: int -> t = "ml_of_int_sgl_cur" "ml_of_int_sgl_cur" (** Conversion from int with rounding. *) external of_int64_near: int64 -> t = "ml_of_int64_sgl_near" "ml_of_int64_sgl_near_opt" [@@unboxed] [@@noalloc] external of_int64_up: int64 -> t = "ml_of_int64_sgl_up" "ml_of_int64_sgl_up_opt" [@@unboxed] [@@noalloc] external of_int64_down: int64 -> t = "ml_of_int64_sgl_down" "ml_of_int64_sgl_down_opt" [@@unboxed] [@@noalloc] external of_int64_zero: int64 -> t = "ml_of_int64_sgl_zero" "ml_of_int64_sgl_zero_opt" [@@unboxed] [@@noalloc] external of_int64_cur: int64 -> t = "ml_of_int64_sgl_cur" "ml_of_int64_sgl_cur_opt" [@@unboxed] [@@noalloc] (** Conversion from int64 with rounding. *) (** Code from Zarith to convert from Z.t to float using the current rounding mode. We add a version for single precision rounding. *) let round_z_to_single x exact = let m = Z.to_int x in (* Unless the fractional part is exactly 0, round m to an odd integer *) let m = if exact then m else m lor 1 in (* Then convert m to float, with the current rounding mode. *) of_int_cur m let z_to_single x = if Obj.is_int (Obj.repr x) then (* Fast path *) of_int_cur (Obj.magic x : int) else begin let n = Z.numbits x in if n <= 30 then of_int_cur (Z.to_int x) else begin let n = n - 26 in (* Extract top 26 bits of x *) let top = Z.shift_right x n in (* Check if the other bits are all zero *) let exact = Z.equal x (Z.shift_left top n) in (* Round to float and apply exponent *) ldexp (round_z_to_single top exact) n end end let of_z_near x = set_round_near (); z_to_single x let of_z_up x = set_round_up (); z_to_single x let of_z_down x = set_round_down (); z_to_single x let of_z_zero x = set_round_zero (); z_to_single x (** Conversion from Zarith with rounding. *) (** {2 Floating-point format characteristics} *) let mantissa_bits : int = 23 (* excluding hidden bit *) let exponent_bits : int = 8 let exponent_bias : int = 127 let min_exponent : int = -126 (* for normal values *) let max_exponent : int = 127 let nan_infinity_exponent : int = 128 let min_denormal : t = ldexp 1. (min_exponent-mantissa_bits) let min_normal : t = ldexp 1. min_exponent let max_normal : t = ldexp (2. -. ldexp 1. (-mantissa_bits)) max_exponent let max_exact : t = ldexp 1. (mantissa_bits+1) let ulp : t = ldexp 1. (-mantissa_bits) (** Units in the last place (relative precision). *) let rep_of_bits (i:int32) : bit_float = { sign = i < 0l; exponent = (Int32.to_int (Int32.shift_right i mantissa_bits) land 0xff); fraction = Z.of_int32 (Int32.logand i 0x7fffffl); } let bits_of_rep (r:bit_float) : int32 = let sign = if r.sign then 0x80000000l else 0l in let exp = Int32.shift_left (Int32.of_int r.exponent) mantissa_bits in Int32.logor sign (Int32.logor exp (Z.to_int32 r.fraction)) external to_bits: t -> int32 = "ml_bits_of_float" external of_bits: int32 -> t = "ml_float_of_bits" let succ (a:t) : t = if a = neg_infinity then -.max_normal else add_up a min_denormal let pred (a:t) : t = if a = infinity then max_normal else sub_down a min_denormal (** Returns the float immediately follownig or preceeding the argument. *) let succ_zero (a:t) : t = if a == 0. then a else succ a let pred_zero (a:t) : t = if a == 0. then a else pred a (** As succ and pred, but does not cross zero. *) external of_string_up: string -> t = "ml_of_string_sgl_up" external of_string_down: string -> t = "ml_of_string_sgl_down" (** Conversion from string. *) end (** Single precision operations. *) module Double = struct (** {2 Operations} *) external add_near: t -> t -> t = "ml_add_dbl_near" "ml_add_dbl_near_opt" [@@unboxed] [@@noalloc] external add_up: t -> t -> t = "ml_add_dbl_up" "ml_add_dbl_up_opt" [@@unboxed] [@@noalloc] external add_down: t -> t -> t = "ml_add_dbl_down" "ml_add_dbl_down_opt" [@@unboxed] [@@noalloc] external add_zero: t -> t -> t = "ml_add_dbl_zero" "ml_add_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Addition *) external sub_near: t -> t -> t = "ml_sub_dbl_near" "ml_sub_dbl_near_opt" [@@unboxed] [@@noalloc] external sub_up: t -> t -> t = "ml_sub_dbl_up" "ml_sub_dbl_up_opt" [@@unboxed] [@@noalloc] external sub_down: t -> t -> t = "ml_sub_dbl_down" "ml_sub_dbl_down_opt" [@@unboxed] [@@noalloc] external sub_zero: t -> t -> t = "ml_sub_dbl_zero" "ml_sub_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Subtraction *) external mul_near: t -> t -> t = "ml_mul_dbl_near" "ml_mul_dbl_near_opt" [@@unboxed] [@@noalloc] external mul_up: t -> t -> t = "ml_mul_dbl_up" "ml_mul_dbl_up_opt" [@@unboxed] [@@noalloc] external mul_down: t -> t -> t = "ml_mul_dbl_down" "ml_mul_dbl_down_opt" [@@unboxed] [@@noalloc] external mul_zero: t -> t -> t = "ml_mul_dbl_zero" "ml_mul_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Multiplication *) external mulz_near: t -> t -> t = "ml_mulz_dbl_near" "ml_mulz_dbl_near_opt" [@@unboxed] [@@noalloc] external mulz_up: t -> t -> t = "ml_mulz_dbl_up" "ml_mulz_dbl_up_opt" [@@unboxed] [@@noalloc] external mulz_down: t -> t -> t = "ml_mulz_dbl_down" "ml_mulz_dbl_down_opt" [@@unboxed] [@@noalloc] external mulz_zero: t -> t -> t = "ml_mulz_dbl_zero" "ml_mulz_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Special multiplication where 0 * ∞ is 0, not NaN. This is particularly useful for interal bounds. *) external div_near: t -> t -> t = "ml_div_dbl_near" "ml_div_dbl_near_opt" [@@unboxed] [@@noalloc] external div_up: t -> t -> t = "ml_div_dbl_up" "ml_div_dbl_up_opt" [@@unboxed] [@@noalloc] external div_down: t -> t -> t = "ml_div_dbl_down" "ml_div_dbl_down_opt" [@@unboxed] [@@noalloc] external div_zero: t -> t -> t = "ml_div_dbl_zero" "ml_div_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Division *) external divz_near: t -> t -> t = "ml_divz_dbl_near" "ml_divz_dbl_near_opt" [@@unboxed] [@@noalloc] external divz_up: t -> t -> t = "ml_divz_dbl_up" "ml_divz_dbl_up_opt" [@@unboxed] [@@noalloc] external divz_down: t -> t -> t = "ml_divz_dbl_down" "ml_divz_dbl_down_opt" [@@unboxed] [@@noalloc] external divz_zero: t -> t -> t = "ml_divz_dbl_zero" "ml_divz_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Special division where 0 / 0 and ∞ / ∞ are 0, not NaN. This is particularly useful for interal bounds. *) external mod_near: t -> t -> t = "ml_mod_dbl_near" "ml_mod_dbl_near_opt" [@@unboxed] [@@noalloc] external mod_up: t -> t -> t = "ml_mod_dbl_up" "ml_mod_dbl_up_opt" [@@unboxed] [@@noalloc] external mod_down: t -> t -> t = "ml_mod_dbl_down" "ml_mod_dbl_down_opt" [@@unboxed] [@@noalloc] external mod_zero: t -> t -> t = "ml_mod_dbl_zero" "ml_mod_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Remainder. *) let square_near x = mul_near x x let square_up x = mul_up x x let square_down x = mul_down x x let square_zero x = mul_zero x x (** Square. *) external sqrt_near: t -> t = "ml_sqrt_dbl_near" "ml_sqrt_dbl_near_opt" [@@unboxed] [@@noalloc] external sqrt_up: t -> t = "ml_sqrt_dbl_up" "ml_sqrt_dbl_up_opt" [@@unboxed] [@@noalloc] external sqrt_down: t -> t = "ml_sqrt_dbl_down" "ml_sqrt_dbl_down_opt" [@@unboxed] [@@noalloc] external sqrt_zero: t -> t = "ml_sqrt_dbl_zero" "ml_sqrt_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Square root. *) external round_int_near: t -> t = "ml_round_int_dbl_near" "ml_round_int_dbl_near_opt" [@@unboxed] [@@noalloc] external round_int_up: t -> t = "ml_round_int_dbl_up" "ml_round_int_dbl_up_opt" [@@unboxed] [@@noalloc] external round_int_down: t -> t = "ml_round_int_dbl_down" "ml_round_int_dbl_down_opt" [@@unboxed] [@@noalloc] external round_int_zero: t -> t = "ml_round_int_dbl_zero" "ml_round_int_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Rounding to an integer. *) external of_int_near: int -> t = "ml_of_int_dbl_near" "ml_of_int_dbl_near" external of_int_up: int -> t = "ml_of_int_dbl_up" "ml_of_int_dbl_up" external of_int_down: int -> t = "ml_of_int_dbl_down" "ml_of_int_dbl_down" external of_int_zero: int -> t = "ml_of_int_dbl_zero" "ml_of_int_dbl_zero" (** Conversion from int with rounding. *) external of_int64_near: int64 -> t = "ml_of_int64_dbl_near" "ml_of_int64_dbl_near_opt" [@@unboxed] [@@noalloc] external of_int64_up: int64 -> t = "ml_of_int64_dbl_up" "ml_of_int64_dbl_up_opt" [@@unboxed] [@@noalloc] external of_int64_down: int64 -> t = "ml_of_int64_dbl_down" "ml_of_int64_dbl_down_opt" [@@unboxed] [@@noalloc] external of_int64_zero: int64 -> t = "ml_of_int64_dbl_zero" "ml_of_int64_dbl_zero_opt" [@@unboxed] [@@noalloc] (** Conversion from int64 with rounding. *) let of_z_near x = set_round_near (); Z.to_float x let of_z_up x = set_round_up (); Z.to_float x let of_z_down x = set_round_down (); Z.to_float x let of_z_zero x = set_round_zero (); Z.to_float x (** Conversion from Zarith with rounding. *) (** {2 Floating-point format characteristics} *) let mantissa_bits : int = 52 (* excluding hidden bit *) let exponent_bits : int = 11 let exponent_bias : int = 1023 let min_exponent : int = -1022 (* for normal values *) let max_exponent : int = 1023 let nan_infinity_exponent : int = 1024 let min_denormal : t = ldexp 1. (min_exponent-mantissa_bits) let min_normal : t = ldexp 1. min_exponent let max_normal : t = ldexp (2. -. ldexp 1. (-mantissa_bits)) max_exponent let max_exact : t = ldexp 1. (mantissa_bits+1) let ulp : t = ldexp 1. (-mantissa_bits) (** Units in the last place (relative precision). *) let rep_of_bits (i:int64) : bit_float = { sign = i < 0L; exponent = (Int64.to_int (Int64.shift_right i mantissa_bits) land 0x7ff); fraction = Z.of_int64 (Int64.logand i 0xfffffffffffffL); } let bits_of_rep (r:bit_float) : int64 = let sign = if r.sign then 0x8000000000000000L else 0L in let exp = Int64.shift_left (Int64.of_int r.exponent) mantissa_bits in Int64.logor sign (Int64.logor exp (Z.to_int64 r.fraction)) external to_bits: t -> int64 = "ml_bits_of_double" external of_bits: int64 -> t = "ml_double_of_bits" let succ (a:t) : t = if a = neg_infinity then -.max_normal else add_up a min_denormal let pred (a:t) : t = if a = infinity then max_normal else sub_down a min_denormal (** Returns the float immediately following or preceeding the argument. *) let succ_zero (a:t) : t = if a == 0. then a else succ a let pred_zero (a:t) : t = if a == 0. then a else pred a (** As succ and pred, but does not cross zero. *) external of_string_up: string -> t = "ml_of_string_dbl_up" external of_string_down: string -> t = "ml_of_string_dbl_down" (** Conversion from string. *) end (** Double precision operations. *) (** {2 Operations with rounding mode as argument} *) type prec = [ `SINGLE (** 32-bit single precision *) | `DOUBLE (** 64-bit double precision *) ] (** Precision. *) type round = [ `NEAR (** To nearest *) | `UP (** Upwards *) | `DOWN (** Downwards *) | `ZERO (** Towards 0 *) ] (** Rounding direction. *) let add (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.add_near x y | `SINGLE, `UP -> Single.add_up x y | `SINGLE, `DOWN -> Single.add_down x y | `SINGLE, `ZERO -> Single.add_zero x y | `DOUBLE, `NEAR -> Double.add_near x y | `DOUBLE, `UP -> Double.add_up x y | `DOUBLE, `DOWN -> Double.add_down x y | `DOUBLE, `ZERO -> Double.add_zero x y (** Addition. *) let sub (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.sub_near x y | `SINGLE, `UP -> Single.sub_up x y | `SINGLE, `DOWN -> Single.sub_down x y | `SINGLE, `ZERO -> Single.sub_zero x y | `DOUBLE, `NEAR -> Double.sub_near x y | `DOUBLE, `UP -> Double.sub_up x y | `DOUBLE, `DOWN -> Double.sub_down x y | `DOUBLE, `ZERO -> Double.sub_zero x y (** Subtraction. *) let mul (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.mul_near x y | `SINGLE, `UP -> Single.mul_up x y | `SINGLE, `DOWN -> Single.mul_down x y | `SINGLE, `ZERO -> Single.mul_zero x y | `DOUBLE, `NEAR -> Double.mul_near x y | `DOUBLE, `UP -> Double.mul_up x y | `DOUBLE, `DOWN -> Double.mul_down x y | `DOUBLE, `ZERO -> Double.mul_zero x y (** Multiplication. *) let mulz (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.mulz_near x y | `SINGLE, `UP -> Single.mulz_up x y | `SINGLE, `DOWN -> Single.mulz_down x y | `SINGLE, `ZERO -> Single.mulz_zero x y | `DOUBLE, `NEAR -> Double.mulz_near x y | `DOUBLE, `UP -> Double.mulz_up x y | `DOUBLE, `DOWN -> Double.mulz_down x y | `DOUBLE, `ZERO -> Double.mulz_zero x y (** Multiplication, where 0 * infinity is 0, not Nan. *) let div (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.div_near x y | `SINGLE, `UP -> Single.div_up x y | `SINGLE, `DOWN -> Single.div_down x y | `SINGLE, `ZERO -> Single.div_zero x y | `DOUBLE, `NEAR -> Double.div_near x y | `DOUBLE, `UP -> Double.div_up x y | `DOUBLE, `DOWN -> Double.div_down x y | `DOUBLE, `ZERO -> Double.div_zero x y (** Division. *) let divz (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.divz_near x y | `SINGLE, `UP -> Single.divz_up x y | `SINGLE, `DOWN -> Single.divz_down x y | `SINGLE, `ZERO -> Single.divz_zero x y | `DOUBLE, `NEAR -> Double.divz_near x y | `DOUBLE, `UP -> Double.divz_up x y | `DOUBLE, `DOWN -> Double.divz_down x y | `DOUBLE, `ZERO -> Double.divz_zero x y (** Division, where 0 / 0 is 0, not Nan. *) let rem (prec:prec) (round:round) x y = match prec,round with | `SINGLE, `NEAR -> Single.mod_near x y | `SINGLE, `UP -> Single.mod_up x y | `SINGLE, `DOWN -> Single.mod_down x y | `SINGLE, `ZERO -> Single.mod_zero x y | `DOUBLE, `NEAR -> Double.mod_near x y | `DOUBLE, `UP -> Double.mod_up x y | `DOUBLE, `DOWN -> Double.mod_down x y | `DOUBLE, `ZERO -> Double.mod_zero x y (** Modulo. *) let square (prec:prec) (round:round) x = match prec,round with | `SINGLE, `NEAR -> Single.square_near x | `SINGLE, `UP -> Single.square_up x | `SINGLE, `DOWN -> Single.square_down x | `SINGLE, `ZERO -> Single.square_zero x | `DOUBLE, `NEAR -> Double.square_near x | `DOUBLE, `UP -> Double.square_up x | `DOUBLE, `DOWN -> Double.square_down x | `DOUBLE, `ZERO -> Double.square_zero x (** Square. *) let sqrt (prec:prec) (round:round) x = match prec,round with | `SINGLE, `NEAR -> Single.sqrt_near x | `SINGLE, `UP -> Single.sqrt_up x | `SINGLE, `DOWN -> Single.sqrt_down x | `SINGLE, `ZERO -> Single.sqrt_zero x | `DOUBLE, `NEAR -> Double.sqrt_near x | `DOUBLE, `UP -> Double.sqrt_up x | `DOUBLE, `DOWN -> Double.sqrt_down x | `DOUBLE, `ZERO -> Double.sqrt_zero x (** Square root. *) let round_int (prec:prec) (round:round) x = match prec,round with | `SINGLE, `NEAR -> Single.round_int_near x | `SINGLE, `UP -> Single.round_int_up x | `SINGLE, `DOWN -> Single.round_int_down x | `SINGLE, `ZERO -> Single.round_int_zero x | `DOUBLE, `NEAR -> Double.round_int_near x | `DOUBLE, `UP -> Double.round_int_up x | `DOUBLE, `DOWN -> Double.round_int_down x | `DOUBLE, `ZERO -> Double.round_int_zero x (** Rounds to integer (the result remains a float). *) let of_int (prec:prec) (round:round) x = match prec,round with | `SINGLE, `NEAR -> Single.of_int_near x | `SINGLE, `UP -> Single.of_int_up x | `SINGLE, `DOWN -> Single.of_int_down x | `SINGLE, `ZERO -> Single.of_int_zero x | `DOUBLE, `NEAR -> Double.of_int_near x | `DOUBLE, `UP -> Double.of_int_up x | `DOUBLE, `DOWN -> Double.of_int_down x | `DOUBLE, `ZERO -> Double.of_int_zero x (** Conversion from int. *) let of_int64 (prec:prec) (round:round) x = match prec,round with | `SINGLE, `NEAR -> Single.of_int64_near x | `SINGLE, `UP -> Single.of_int64_up x | `SINGLE, `DOWN -> Single.of_int64_down x | `SINGLE, `ZERO -> Single.of_int64_zero x | `DOUBLE, `NEAR -> Double.of_int64_near x | `DOUBLE, `UP -> Double.of_int64_up x | `DOUBLE, `DOWN -> Double.of_int64_down x | `DOUBLE, `ZERO -> Double.of_int64_zero x (** Conversion from int64. *) let of_z (prec:prec) (round:round) x = match prec,round with | `SINGLE, `NEAR -> Single.of_z_near x | `SINGLE, `UP -> Single.of_z_up x | `SINGLE, `DOWN -> Single.of_z_down x | `SINGLE, `ZERO -> Single.of_z_zero x | `DOUBLE, `NEAR -> Double.of_z_near x | `DOUBLE, `UP -> Double.of_z_up x | `DOUBLE, `DOWN -> Double.of_z_down x | `DOUBLE, `ZERO -> Double.of_z_zero x (** Conversion from Z.t *) let of_string (prec:prec) (round:[`UP | `DOWN]) x = match prec,round with | `SINGLE, `UP -> Single.of_string_up x | `SINGLE, `DOWN -> Single.of_string_down x | `DOUBLE, `UP -> Double.of_string_up x | `DOUBLE, `DOWN -> Double.of_string_down x (** Conversion from string, with safe rounding. *) let succ (prec:prec) x = match prec with | `SINGLE -> Single.succ x | `DOUBLE -> Double.succ x (** Number immediately after. *) let pred (prec:prec) x = match prec with | `SINGLE -> Single.pred x | `DOUBLE -> Double.pred x (** Number immediately before. *) let succ_zero (prec:prec) x = match prec with | `SINGLE -> Single.succ_zero x | `DOUBLE -> Double.succ_zero x (** Number immediately after. Does not cross zero. *) let pred_zero (prec:prec) x = match prec with | `SINGLE -> Single.pred_zero x | `DOUBLE -> Double.pred_zero x (** Number immediately before. Does not cross zero. *) let mantissa_bits (prec:prec) = match prec with | `SINGLE -> Single.mantissa_bits | `DOUBLE -> Double.mantissa_bits let exponent_bits (prec:prec) = match prec with | `SINGLE -> Single.exponent_bits | `DOUBLE -> Double.exponent_bits let exponent_bias (prec:prec) = match prec with | `SINGLE -> Single.exponent_bias | `DOUBLE -> Double.exponent_bias let min_exponent (prec:prec) = match prec with | `SINGLE -> Single.min_exponent | `DOUBLE -> Double.min_exponent let max_exponent (prec:prec) = match prec with | `SINGLE -> Single.max_exponent | `DOUBLE -> Double.max_exponent let nan_infinity_exponent (prec:prec) = match prec with | `SINGLE -> Single.nan_infinity_exponent | `DOUBLE -> Double.nan_infinity_exponent let min_denormal (prec:prec) = match prec with | `SINGLE -> Single.min_denormal | `DOUBLE -> Double.min_denormal let min_normal (prec:prec) = match prec with | `SINGLE -> Single.min_normal | `DOUBLE -> Double.min_normal let max_normal (prec:prec) = match prec with | `SINGLE -> Single.max_normal | `DOUBLE -> Double.max_normal let max_exact (prec:prec) = match prec with | `SINGLE -> Single.max_exact | `DOUBLE -> Double.max_exact let ulp (prec:prec) = match prec with | `SINGLE -> Single.ulp | `DOUBLE -> Double.ulp (** Useful constants. *) let to_bits (prec:prec) (x:float) : bit_float = match prec with | `SINGLE -> x |> Single.to_bits |> Single.rep_of_bits | `DOUBLE -> x |> Double.to_bits |> Double.rep_of_bits let of_bits (prec:prec) (x:bit_float) : float = match prec with | `SINGLE -> x |> Single.bits_of_rep |> Single.of_bits | `DOUBLE -> x |> Double.bits_of_rep |> Double.of_bits (** Bit-level extraction. *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>