package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/domain/product.ml.html
Source file product.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Reduced product combiner with n-ary reduction rules *) open Mopsa_utils open Core.All open Sig.Reduction.Exec open Sig.Reduction.Eval open Sig.Combiner.Stacked open Common open Location (** Signature of a pool of domains with pointwise transfer functions *) module type POOL = sig include STACKED_COMBINER val checks : check list list val members : DomainSet.t list val exec : DomainSet.t option -> stmt -> ('a,t) man -> 'a flow -> 'a post option list val eval : DomainSet.t option -> expr -> ('a,t) man -> 'a flow -> 'a eval option list end (** Empty pool *) module EmptyPool : POOL = struct type t = unit let id = C_empty let name = "()" let domains = DomainSet.empty let members = [] let semantics = SemanticSet.empty let routing_table = empty_routing_table let checks = [[]] let bottom = () let top = () let is_bottom _ = false let subset _ _ ((),s) ((),s') = true,s,s' let join _ _ ((),s) ((),s') = (),s,s' let meet _ _ ((),s) ((),s') = (),s,s' let widen _ _ ((),s) ((),s') = (),s,s',true let merge _ _ _ _ = () let init _ _ flow = None let exec _ _ _ flow = [] let eval _ _ _ flow = [] let ask _ _ _ _ = None let print_state _ _ () = () let print_expr _ _ _ _ _ = () end (** Add a domain to a pool *) module MakePairPool(S:STACKED_COMBINER)(P:POOL) : POOL with type t = S.t * P.t = struct type t = S.t * P.t let id = C_pair(Product,S.id,P.id) let domains = DomainSet.union S.domains P.domains let members = S.domains :: P.members let semantics = SemanticSet.union S.semantics P.semantics let routing_table = join_routing_table S.routing_table P.routing_table let checks = S.checks :: P.checks let name = S.name ^ " ∧ " ^ P.name let bottom = S.bottom, P.bottom let top = S.top, P.top let is_bottom (s,p) = S.is_bottom s || P.is_bottom p let subset man ctx ((a1,a2),s) ((a1',a2'),s') = let b1, s, s' = S.subset (fst_pair_man man) ctx (a1,s) (a1',s') in let b2, s, s' = P.subset (snd_pair_man man) ctx (a2,s) (a2',s') in b1 && b2, s, s' let join man ctx ((a1,a2),s) ((a1',a2'),s') = let aa1, s, s' = S.join (fst_pair_man man) ctx (a1,s) (a1',s') in let aa2, s, s' = P.join (snd_pair_man man) ctx (a2,s) (a2',s') in (aa1,aa2), s, s' let meet man ctx ((a1,a2),s) ((a1',a2'),s') = let aa1, s, s' = S.meet (fst_pair_man man) ctx (a1,s) (a1',s') in let aa2, s, s' = P.meet (snd_pair_man man) ctx (a2,s) (a2',s') in (aa1,aa2), s, s' let widen man ctx ((a1,a2),s) ((a1',a2'),s') = let aa1, s, s', stable1 = S.widen (fst_pair_man man) ctx (a1,s) (a1',s') in let aa2, s, s', stable2 = P.widen (snd_pair_man man) ctx (a2,s) (a2',s') in (aa1,aa2), s, s', stable1 && stable2 let merge path (pre1,pre2) ((a1,a2), te) ((a1',a2'), te') = S.merge (Ax_pair_left::path) pre1 (a1, te) (a1', te'), P.merge (Ax_pair_right::path) pre2 (a2, te) (a2', te') let init prog man flow = broadcast_init S.init P.init prog man flow let exec targets = let f2 = P.exec targets in if not (sat_targets ~targets ~domains:S.domains) then (fun stmt man flow -> None :: f2 stmt (snd_pair_man man) flow ) else let f1 = S.exec targets in (fun stmt man flow -> let post = f1 stmt (fst_pair_man man) flow in let ctx = OptionExt.apply Cases.get_ctx (Flow.get_ctx flow) post in let flow = Flow.set_ctx ctx flow in post :: f2 stmt (snd_pair_man man) flow ) let eval targets = let f2 = P.eval targets in if not (sat_targets ~targets ~domains:S.domains) then (fun exp man flow -> None :: f2 exp (snd_pair_man man) flow ) else let f1 = S.eval targets in (fun exp man flow -> let eval = f1 exp (fst_pair_man man) flow in let ctx = OptionExt.apply Cases.get_ctx (Flow.get_ctx flow) eval in let flow = Flow.set_ctx ctx flow in eval :: f2 exp (snd_pair_man man) flow ) let ask targets = let f2 = P.ask targets in if not (sat_targets ~targets ~domains:S.domains) then (fun query man flow -> f2 query (snd_pair_man man) flow ) else let f1 = S.ask targets in (fun query man flow -> OptionExt.neutral2 Cases.meet (f1 query (fst_pair_man man) flow) (f2 query (snd_pair_man man) flow)) let print_state targets = let f2 = P.print_state targets in if not (sat_targets ~targets ~domains:S.domains) then (fun printer (s,p) -> f2 printer p ) else let f1 = S.print_state targets in (fun printer (s,p) -> f1 printer s; f2 printer p ) let print_expr targets = let f2 = P.print_expr targets in if not (sat_targets ~targets ~domains:S.domains) then (fun man flow printer e -> f2 (snd_pair_man man) flow printer e ) else let f1 = S.print_expr targets in (fun man flow printer e -> f1 (fst_pair_man man) flow printer e; f2 (snd_pair_man man) flow printer e ) end (** Create a reduced product over a pool and a list of reduction rules *) module Make (Pool:POOL) (Rules:sig val erules: (module EVAL_REDUCTION) list val srules: (module EXEC_REDUCTION) list end) : STACKED_COMBINER with type t = Pool.t = struct include Pool let checks = List.flatten Pool.checks let debug fmt = Debug.debug ~channel:"framework.combiners.domain.product" fmt (** {2 Merging functions} *) (** ********************* *) (* Combine the reports of the two functions *) let merge_report checks1 checks2 report1 report2 = map2zo_report (fun diag1 -> (* Check performed only by the left domain. Here, we are in trouble if the right domain is responsible for this check and did nothing! *) if List.mem diag1.diag_check checks2 then Exceptions.panic "%a: check %a is unsound" pp_relative_range diag1.diag_range pp_check diag1.diag_check (* Otherwise, this is fine! The second domain is not responsible for this check, so add it to the result *) else diag1 ) (fun diag2 -> (* Same dual reasoning here *) if List.mem diag2.diag_check checks1 then Exceptions.panic "%a: check %a is unsound" pp_relative_range diag2.diag_range pp_check diag2.diag_check else diag2 ) (fun diag1 diag2 -> (* Check domains responsibility *) match List.mem diag2.diag_check checks1, List.mem diag1.diag_check checks2 with (* Both domains handle the check => both diagnostics are up-to-date *) | true, true -> meet_diagnostic diag1 diag2 (* Only left domain handles it => return its diagnostic *) | true, false -> diag1 (* Only right domain handles it => return its diagnostic *) | false, true -> diag2 (* None of the domains handle the check, however the check changed! This happens when a computation (exec/eval) is performed by one domain only. The computation triggered the check and updated the diagnostic. One easy and sound solution is to join the diagnostics. *) (* XXX Maybe we can be more precise by keeping the newest diagnostic, which can be done by comparing with the pre-state report? *) | false, false -> join_diagnostic diag1 diag2 ) report1 report2 (** Merge the conflicts between distinct domains. These conflicts arise from two situations: 1. When a domain changes its local state, this change is not present in the post-state of the other domains. In this case, we need to put the new local state of every domain in all other post-states. 2. When two domains change (independently) the state of a shared sub-abstraction. In this case, we use chages to merge the two diverging states. *) let merge_inter_conflicts man pre range (pointwise:('a,'r) cases option list) : ('a,'r option list) cases = let rec aux : type t. t id -> ('a,t) man -> ('a,'r) cases option list -> check list list -> ('a,'r option list) cases = fun id man pointwise checks -> match pointwise, id, checks with (* Last domain returned no answer *) | [None], C_pair(_, s, _), _ -> Cases.return [None] pre (* Last domain returned an answer *) | [Some r], C_pair(_, s, _), _ -> r >>= fun case flow -> begin match case with | Result(res,_,_) -> Cases.return [Some res] flow | Empty -> Cases.empty flow | NotHandled -> Cases.return [None] flow end (* One domain returned no answer *) | None :: tl, C_pair(_,s,pid), _::tlchecks -> aux pid (snd_pair_man man) tl tlchecks >>$ fun after flow -> Cases.return (None :: after) flow (* One domain returned an answer. Here we need to merge this answer with the answers of the next domains *) | Some r :: tl, C_pair(_,s,pid), hdchecks::tlchecks -> (* Compute the answer of the next domains *) aux pid (snd_pair_man man) tl tlchecks >>= fun after_case after_flow -> (* Compute the answer of this domain *) r >>= fun case flow -> (* Now combine the two answers *) begin match case, after_case with (* If at least one answer is empty, all the conjunction is empty *) | Empty, _ | _, Empty -> let report = merge_report hdchecks (List.flatten tlchecks) (Flow.get_report flow) (Flow.get_report after_flow) in let flow = Flow.set_report report flow in let after_flow = Flow.set_report report flow in Cases.empty (Flow.meet man.lattice flow after_flow) (* NotHandled is transformed to None *) | NotHandled, Result(after_res,_,_) -> Cases.return (None :: after_res) after_flow (* Both domains replied, so merge the results *) | Result (res,changes,cleaners), Result(after_res,after_changes,after_cleaners) -> (* Merge only when the next domains provided some answers *) if after_res |> List.exists (function Some _ -> true | None -> false) then (* Resolve the first conflict situation: put the post-state of the current domain in the answer of the next domains *) let post = let fst_pair_man = fst_pair_man man in fst_pair_man.get T_cur flow >>$ fun env flow -> let partitions = ask_and_reduce man.ask (Sig.Abstraction.Partitioning.Q_partition_predicate range) flow ~bottom:(fun () -> mk_constant (C_bool true) range ~etyp:T_bool) in man.exec (mk_assume partitions dummy_range) after_flow >>% fst_pair_man.set T_cur env in Post.remove_duplicates man.lattice post >>% fun after_flow -> (* Resolve the second conflict situation: merge the post-states of any shared sub-abstraction *) let flow = Flow.merge ~merge_report:(merge_report hdchecks (List.flatten tlchecks)) man.lattice pre (flow,changes) (after_flow,after_changes) in let changes = meet_change_map changes after_changes in let cleaners = StmtSet.union cleaners after_cleaners in Cases.case (Result (Some res :: after_res, changes, cleaners)) flow else (* Next domains returned no answer, so no merging *) let report = merge_report hdchecks (List.flatten tlchecks) (Flow.get_report flow) (Flow.get_report after_flow) in let flow = Flow.set_report report flow in Cases.case (Result (Some res :: after_res, changes, cleaners)) flow | _ -> assert false end | _ -> assert false in aux Pool.id man pointwise Pool.checks (** Merge the conflicts emerging from the same domain. This kind of conflicts arises when the same domain produces a conjunction of post-states. Since these conjunctions are from the same domain, there is no need to merge its local state; we just merge any shared sub-abstraction. *) let merge_intra_conflicts man pre (r:('a,'r) cases) : ('a,'r) cases = Cases.map_conjunction (fun conj -> let rec iter = function | [] -> assert false | [case,flow] -> Cases.get_case_changes case, Cases.get_case_cleaners case, flow | (case,flow)::tl -> let changes',cleaners',flow' = iter tl in let changes,cleaners = Cases.get_case_changes case, Cases.get_case_cleaners case in let flow'' = Flow.merge man.lattice ~merge_report:meet_report pre (flow,changes) (flow',changes') in meet_change_map changes changes', StmtSet.union cleaners cleaners', flow'' in let changes,cleaners,flow = iter conj in List.map (fun (case,_) -> let case = Cases.set_case_changes changes case |> Cases.set_case_cleaners cleaners in case,flow ) conj ) r (** {2 Generic pointwise processing of transfer functions *) (** ***************************************************** *) (** The successor domain is the domain below the reduced product. Since all member domains in the reduced product are at the same level, we can pick any one of them *) let successor = (* XXX This is a hack to be sure to take a member that is a user domain, not a composed domain, because `BelowOf` routes are defined for user domains only *) let member = List.find (fun domains -> DomainSet.cardinal domains = 1) Pool.members |> DomainSet.choose in Below member (** Get the context of a pointwise result *) let rec get_pointwise_ctx ~default pointwise = match pointwise with | [] -> default | None::tl -> get_pointwise_ctx ~default tl | Some cases :: tl -> most_recent_ctx (Cases.get_ctx cases) (get_pointwise_ctx ~default tl) (** Set the context of a pointwise result *) let rec set_pointwise_ctx ctx pointwise = match pointwise with | [] -> [] | None :: tl -> None :: set_pointwise_ctx ctx tl | Some cases :: tl -> Some (Cases.set_ctx ctx cases) :: set_pointwise_ctx ctx tl (** Apply transfer function [f] pointwise over all domains *) let apply_pointwise f arg remove_duplicates man flow = let pointwise = f arg man flow in let pointwise = List.map (function | None -> None | Some r -> Some (remove_duplicates man.lattice r) ) pointwise in if List.exists (function Some _ -> true | None -> false) pointwise then let ctx = get_pointwise_ctx pointwise ~default:(Flow.get_ctx flow) in Some (set_pointwise_ctx ctx pointwise) else None (** Replace missing pointwise results by calling the successor domain. Missing results are functions returning [None] or [NotHandled] cases. *) let add_missing_pointwise_results fsuccessor arg pointwise remove_duplicates man flow = (* Separate handled and not-handled cases *) let handled_pointwise, not_handled = List.fold_left (fun (acc1,acc2) -> function | None -> (None,true)::acc1,acc2 | Some r -> let h,nh = Cases.partition (fun c _ -> match c with NotHandled -> false | _ -> true) r in let acc1' = (h,(if nh = None then false else true))::acc1 in let acc2' = OptionExt.neutral2 Cases.join nh acc2 in acc1',acc2' ) ([],None) pointwise in let handled_pointwise = List.rev handled_pointwise in let not_handled = if List.exists (function None -> true | _ -> false) pointwise then OptionExt.neutral2 Cases.join not_handled (Some (Cases.not_handled flow)) else not_handled in match not_handled with | None -> pointwise | Some cases -> (* Merge all cases in one before calling successor domain *) let successor_res = remove_duplicates man.lattice cases >>= fun _ flow -> fsuccessor arg flow |> remove_duplicates man.lattice in (* Put successor's result back in the pointwise results *) let pointwise' = List.map (fun (r,has_not_handled_cases) -> match r with | None -> Some successor_res | Some rr when not has_not_handled_cases -> Some rr | Some rr -> Some (Cases.join rr successor_res) ) handled_pointwise in set_pointwise_ctx (Cases.get_ctx successor_res) pointwise' (** {2 Abstract transformer} *) (** ************************ *) (** Manager used by reductions *) let exec_reduction_man (man:('a, t) man) : 'a exec_reduction_man = { get_man = (fun id -> find_domain_man ~target:id ~tree:Pool.id man); } (** Simplify a pointwise post-state by changing lists of unit into unit *) let simplify_pointwise_post (pointwise:('a,unit option list) cases) : 'a post = Cases.map_result (fun _ -> ()) pointwise (** Apply reduction rules on a post-conditions *) let reduce_post stmt man pre post = let rman = exec_reduction_man man in (* Reduce each case separately *) post |> Cases.bind @@ fun case flow -> match case with | Empty -> Cases.empty flow | NotHandled -> Cases.not_handled flow | Result((),changes,_) -> (* Iterate over rules *) let rec iter = function | [] -> Post.return flow | rule::tl -> let module R = (val rule : EXEC_REDUCTION) in match R.reduce stmt man rman pre flow changes with | None -> iter tl | Some post -> post in iter Rules.srules (** Entry point of abstract transformers *) let exec targets = let f = Pool.exec targets in (fun stmt man flow -> with_change_tracker (fun () -> apply_pointwise f stmt Post.remove_duplicates man flow |> OptionExt.lift @@ fun pointwise -> add_missing_pointwise_results (man.exec ~route:successor) stmt pointwise Post.remove_duplicates man flow |> merge_inter_conflicts man flow stmt.srange |> simplify_pointwise_post |> merge_intra_conflicts man flow |> reduce_post stmt man flow ) ) (** {2 Abstract evaluations} *) (** ************************ *) (** Manager used by reductions *) let eval_reduction_man (man:('a, t) man) : 'a eval_reduction_man = { get_man = (fun id -> find_domain_man ~target:id ~tree:Pool.id man); } (** Apply reduction rules on a pointwise evaluation *) let reduce_pointwise_eval exp man input (pointwise:('a, expr option list) cases) : 'a eval = pointwise >>$ fun el flow -> (* Keep only cases with non-empty results and remove duplicates *) let el' = List.filter (function Some _ -> true | _ -> false) el |> List.map (function Some e -> e | _ -> assert false) |> List.sort_uniq compare_expr in if el' = [] then Eval.empty flow else let rman = eval_reduction_man man in let rec iter = function | [] -> (* XXX For performance reasons, we keep only one evaluation in each conjunction. THE CHOICE IS ARBITRARY! *) Eval.singleton (List.hd el') flow | rule::tl -> let module R = (val rule : EVAL_REDUCTION) in match R.reduce exp man rman input el' flow with | None -> iter tl | Some evl -> evl in iter Rules.erules (** Entry point of abstract evaluations *) let eval targets = let f = Pool.eval targets in (fun exp man flow -> with_change_tracker (fun () -> apply_pointwise f exp Eval.remove_duplicates man flow |> OptionExt.lift @@ fun pointwise -> add_missing_pointwise_results (man.eval ~route:successor) exp pointwise Eval.remove_duplicates man flow |> merge_inter_conflicts man flow exp.erange |> reduce_pointwise_eval exp man flow |> Eval.remove_duplicates man.lattice |> merge_intra_conflicts man flow ) ) end let rec make_pool : (module STACKED_COMBINER) list -> (module POOL) = function | [] -> (module EmptyPool) | hd :: tl -> let module S = (val hd) in let p = make_pool tl in (module MakePairPool(S)(val p)) let make (domains: (module STACKED_COMBINER) list) ~(eval_rules: (module EVAL_REDUCTION) list) ~(exec_rules: (module EXEC_REDUCTION) list) : (module STACKED_COMBINER) = let p = make_pool domains in (module Make(val p) (struct let erules = eval_rules let srules = exec_rules end) )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>