package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/domain/partitioning.ml.html
Source file partitioning.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Partitioning combiner *) open Core.All open Mopsa_utils open Sig.Combiner.Domain open Common open Sig.Abstraction.Partitioning module M = MapExtPoly module Make(P:PARTITIONING)(D:DOMAIN_COMBINER) : DOMAIN_COMBINER = struct type t = | Top | Map of (P.t, D.t) M.t include GenDomainId (struct type nonrec t = t let name = P.name ^ "(" ^ D.name ^ ")" end) let checks = P.checks @ D.checks |> List.sort_uniq compare let domains = DomainSet.add name D.domains let semantics = D.semantics let routing_table = add_routes (Below P.name) D.domains D.routing_table type accessor += | Ax_partitioning_partition of P.t let () = register_accessor { print = (fun next fmt -> function | Ax_partitioning_partition p -> P.print fmt p | t -> next fmt t ); compare = (fun next t1 t2 -> match t1, t2 with | Ax_partitioning_partition p1, Ax_partitioning_partition p2 -> P.compare p1 p2 | _ -> compare t1 t2 ); } type expr_kind += E_partition_predicate of P.t let () = register_expr_with_visitor { print = (fun next fmt e -> match ekind e with | E_partition_predicate p -> Format.fprintf fmt "partition(%a)" P.print p | _ -> next fmt e ); compare = (fun next e1 e2 -> match ekind e1, ekind e2 with | E_partition_predicate p1, E_partition_predicate p2 -> P.compare p1 p2 | _ -> next e1 e2 ); visit = (fun next e -> match ekind e with | E_partition_predicate _ -> leaf e | _ -> next e); } let bottom = Map (M.empty ~compare:P.compare) let top = Top let singleton p env = if D.is_bottom env then bottom else Map (M.singleton p env ~compare:P.compare) let of_list l = Map (M.of_list P.compare l) let is_bottom = function | Top -> false | Map map -> M.for_all (fun _ e -> D.is_bottom e) map let domain_man man = { man with get = (fun tk flow -> man.get tk flow >>$ fun m flow -> match m with | Top -> Cases.singleton D.top flow | Map map when M.is_singleton map -> let _, e = M.choose map in Cases.singleton e flow | Map map -> let cases = M.fold (fun p e acc -> let case = set_env tk (singleton p e) man flow >>% fun flow -> Cases.singleton e flow in case :: acc ) map [] in Cases.join_list cases ~empty:(fun () -> Cases.singleton D.bottom flow) ); set = (fun tk e flow -> man.get tk flow >>$ fun a flow -> match a with | Top -> Post.return flow | Map map when M.is_empty map -> Post.return flow | Map map -> let map' = M.map (fun _ -> e) map in man.set tk (Map map') flow ); add_change = (fun stmt path flow change_map -> match get_singleton_env_from_flow T_cur man flow with | Top -> assert false | Map map -> M.fold (fun p _ acc -> let path' = (Ax_partitioning_partition p) :: path in man.add_change stmt path' flow acc ) map change_map ); } let partition_man man = { man with get = (fun tk flow -> man.get tk flow >>$ fun m flow -> match m with | Top -> assert false | Map map when M.is_singleton map -> let p, _ = M.choose map in Cases.singleton p flow | Map map -> let cases = M.fold (fun p e acc -> let case = set_env tk (singleton p e) man flow >>% fun flow -> Cases.singleton p flow in case :: acc ) map [] in Cases.join_list cases ~empty:(fun () -> Cases.empty flow) ); set = (fun tk p flow -> man.get tk flow >>$ fun a flow -> match a with | Top -> Post.return flow | Map map when M.is_empty map -> Post.return flow | Map map when M.is_singleton map -> let _, e = M.choose map in set_env tk (singleton p e) man flow | Map map -> let dman = domain_man man in let ctx = Flow.get_ctx flow in let e = M.fold (fun _ e acc -> D.join dman ctx (e, man.lattice.top) (acc, man.lattice.top)) map D.bottom in man.set tk (singleton p e) flow ); } let subset man ctx (a1, x1) (a2, x2) = if a1 == a2 then true else match a1, a2 with | _, Top -> true | Top, _ -> false | Map map1, Map map2 -> let dman = domain_man man in let singleton1 = M.is_singleton map1 in let singleton2 = M.is_singleton map2 in M.for_all2zo (fun p1 e1 -> false) (fun p2 e2 -> true) (fun p e1 e2 -> D.subset dman ctx (e1, if singleton1 then x1 else set_singleton_env (singleton p e1) ctx man x1) (e2, if singleton2 then x2 else set_singleton_env (singleton p e2) ctx man x2) ) map1 map2 let join man ctx (a1, x1) (a2, x2) = if a1 == a2 then a1 else match a1, a2 with | Top, _ -> Top | _, Top -> Top | Map map1, Map map2 -> let dman = domain_man man in let singleton1 = M.is_singleton map1 in let singleton2 = M.is_singleton map2 in let map = M.map2zo (fun p1 e1 -> e1) (fun p2 e2 -> e2) (fun p e1 e2 -> D.join dman ctx (e1, if singleton1 then x1 else set_singleton_env (singleton p e1) ctx man x1) (e2, if singleton2 then x2 else set_singleton_env (singleton p e2) ctx man x2) ) map1 map2 in Map map let meet man ctx (a1, x1) (a2, x2) = if a1 == a2 then a1 else match a1, a2 with | Top, _ -> a2 | _, Top -> a1 | Map map1, Map map2 -> let dman = domain_man man in let singleton1 = M.is_singleton map1 in let singleton2 = M.is_singleton map2 in let map = M.fold2zo (fun p1 e1 acc -> M.remove p1 acc) (fun p2 e2 acc -> acc) (fun p e1 e2 acc -> let e = D.meet dman ctx (e1, if singleton1 then x1 else set_singleton_env (singleton p e1) ctx man x1) (e2, if singleton2 then x2 else set_singleton_env (singleton p e2) ctx man x2) in if D.is_bottom e then M.remove p acc else M.add p e acc ) map1 map2 map1 in Map map let widen man ctx (a1, x1) (a2, x2) = if a1 == a2 then a1 else match a1, a2 with | Top, _ -> Top | _, Top -> Top | Map map1, Map map2 -> let dman = domain_man man in let singleton1 = M.is_singleton map1 in let singleton2 = M.is_singleton map2 in let map = M.map2zo (fun p1 e1 -> e1) (fun p2 e2 -> e2) (fun p e1 e2 -> D.widen dman ctx (e1, if singleton1 then x1 else set_singleton_env (singleton p e1) ctx man x1) (e2, if singleton2 then x2 else set_singleton_env (singleton p e2) ctx man x2) ) map1 map2 in Map map let merge path pre (a1, te1) (a2, te2) = match a1, a2 with | Top, _ -> Top | _, Top -> Top | Map m1, Map m2 -> let m = M.map2zo (fun p1 e1 -> e1) (fun p2 e2 -> e2) (fun p e1 e2 -> let dpre = match pre with | Top -> D.top | Map m -> try M.find p m with Not_found -> D.top in let path' = Ax_partitioning_partition p :: path in D.merge path' dpre (e1, te1) (e2, te2) ) m1 m2 in Map m let init prog man flow = set_env T_cur (singleton P.init D.top) man flow >>%? fun flow -> match D.init prog (domain_man man) flow with | None -> Post.return flow |> Option.some | Some _ as ret -> ret exception None_found let lift targets pf df cmd man flow = let dman = domain_man man in let pman = partition_man man in man.get T_cur flow >>$? fun a flow -> match a with | Top -> df cmd dman flow | Map map when not (sat_targets ~targets ~domains:(DomainSet.singleton name)) -> df cmd dman flow | Map map -> match pf cmd pman flow with | None -> df cmd dman flow | Some _ as r -> r let exec_add_marker df m stmt man flow = get_env T_cur man flow >>$ fun a flow -> match a with | Top -> Post.return flow | Map map -> let dman = domain_man man in M.fold (fun p e acc -> let p' = P.add m p in let case = set_env T_cur (singleton p' e) man flow >>% fun flow' -> match df stmt dman flow' with | None -> Post.return flow' | Some ret -> ret in case :: acc ) map [] |> Cases.join_list ~empty:(fun () -> Cases.empty flow) let eval_partition_predicate p range man flow = get_env T_cur man flow >>$ fun a flow -> match a with | Top -> Eval.singleton (mk_top T_bool range) flow | Map map -> match M.find_opt p map with | None -> let ret = mk_constant (C_bool false) range ~etyp:T_bool in Eval.singleton ret flow | Some e -> let case_true = set_env T_cur (singleton p e) man flow >>% fun flow -> let ret = mk_constant (C_bool true) range ~etyp:T_bool in Eval.singleton ret flow in let map' = M.remove p map in if M.is_empty map' then case_true else let case_false = set_env T_cur (Map map') man flow >>% fun flow -> let ret = mk_constant (C_bool false) range ~etyp:T_bool in Eval.singleton ret flow in Cases.join case_true case_false let ask_partition_predicate range pman flow = get_env T_cur pman flow >>$ fun p flow -> let e = mk_expr (E_partition_predicate p) ~etyp:T_bool range in let e' = ask_and_reduce (pman.ask ~route:(Below P.name)) (Q_partition_predicate range) flow in Cases.singleton (mk_binop e O_log_and e' ~etyp:T_bool range) flow let exec targets = let df = D.exec targets in if sat_targets ~targets ~domains:(DomainSet.singleton name) then (fun stmt man flow -> match skind stmt with | S_add_marker m -> exec_add_marker df m stmt man flow |> Option.some | _ -> lift targets P.exec df stmt man flow ) else lift targets P.exec df let eval targets = let df = D.eval targets in if sat_targets ~targets ~domains:(DomainSet.singleton name) then (fun expr man flow -> match ekind expr with | E_partition_predicate p -> eval_partition_predicate p expr.erange man flow |> Option.some | _ -> lift targets P.eval df expr man flow ) else lift targets P.eval df let ask targets = let df = D.ask targets in let pf : type a r. (a, r) query -> (a, P.t) man -> a flow -> (a, r) cases option = fun query pman flow -> match query with | Q_partition_predicate range -> ask_partition_predicate range pman flow |> Option.some | _ -> P.ask query pman flow in lift targets pf df let print_state targets = let f = D.print_state targets in if sat_targets ~targets ~domains:(DomainSet.singleton name) then (fun printer -> function | Top -> pp_string printer "T" | Map map when M.is_empty map -> pp_string printer "⊥" | Map map -> pp_map (unformat P.print) f printer (M.bindings map) ) else (fun printer -> function | Top -> pp_string printer "T" | Map map when M.is_empty map -> pp_string printer "⊥" | Map map -> if M.is_singleton map then let _, e = M.choose map in f printer e else assert false ) let inside_partition_print_expr = ref false let print_expr targets = let df = D.print_expr targets in if sat_targets ~targets ~domains:(DomainSet.singleton name) then (fun man flow printer exp -> let dman = domain_man man in if !inside_partition_print_expr then df dman flow printer exp else begin inside_partition_print_expr := true; man.get T_cur flow |> Cases.iter_result (fun a flow -> match a with | Top -> df dman flow printer exp | Map map when M.is_empty map -> pp_string printer "⊥" | Map map -> pp_mapi (unformat P.print) (fun printer (p, e) -> let flow = set_env T_cur (singleton p e) man flow |> post_to_flow man in df dman flow printer exp ) printer (M.bindings map) ); inside_partition_print_expr := false end ) else (fun man flow printer exp -> let dman = domain_man man in df dman flow printer exp ) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>