package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/core/cases.ml.html
Source file cases.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Cases - Encoding of results returned by transfer functions. *) open Mopsa_utils open Ast.Stmt open Flow open Token open Change open Context open Alarm open Lattice type cleaners = StmtSet.t (** Single case of a computation *) type 'r case = | Result of 'r * change_map * cleaners | Empty | NotHandled (** Multiple cases of a computation, encoded as a DNF *) type ('a,'r) cases = {cases: ('r case * 'a flow) Dnf.t; ctx: 'a ctx} let case (case:'r case) flow : ('a,'r) cases = {cases=Dnf.singleton (case,flow); ctx = Flow.get_ctx flow} let return ?(changes=empty_change_map) ?(cleaners=[]) (res:'r) (flow:'a flow) = case (Result (res,changes,StmtSet.of_list cleaners)) flow let singleton = return let empty (flow:'a flow) : ('a,'r) cases = let flow = Flow.remove T_cur flow in case Empty flow let not_handled (flow:'a flow) : ('a,'r) cases = case NotHandled flow let opt_clean_cur_only = ref false let get_ctx cases = cases.ctx let set_ctx ctx cases = if ctx == get_ctx cases then cases else {cases=Dnf.map (fun (case,flow) -> (case, Flow.set_ctx ctx flow)) cases.cases; ctx} let copy_ctx src dst = set_ctx (get_ctx src) dst let get_most_recent_ctx cases = Dnf.fold (fun acc (case,flow) -> most_recent_ctx acc (Flow.get_ctx flow)) (get_ctx cases) cases.cases let normalize_ctx cases = let ctx = get_most_recent_ctx cases in set_ctx ctx cases let get_callstack r = get_ctx r |> find_ctx Context.callstack_ctx_key let set_callstack cs r = set_ctx ( get_ctx r |> add_ctx Context.callstack_ctx_key cs ) r let get_case_cleaners (case:'r case) : StmtSet.t = match case with | Result(_,_,cleaners) -> cleaners | Empty | NotHandled -> StmtSet.empty let set_case_cleaners (cleaners:StmtSet.t) (case:'r case) : 'r case = match case with | Result(r,changes,_) -> Result(r,changes,cleaners) | _ -> case let get_case_changes (case:'r case) : change_map = match case with | Result(_,changes,_) -> changes | Empty | NotHandled -> empty_change_map let set_case_changes (changes:change_map) (case:'r case) : 'r case = match case with | Result(r,old,cleaners) -> if old == changes then case else Result(r,changes,cleaners) | _ -> case let is_singleton cases = match Dnf.to_list cases.cases with | [[_]] -> true | _ -> false let choose cases = match Dnf.choose cases.cases with | Some (case, flow) -> case, flow | None -> invalid_arg "Cases.choose" let choose_result cases = let case, flow = choose cases in match case with | Result(r, _, _) -> r, flow | _ -> invalid_arg "Cases.choose_result" let map (f:'r case -> 'a flow -> 's case * 'a flow) (cases:('a,'r) cases) : ('a,'s) cases = {cases=Dnf.map (fun (case,flow) -> f case flow) cases.cases; ctx=cases.ctx} |> normalize_ctx let map_result (f:'r->'s) (cases:('a,'r) cases) : ('a,'s) cases = map (fun case flow -> let case' = match case with | Result (r,changes,cleaners) -> Result (f r,changes,cleaners) | Empty -> Empty | NotHandled -> NotHandled in (case',flow) ) cases let map_conjunction (f:('r case * 'a flow) list -> ('s case * 'a flow) list) (cases:('a,'r) cases) : ('a,'s) cases = {cases=Dnf.map_conjunction f cases.cases; ctx=cases.ctx} |> normalize_ctx let map_disjunction (f:('r case * 'a flow) list -> ('s case * 'a flow) list) (cases:('a,'r) cases) : ('a,'s) cases = {cases=Dnf.map_disjunction f cases.cases; ctx=cases.ctx} |> normalize_ctx let reduce (f:'r case -> 'a flow -> 'b) ~(join:'b -> 'b -> 'b) ~(meet:'b -> 'b -> 'b) (cases:('a,'r) cases) : 'b = Dnf.reduce (fun (case,flow) -> f case flow) ~join ~meet cases.cases let reduce_result (f:'r -> 'a flow -> 'b) ~(join:'b -> 'b -> 'b) ~(meet:'b -> 'b -> 'b) ~(bottom:unit -> 'b) (cases:('a,'r) cases) : 'b = reduce (fun case flow -> match case with | Result (r,changes,cleaners) -> f r flow | Empty | NotHandled -> bottom () ) ~join ~meet cases let print pp fmt cases = Dnf.print (fun fmt (case,flow) -> pp fmt case flow) fmt cases.cases let print_result pp fmt cases = print (fun fmt case flow -> match case with | Result (r,_,_) -> pp fmt r flow | Empty -> Format.fprintf fmt "ε" | NotHandled -> Format.fprintf fmt "✗" ) fmt cases let map_changes (f:change_map -> 'a flow -> change_map) (cases:('a,'r) cases) : ('a,'r) cases = map (fun case flow -> match case with | Result(r,changes,cleaners) -> let changes' = f changes flow in Result(r,changes',cleaners), flow | _ -> case, flow ) cases let set_changes (changes:change_map) (cases:('a,'r) cases) : ('a,'r) cases = map (fun case flow -> match case with | Result(r,old,cleaners) -> if old == changes then (case,flow) else (Result(r,changes,cleaners), flow) | _ -> case, flow ) cases let set_cleaners (cleaners:stmt list) (cases:('a,'r) cases) : ('a,'r) cases = let cleaners = StmtSet.of_list cleaners in map (fun case flow -> match case with | Result(r,changes,_) -> Result(r,changes,cleaners), flow | _ -> case, flow ) cases let concat_changes (old:change_map) (cases:('a,'r) cases) : ('a,'r) cases = map (fun case flow -> match case with | Result(r,recent,cleaners) -> (* Add changes of non-empty environments only *) (* FIXME: Since are always called from the binders, we can't require having the lattice manager. So we can't test if T_cur is ⊥ or not! For the moment, we rely on empty flow maps, but this is not always sufficient. *) if Flow.mem T_cur flow then Result(r, concat_change_map old recent, cleaners), flow else case, flow | _ -> case, flow ) cases let add_cleaners (cleaners:stmt list) (cases:('a,'r) cases) : ('a,'r) cases = let cleaners = StmtSet.of_list cleaners in map (fun case flow -> match case with | Result(r,changes,cleaners') -> Result(r,changes,StmtSet.union cleaners' cleaners), flow | _ -> case, flow ) cases let fold (f:'b -> 'r case -> 'a flow -> 'b) (init:'b) (cases:('a,'r) cases) : 'b = Dnf.fold (fun acc (case,flow) -> f acc case flow) init cases.cases let fold_result (f:'b -> 'r -> 'a flow -> 'b) (init:'b) (cases:('a,'r) cases) : 'b = fold (fun acc case flow -> match case with | Result (r,_,_) -> f acc r flow | Empty | NotHandled -> acc ) init cases let iter (f:'r case -> 'a flow -> unit) (cases:('a,'r) cases) : unit = Dnf.iter (fun (case,flow) -> f case flow) cases.cases let iter_result (f:'r -> 'a flow -> unit) (cases:('a,'r) cases) : unit = iter (fun case flow -> match case with | Result (r,_,_) -> f r flow | Empty | NotHandled -> () ) cases let partition (f:'r case -> 'a flow -> bool) (cases:('a,'r) cases) : ('a,'r) cases option * ('a,'r) cases option = let oc1, oc2 = Dnf.partition (fun (case,flow) -> f case flow) cases.cases in OptionExt.lift (fun c -> {cases=c; ctx=cases.ctx}) oc1, OptionExt.lift (fun c -> {cases=c; ctx=cases.ctx}) oc2 let flatten (cases:('a,'r) cases) : ('r case * 'a flow) list = Dnf.to_list cases.cases |> List.flatten let for_all (f:'r case -> 'a flow -> bool) (cases:('a,'r) cases) : bool = flatten cases |> List.for_all (fun (case,flow) -> f case flow) let for_all_result (f:'r -> 'a flow -> bool) (cases:('a,'r) cases) : bool = for_all (fun case flow -> match case with | Result (r,_,_) -> f r flow | Empty | NotHandled -> true ) cases let exists (f:'r case -> 'a flow -> bool) (cases:('a,'r) cases) : bool = flatten cases |> List.exists (fun (case,flow) -> f case flow) let exists_result (f:'r -> 'a flow -> bool) (cases:('a,'r) cases) : bool = exists (fun case flow -> match case with | Result (r,_,_) -> f r flow | Empty | NotHandled -> false ) cases (** Join two results *) let join (cases1:('a,'r) cases) (cases2:('a,'r) cases) : ('a,'r) cases = if cases1 == cases2 then cases1 else if for_all (fun _ flow -> Flow.is_empty flow) cases1 then cases2 else if for_all (fun _ flow -> Flow.is_empty flow) cases2 then cases1 else {cases=Dnf.mk_or cases1.cases cases2.cases; ctx=cases1.ctx} |> normalize_ctx (** Meet two results *) let meet (cases1:('a,'r) cases) (cases2:('a,'r) cases) : ('a,'r) cases = {cases=Dnf.mk_and cases1.cases cases2.cases; ctx=cases1.ctx} |> normalize_ctx (** Join a list of results *) let join_list ~empty (l: ('a,'r) cases list) : ('a,'r) cases = match l with | [] -> empty () | hd :: tl -> List.fold_left join hd tl (** Meet a list of results *) let meet_list ~empty (l: ('a,'r) cases list) : ('a,'r) cases = match l with | [] -> empty () | hd :: tl -> List.fold_left meet hd tl let equal_case c1 c2 = c1 == c2 || match c1, c2 with | Result(r1, _, _), Result(r2, _, _) -> r1 == r2 | Empty, Empty -> true | NotHandled, NotHandled -> true | _ -> false let remove_duplicates ?(equal=equal_case) (lattice: 'a Lattice.lattice) (cases: ('a, 'r) cases): ('a, 'r) cases = (* Remove duplicates of a case in a conjunction *) let rec remove_case_duplicates_in_conj case flow conj = match conj with | [] -> case, flow, [] | (case',flow') :: tl' -> let case'', flow'', tl'' = remove_case_duplicates_in_conj case flow tl' in if equal case case' then let flow = Flow.meet lattice flow' flow'' in let case = match case, case' with | Empty, Empty | NotHandled, NotHandled | Empty, NotHandled | NotHandled, Empty -> case | Result _, Empty | Result _, NotHandled -> case | Empty, Result _ | NotHandled, Result _ -> case' | Result(r, changes, cleaners), Result(r', changes', cleaners') -> let cleaners = StmtSet.union cleaners cleaners' in let changes = meet_change_map changes changes' in Result(r, changes, cleaners) in case,flow,tl'' else case'', flow'', (case',flow')::tl'' in (* Remove all duplicates in a conjunction *) let rec remove_duplicates_in_conj conj = match conj with | [] -> [] | [(case,flow)] -> conj | (case,flow) :: tl -> (* Remove duplicates of case from tl *) let case', flow', tl' = remove_case_duplicates_in_conj case flow tl in (case',flow') :: remove_duplicates_in_conj tl' in (* Remove duplicates of a conjunction in a disjunction *) let rec remove_conj_duplicates_in_disj conj disj = match disj with | [] -> conj, [] | conj'::tl -> let conj'', tl' = remove_conj_duplicates_in_disj conj tl in if List.equal (fun (c,_) (c',_) -> equal c c') conj' conj'' then let conj = List.combine conj' conj'' |> List.map (fun ((case,flow), (case',flow')) -> let flow = Flow.join lattice flow flow' in match case, case' with | Empty, Empty | NotHandled, NotHandled | Empty, NotHandled | NotHandled, Empty -> case, flow | Result _, Empty | Result _, NotHandled -> case, flow | Empty, Result _ | NotHandled, Result _ -> case', flow | Result(r, changes, cleaners), Result(r', changes', cleaners') -> let cleaners = StmtSet.union cleaners cleaners' in let changes = join_change_map changes changes' in let case = Result(r, changes, cleaners) in case, flow ) in conj,tl' else conj'',conj'::tl' in let rec remove_duplicates_in_disj = function | [] -> [] | [[e]] as x -> x | [conj] -> [remove_duplicates_in_conj conj] | conj::tl -> let conj = remove_duplicates_in_conj conj in let conj',tl' = remove_conj_duplicates_in_disj conj tl in conj'::remove_duplicates_in_disj tl' in let cases' = Dnf.from_list (remove_duplicates_in_disj (Dnf.to_list cases.cases)) in {cases with cases=cases'} let remove_duplicate_results ?(equal=(==)) lattice cases = remove_duplicates ~equal:(fun case case' -> match case, case' with | Result(r,_,_), Result(r',_,_) -> equal r r' | _ -> compare case case' = 0 ) lattice cases let cardinal cases = Dnf.cardinal cases.cases (****************************************************************************) (** {2 Monadic binders} *) (****************************************************************************) let bind_opt (f: 'r case -> 'a flow -> ('a,'s) cases option ) (cases: ('a,'r) cases) : ('a,'s) cases option = match Dnf.to_list cases.cases with | [[Result(_, changes, cleaners) as case, flow]] when StmtSet.is_empty cleaners && (not (is_change_tracker_enabled ()) || is_empty_change_map changes) -> f case flow | [[case, flow]] -> ( match f case flow with | None -> None | Some cases' -> add_cleaners (get_case_cleaners case |> StmtSet.elements) cases' |> concat_changes (get_case_changes case) |> Option.some ) | _ -> let (ctx,handled),ret = Dnf.fold_bind (fun (ctx,handled) (case,flow) -> let flow = Flow.set_ctx ctx flow in let cases', handled' = match f case flow with | None -> not_handled flow, handled | Some c -> c, true in let ctx' = get_ctx cases' in let cases'' = add_cleaners (get_case_cleaners case |> StmtSet.elements) cases' |> concat_changes (get_case_changes case) in (ctx',handled'), cases''.cases ) (get_ctx cases,false) cases.cases in if handled then set_ctx ctx {cases with cases = ret} |> OptionExt.return else None let (>>=?) cases f = bind_opt f cases let bind f cases = match Dnf.to_list cases.cases with | [[Result(_, changes, cleaners) as case, flow]] when StmtSet.is_empty cleaners && (not (is_change_tracker_enabled ()) || is_empty_change_map changes) -> f case flow | [[case, flow]] -> let cases' = f case flow in add_cleaners (get_case_cleaners case |> StmtSet.elements) cases' |> concat_changes (get_case_changes case) | _ -> bind_opt (fun case flow -> Some (f case flow)) cases |> OptionExt.none_to_exn let (>>=) cases f = bind f cases let bind_result_opt (f:'r -> 'a flow -> ('a,'s) cases option) (cases:('a,'r) cases) : ('a,'s) cases option = match Dnf.to_list cases.cases with | [[Result(r, changes, cleaners), flow]] when StmtSet.is_empty cleaners && (not (is_change_tracker_enabled ()) || is_empty_change_map changes) -> f r flow | [[Result(r, changes, cleaners), flow]] -> ( match f r flow with | None -> None | Some cases' -> add_cleaners (StmtSet.elements cleaners) cases' |> concat_changes changes |> Option.some ) | _ -> bind_opt (fun case flow -> match case with | Result (r,_,_) -> f r flow | Empty -> Some (empty flow) | NotHandled -> Some (not_handled flow) ) cases let (>>$?) r f = bind_result_opt f r let bind_result (f:'r -> 'a flow -> ('a,'s) cases) (cases:('a,'r) cases) : ('a,'s) cases = match Dnf.to_list cases.cases with | [[Result(r, changes, cleaners), flow]] when StmtSet.is_empty cleaners && (not (is_change_tracker_enabled ()) || is_empty_change_map changes) -> f r flow | [[Result(r, changes, cleaners), flow]] -> let cases' = f r flow in add_cleaners (StmtSet.elements cleaners) cases' |> concat_changes changes | _ -> bind_result_opt (fun r flow -> Some (f r flow)) cases |> OptionExt.none_to_exn let (>>$) r f = bind_result f r let ( let* ) r f = bind_result f r let bind_conjunction (f:('r case * 'a flow) list -> ('a,'s) cases) (cases:('a,'r) cases) : ('a,'s) cases = let ctx,ret = Dnf.fold_bind_conjunction (fun ctx conj -> let conj' = List.map (fun (case,flow) -> (case,Flow.set_ctx ctx flow)) conj in let cases' = f conj' in let ctx' = get_ctx cases' in ctx',cases'.cases ) (get_ctx cases) cases.cases in set_ctx ctx {cases with cases=ret} let bind_conjunction_result (f:'r list -> 'a flow -> ('a,'s) cases) (lattice:'a lattice) (cases:('a,'r) cases) : ('a,'s) cases = bind_conjunction (fun conj -> (* Separate cases actual results from empty and not-handled cases *) let handled,others = List.partition (fun (case,flow) -> match case with Result _ -> true | _ -> false) conj in (* This is a hack to change the type of others from 'r case to 's case *) let others = List.map (fun (case,flow) -> match case with NotHandled -> NotHandled,flow | Empty -> Empty,flow | _ -> assert false) others in if handled = [] then meet_list (List.map (fun (c,flow) -> case c flow) others) ~empty:(fun () -> assert false) else let cl,fl = List.split handled in let flow = List.fold_left (Flow.meet lattice) (List.hd fl) (List.tl fl) in let rl,changes,cleaners = List.fold_left (fun (acc1,acc2,acc3) case -> match case with | Result(r,changes,cleaners) -> r::acc1,meet_change_map acc2 changes,StmtSet.union acc3 cleaners | _ -> assert false ) ([],empty_change_map,StmtSet.empty) cl in let handled_res = f rl flow |> add_cleaners (StmtSet.elements cleaners) |> concat_changes changes in if others = [] then handled_res else meet_list (List.map (fun (c,flow) -> case c flow) others) ~empty:(fun () -> assert false) |> meet handled_res ) cases let bind_disjunction (f:('r case * 'a flow) list -> ('a,'s) cases) (cases:('a,'r) cases) : ('a,'s) cases = let ctx,ret = Dnf.fold_bind_disjunction (fun ctx disj -> let disj' = List.map (fun (case,flow) -> (case,Flow.set_ctx ctx flow)) disj in let cases' = f disj' in let ctx' = get_ctx cases' in ctx',cases'.cases ) (get_ctx cases) cases.cases in set_ctx ctx {cases with cases=ret} let bind_disjunction_result (f:'r list -> 'a flow -> ('a,'s) cases) (lattice:'a lattice) (cases:('a,'r) cases) : ('a,'s) cases = bind_disjunction (fun disj -> (* Separate cases actual results from empty and not-handled cases *) let handled,others = List.partition (fun (case,flow) -> match case with Result _ -> true | _ -> false) disj in (* This is a hack to change the type of others from 'r case to 's case *) let others = List.map (fun (case,flow) -> match case with NotHandled -> NotHandled,flow | Empty -> Empty,flow | _ -> assert false) others in if handled = [] then join_list (List.map (fun (c,flow) -> case c flow) others) ~empty:(fun () -> assert false) else let cl,fl = List.split handled in let flow = List.fold_left (Flow.join lattice) (List.hd fl) (List.tl fl) in let rl,changes,cleaners = List.fold_left (fun (acc1,acc2,acc3) case -> match case with | Result(r,changes,cleaners) -> r::acc1,join_change_map acc2 changes,StmtSet.union acc3 cleaners | _ -> assert false ) ([],empty_change_map,StmtSet.empty) cl in let handled_res = f rl flow |> add_cleaners (StmtSet.elements cleaners) |> concat_changes changes in if others = [] then handled_res else join_list (List.map (fun (c,flow) -> case c flow) others) ~empty:(fun () -> assert false) |> join handled_res ) cases let bind_list_opt (l:'r list) (f:'r -> 'a flow -> ('a,'s) cases option) (flow:'a flow) : ('a, 's list) cases option = let rec aux l flow = match l with | e :: tl -> f e flow |> OptionExt.absorb @@ bind_result_opt @@ fun e' flow -> aux tl flow |> OptionExt.lift @@ bind_result @@ fun tl' flow -> return (e'::tl') flow | [] -> return [] flow |> OptionExt.return in aux l flow let bind_list l f flow = bind_list_opt l (fun e flow -> Some (f e flow)) flow |> OptionExt.none_to_exn
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>