package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/containers/relation.ml.html
Source file relation.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2018-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Relation - Relations (or multimaps) between ordered sets. *) open RelationSig module Make(Dom: OrderedType)(CoDom: OrderedType) = struct module CoDomSet = SetExt.Make(CoDom) module DomMap = MapExt.Make(Dom) type t = CoDomSet.t DomMap.t (** A relation is a map from the domain to the power-set of the codomain. The image f(x) of an element is never the empty set. *) type dom = Dom.t type codom = CoDom.t type codom_set = CoDomSet.t type binding = dom * codom let empty = DomMap.empty let image x r = try DomMap.find x r with Not_found -> CoDomSet.empty let set_image x ys r = if CoDomSet.is_empty ys then DomMap.remove x r else DomMap.add x ys r let is_image_empty x r = not (DomMap.mem x r) let is_empty r = DomMap.is_empty r let singleton x y = DomMap.singleton x (CoDomSet.singleton y) let add x y r = DomMap.add x (CoDomSet.add y (image x r)) r let add_set x ys r = set_image x (CoDomSet.union ys (image x r)) r let remove x y r = set_image x (CoDomSet.remove y (image x r)) r let remove_set x ys r = set_image x (CoDomSet.diff (image x r) ys) r let remove_image x r = DomMap.remove x r let mem x y r = CoDomSet.mem y (image x r) let of_list l = List.fold_left (fun r (x,y) -> add x y r) empty l let min_binding r = let x,ys = DomMap.min_binding r in x, CoDomSet.min_elt ys let max_binding r = let x,ys = DomMap.max_binding r in x, CoDomSet.max_elt ys let choose r = let x,ys = DomMap.choose r in x, CoDomSet.choose ys let cardinal r = DomMap.fold (fun _ i r -> r + CoDomSet.cardinal i) r 0 let iter f r = DomMap.iter (fun x i -> CoDomSet.iter (fun y -> f x y) i) r let fold f r acc = DomMap.fold (fun x i acc -> CoDomSet.fold (fun y acc -> f x y acc) i acc) r acc let bindings r = List.rev (fold (fun x y l -> (x,y)::l) r []) let map f r = fold (fun x y acc -> let x',y' = f x y in add x' y' acc) r empty let domain_map f r = DomMap.fold (fun x i r -> add_set (f x) i r) r empty let codomain_map f r = DomMap.map (CoDomSet.map f) r let for_all f r = DomMap.for_all (fun x i -> CoDomSet.for_all (fun y -> f x y) i) r let exists f r = DomMap.exists (fun x i -> CoDomSet.exists (fun y -> f x y) i) r let filter f r = DomMap.fold (fun x i r -> set_image x (CoDomSet.filter (fun y -> f x y) i) r) r r (* binary operations *) let compare r1 r2 = DomMap.compare CoDomSet.compare r1 r2 let equal r1 r2 = DomMap.equal CoDomSet.equal r1 r2 let subset r1 r2 = DomMap.for_all2zo (fun _ _ -> false) (fun _ _ -> true) (fun _ -> CoDomSet.subset) r1 r2 let union r1 r2 = DomMap.map2zo (fun _ ys -> ys) (fun _ ys -> ys) (fun _ -> CoDomSet.union) r1 r2 let inter r1 r2 = (* start from r1 - remove x's image if x is only in r1 - nothing if x is only in r2 (as it is not in r1) - update x's image if both in r1 and r2 *) DomMap.fold2zo (fun x _ r -> remove_image x r) (fun _ _ r -> r) (fun x ys1 ys2 r -> set_image x (CoDomSet.inter ys1 ys2) r) r1 r2 r1 let diff r1 r2 = (* start from r1 - nothing if x is only in r1 - nothing if x is only in r2 (as it is not in r1) - update x's image if both in r1 and r2 *) DomMap.fold2o (fun _ _ r -> r) (fun _ _ r -> r) (fun x ys1 ys2 r -> set_image x (CoDomSet.diff ys1 ys2) r) r1 r2 r1 let iter2 f1 f2 f r1 r2 = DomMap.iter2o (fun x -> CoDomSet.iter (f1 x)) (fun x -> CoDomSet.iter (f2 x)) (fun x -> CoDomSet.iter2 (f1 x) (f2 x) (f x)) r1 r2 let iter2_diff f1 f2 r1 r2 = DomMap.iter2o (fun x -> CoDomSet.iter (f1 x)) (fun x -> CoDomSet.iter (f2 x)) (fun x -> CoDomSet.iter2_diff (f1 x) (f2 x)) r1 r2 let fold2 f1 f2 f r1 r2 acc = DomMap.fold2o (fun x -> CoDomSet.fold (f1 x)) (fun x -> CoDomSet.fold (f2 x)) (fun x -> CoDomSet.fold2 (f1 x) (f2 x) (f x)) r1 r2 acc let fold2_diff f1 f2 r1 r2 = DomMap.fold2zo (fun x -> CoDomSet.fold (f1 x)) (fun x -> CoDomSet.fold (f2 x)) (fun x -> CoDomSet.fold2_diff (f1 x) (f2 x)) r1 r2 let for_all2 f1 f2 f r1 r2 = DomMap.for_all2o (fun x -> CoDomSet.for_all (f1 x)) (fun x -> CoDomSet.for_all (f2 x)) (fun x -> CoDomSet.for_all2 (f1 x) (f2 x) (f x)) r1 r2 let for_all2_diff f1 f2 r1 r2 = DomMap.for_all2o (fun x -> CoDomSet.for_all (f1 x)) (fun x -> CoDomSet.for_all (f2 x)) (fun x -> CoDomSet.for_all2_diff (f1 x) (f2 x)) r1 r2 let exists2 f1 f2 f r1 r2 = DomMap.exists2o (fun x -> CoDomSet.exists (f1 x)) (fun x -> CoDomSet.exists (f2 x)) (fun x -> CoDomSet.exists2 (f1 x) (f2 x) (f x)) r1 r2 let exists2_diff f1 f2 r1 r2 = DomMap.exists2o (fun x -> CoDomSet.exists (f1 x)) (fun x -> CoDomSet.exists (f2 x)) (fun x -> CoDomSet.exists2_diff (f1 x) (f2 x)) r1 r2 (* slice operations *) let map_slice f r a b = DomMap.map_slice (fun k s -> CoDomSet.map (fun x -> f k x) s) r a b let iter_slice f r a b = DomMap.iter_slice (fun k s -> CoDomSet.iter (fun x -> f k x) s) r a b let fold_slice f r a b acc = DomMap.fold_slice (fun k s acc -> CoDomSet.fold (fun x acc -> f k x acc) s acc) r a b acc let for_all_slice f r a b = DomMap.for_all_slice (fun k s -> CoDomSet.for_all (fun x -> f k x) s) r a b let exists_slice f r a b = DomMap.for_all_slice (fun k s -> CoDomSet.for_all (fun x -> f k x) s) r a b (* domain operations *) let iter_domain f r = DomMap.iter f r let fold_domain f r acc = DomMap.fold f r acc let map_domain f r = DomMap.fold (fun x i r -> set_image x (f x i) r) r DomMap.empty let for_all_domain f r = DomMap.for_all f r let exists_domain f r = DomMap.exists f r let filter_domain f r = DomMap.filter f r let min_domain r = fst (DomMap.min_binding r) let max_domain r = fst (DomMap.max_binding r) let choose_domain r = fst (DomMap.choose r) let cardinal_domain r = DomMap.cardinal r let elements_domain r = List.rev (DomMap.fold (fun x _ l -> x::l) r []) (* printing *) type relation_printer = { print_empty: string; print_begin: string; print_open: string; print_comma: string; print_close: string; print_sep: string; print_end: string; } let printer_default = { print_empty="{}"; print_begin="{"; print_open="("; print_comma=","; print_close=")"; print_sep=";"; print_end="}"; } let print_gen o printer dom codom ch s = if is_empty s then o ch printer.print_empty else ( let first = ref true in o ch printer.print_begin; iter (fun x y -> if !first then first := false else o ch printer.print_sep; o ch printer.print_open; dom ch x; o ch printer.print_comma; codom ch y; o ch printer.print_close; ) s; o ch printer.print_end ) (* internal printing helper *) let print printer dom codom ch l = print_gen output_string printer dom codom ch l let bprint printer dom codom ch l = print_gen Buffer.add_string printer dom codom ch l let fprint printer dom codom ch l = print_gen Format.pp_print_string printer dom codom ch l let to_string printer dom codom l = let b = Buffer.create 10 in print_gen (fun () s -> Buffer.add_string b s) printer (fun () k -> Buffer.add_string b (dom k)) (fun () k -> Buffer.add_string b (codom k)) () l; Buffer.contents b end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>