package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/containers/invRelation.ml.html
Source file invRelation.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2018-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** InvRelation - Relations with access to inverse images. *) open InvRelationSig module Make(Dom: OrderedType)(CoDom: OrderedType) = struct module DomSet = SetExt.Make(Dom) module DomMap = MapExt.Make(Dom) module CoDomSet = SetExt.Make(CoDom) module CoDomMap = MapExt.Make(CoDom) type t = { img: CoDomSet.t DomMap.t; inv: DomSet.t CoDomMap.t } (** We maintain both the image of each domain element and the inverse image of each codomain element. *) type dom = Dom.t type dom_set = DomSet.t type codom = CoDom.t type codom_set = CoDomSet.t type binding = dom * codom let empty = { img = DomMap.empty; inv = CoDomMap.empty; } let image x r = try DomMap.find x r.img with Not_found -> CoDomSet.empty let inverse y r = try CoDomMap.find y r.inv with Not_found -> DomSet.empty let is_image_empty x r = not (DomMap.mem x r.img) let is_inverse_empty y r = not (CoDomMap.mem y r.inv) let is_empty r = DomMap.is_empty r.img let singleton x y = { img = DomMap.singleton x (CoDomSet.singleton y); inv = CoDomMap.singleton y (DomSet.singleton x); } (* internal function, to update fields *) let mk r img inv = if r.img == img && r.inv == inv then r else { img; inv; } (* internal function: does not update inv *) let set_img x ys r = if CoDomSet.is_empty ys then mk r (DomMap.remove x r.img) r.inv else mk r (DomMap.add x ys r.img) r.inv (* internal function: does not update img *) let set_inv y xs r = if DomSet.is_empty xs then mk r r.img (CoDomMap.remove y r.inv) else mk r r.img (CoDomMap.add y xs r.inv) let set_image x ys r = (* update inv *) CoDomSet.fold2_diff (fun y r -> set_inv y (DomSet.remove x (inverse y r)) r) (fun y r -> set_inv y (DomSet.add x (inverse y r)) r) (image x r) ys (* update img *) (set_img x ys r) let set_inverse y xs r = (* update img *) DomSet.fold2_diff (fun x r -> set_img x (CoDomSet.remove y (image x r)) r) (fun x r -> set_img x (CoDomSet.add y (image x r)) r) (inverse y r) xs (* update inv *) (set_inv y xs r) let add x y r = mk r (DomMap.add x (CoDomSet.add y (image x r)) r.img) (CoDomMap.add y (DomSet.add x (inverse y r)) r.inv) let remove x y r = set_img x (CoDomSet.remove y (image x r)) r |> set_inv y (DomSet.remove x (inverse y r)) let add_image_set x ys r = set_image x (CoDomSet.union (image x r) ys) r let add_inverse_set y xs r = set_inverse y (DomSet.union (inverse y r) xs) r let remove_image_set x ys r = set_image x (CoDomSet.diff (image x r) ys) r let remove_inverse_set y xs r = set_inverse y (DomSet.diff (inverse y r) xs) r let remove_image x r = set_image x CoDomSet.empty r let remove_inverse y r = set_inverse y DomSet.empty r let mem x y r = CoDomSet.mem y (image x r) let mem_domain x r = DomMap.mem x r.img let mem_codomain x r = CoDomMap.mem x r.inv let of_list l = List.fold_left (fun r (x,y) -> add x y r) empty l let min_binding r = let x,ys = DomMap.min_binding r.img in x, CoDomSet.min_elt ys let max_binding r = let x,ys = DomMap.max_binding r.img in x, CoDomSet.max_elt ys let choose r = let x,ys = DomMap.choose r.img in x, CoDomSet.choose ys let cardinal r = DomMap.fold (fun _ i r -> r + CoDomSet.cardinal i) r.img 0 let iter f r = DomMap.iter (fun x i -> CoDomSet.iter (fun y -> f x y) i) r.img let fold f r acc = DomMap.fold (fun x i acc -> CoDomSet.fold (fun y acc -> f x y acc) i acc) r.img acc let bindings r = List.rev (fold (fun x y l -> (x,y)::l) r []) let map f r = fold (fun x y acc -> let x',y' = f x y in add x' y' acc) r empty let domain_map f r = DomMap.fold (fun x ys r -> add_image_set (f x) ys r) r.img empty let codomain_map f r = CoDomMap.fold (fun y xs r -> add_inverse_set (f y) xs r) r.inv empty let for_all f r = DomMap.for_all (fun x i -> CoDomSet.for_all (fun y -> f x y) i) r.img let exists f r = DomMap.exists (fun x i -> CoDomSet.exists (fun y -> f x y) i) r.img let filter f r = DomMap.fold (fun x ys r -> CoDomSet.fold (fun y r -> if f x y then r else remove x y r) ys r ) r.img r (* binary operations *) let compare r1 r2 = DomMap.compare CoDomSet.compare r1.img r2.img let equal r1 r2 = DomMap.equal CoDomSet.equal r1.img r2.img let subset r1 r2 = DomMap.for_all2zo (fun _ _ -> false) (fun _ _ -> true) (fun _ s1 s2 -> CoDomSet.subset s1 s2) r1.img r2.img let union r1 r2 = (* apply union separately to the img relation and to the inv relation *) mk r1 (DomMap.map2zo (fun _ ys -> ys) (fun _ ys -> ys) (fun _ -> CoDomSet.union) r1.img r2.img ) (CoDomMap.map2zo (fun _ xs -> xs) (fun _ xs -> xs) (fun _ -> DomSet.union) r1.inv r2.inv ) let inter r1 r2 = (* apply intersection separately to the img relation and to the inv relation *) r1 |> DomMap.fold2zo (fun x _ r -> mk r (DomMap.remove x r.img) r.inv) (fun _ _ r -> r) (fun x ys1 ys2 r -> set_img x (CoDomSet.inter ys1 ys2) r) r1.img r2.img |> CoDomMap.fold2zo (fun y _ r -> mk r r.img (CoDomMap.remove y r.inv)) (fun _ _ r -> r) (fun y xs1 xs2 r -> set_inv y (DomSet.inter xs1 xs2) r) r1.inv r2.inv let diff r1 r2 = (* apply difference separately to the img relation and to the inv relation *) r1 |> DomMap.fold2zo (fun _ _ r -> r) (fun _ _ r -> r) (fun x ys1 ys2 r -> set_img x (CoDomSet.diff ys1 ys2) r) r1.img r2.img |> CoDomMap.fold2zo (fun _ _ r -> r) (fun _ _ r -> r) (fun y xs1 xs2 r -> set_inv y (DomSet.diff xs1 xs2) r) r1.inv r2.inv let iter2 f1 f2 f r1 r2 = DomMap.iter2o (fun x -> CoDomSet.iter (f1 x)) (fun x -> CoDomSet.iter (f2 x)) (fun x -> CoDomSet.iter2 (f1 x) (f2 x) (f x)) r1.img r2.img let iter2_diff f1 f2 r1 r2 = DomMap.iter2o (fun x -> CoDomSet.iter (f1 x)) (fun x -> CoDomSet.iter (f2 x)) (fun x -> CoDomSet.iter2_diff (f1 x) (f2 x)) r1.img r2.img let fold2 f1 f2 f r1 r2 acc = DomMap.fold2o (fun x -> CoDomSet.fold (f1 x)) (fun x -> CoDomSet.fold (f2 x)) (fun x -> CoDomSet.fold2 (f1 x) (f2 x) (f x)) r1.img r2.img acc let fold2_diff f1 f2 r1 r2 = DomMap.fold2zo (fun x -> CoDomSet.fold (f1 x)) (fun x -> CoDomSet.fold (f2 x)) (fun x -> CoDomSet.fold2_diff (f1 x) (f2 x)) r1.img r2.img let for_all2 f1 f2 f r1 r2 = DomMap.for_all2o (fun x -> CoDomSet.for_all (f1 x)) (fun x -> CoDomSet.for_all (f2 x)) (fun x -> CoDomSet.for_all2 (f1 x) (f2 x) (f x)) r1.img r2.img let for_all2_diff f1 f2 r1 r2 = DomMap.for_all2o (fun x -> CoDomSet.for_all (f1 x)) (fun x -> CoDomSet.for_all (f2 x)) (fun x -> CoDomSet.for_all2_diff (f1 x) (f2 x)) r1.img r2.img let exists2 f1 f2 f r1 r2 = DomMap.exists2o (fun x -> CoDomSet.exists (f1 x)) (fun x -> CoDomSet.exists (f2 x)) (fun x -> CoDomSet.exists2 (f1 x) (f2 x) (f x)) r1.img r2.img let exists2_diff f1 f2 r1 r2 = DomMap.exists2o (fun x -> CoDomSet.exists (f1 x)) (fun x -> CoDomSet.exists (f2 x)) (fun x -> CoDomSet.exists2_diff (f1 x) (f2 x)) r1.img r2.img (* domain operations *) let iter_domain f r = DomMap.iter f r.img let fold_domain f r acc = DomMap.fold f r.img acc let map_domain f r = DomMap.fold (fun x i r -> set_image x (f x i) r) r.img empty let map2_domain f r1 r2 = DomMap.fold2 (fun x ys1 ys2 r -> set_image x (f x ys1 ys2) r) r1.img r2.img r1 let map2o_domain f1 f2 f r1 r2 = DomMap.fold2o (fun x ys r -> set_image x (f1 x ys) r) (fun x ys r -> set_image x (f2 x ys) r) (fun x ys1 ys2 r -> set_image x (f x ys1 ys2) r) r1.img r2.img r1 let map2zo_domain f1 f2 f r1 r2 = DomMap.fold2zo (fun x ys r -> set_image x (f1 x ys) r) (fun x ys r -> set_image x (f2 x ys) r) (fun x ys1 ys2 r -> set_image x (f x ys1 ys2) r) r1.img r2.img r1 let for_all_domain f r = DomMap.for_all f r.img let exists_domain f r = DomMap.exists f r.img let filter_domain f r = DomMap.fold (fun x ys r -> if f x ys then r else remove_image x r) r.img r let min_domain r = fst (DomMap.min_binding r.img) let max_domain r = fst (DomMap.max_binding r.img) let choose_domain r = fst (DomMap.choose r.img) let cardinal_domain r = DomMap.cardinal r.img let elements_domain r = List.rev (DomMap.fold (fun x _ l -> x::l) r.img []) (* codomain operations *) let iter_codomain f r = CoDomMap.iter f r.inv let fold_codomain f r acc = CoDomMap.fold f r.inv acc let map_codomain f r = CoDomMap.fold (fun y i r -> set_inverse y (f y i) r) r.inv empty let for_all_codomain f r = CoDomMap.for_all f r.inv let exists_codomain f r = CoDomMap.exists f r.inv let filter_codomain f r = CoDomMap.fold (fun y xs r -> if f y xs then r else remove_inverse y r) r.inv r let min_codomain r = fst (CoDomMap.min_binding r.inv) let max_codomain r = fst (CoDomMap.max_binding r.inv) let choose_codomain r = fst (CoDomMap.choose r.inv) let cardinal_codomain r = CoDomMap.cardinal r.inv let elements_codomain r = List.rev (CoDomMap.fold (fun y _ l -> y::l) r.inv []) (* printing *) type relation_printer = { print_empty: string; print_begin: string; print_open: string; print_comma: string; print_close: string; print_sep: string; print_end: string; } let printer_default = { print_empty="{}"; print_begin="{"; print_open="("; print_comma=","; print_close=")"; print_sep=";"; print_end="}"; } let print_gen o printer dom codom ch s = if is_empty s then o ch printer.print_empty else ( let first = ref true in o ch printer.print_begin; iter (fun x y -> if !first then first := false else o ch printer.print_sep; o ch printer.print_open; dom ch x; o ch printer.print_comma; codom ch y; o ch printer.print_close; ) s; o ch printer.print_end ) (* internal printing helper *) let print printer dom codom ch l = print_gen output_string printer dom codom ch l let bprint printer dom codom ch l = print_gen Buffer.add_string printer dom codom ch l let fprint printer dom codom ch l = print_gen Format.pp_print_string printer dom codom ch l let to_string printer dom codom l = let b = Buffer.create 10 in print_gen (fun () s -> Buffer.add_string b s) printer (fun () k -> Buffer.add_string b (dom k)) (fun () k -> Buffer.add_string b (codom k)) () l; Buffer.contents b end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>