package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/containers/graph.ml.html
Source file graph.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2018-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** A simple graph library to represent control-flow graphs. Implementation. *) open GraphSig (*==========================================================================*) (** {2 Ordered, hashable data types} *) (*==========================================================================*) (** Use the polymorphic comparison, equality, and hashing. *) module IdGeneric(T : sig type t end) : (ID_TYPE with type t = T.t) = struct type t = T.t let compare (x:t) (y:t) = Stdlib.compare x y let equal (x:t) (y:t) = (x = y) let hash (x:t) = Hashtbl.hash x end module IdInt = IdGeneric(struct type t = int end) module IdString = IdGeneric(struct type t = string end) module IdUnit : (ID_TYPE with type t = unit) = struct type t = unit let compare x y = 0 let equal x y = true let hash x = 0 end module IdPair(A:ID_TYPE)(B:ID_TYPE) : (ID_TYPE with type t = A.t * B.t) = struct type t = A.t * B.t let compare (a1,b1) (a2,b2) = match A.compare a1 a2 with | 0 -> B.compare b2 b2 | x -> x let equal (a1,b1) (a2,b2) = A.equal a1 a2 && B.equal b1 b2 let hash (a,b) = A.hash a + B.hash b end (*==========================================================================*) (** {2 Nested lists} *) (*==========================================================================*) (** Printers. *) let rec pp_nested_list pp_elem fmt = function | Simple x -> pp_elem fmt x | Composed l -> pp_nested_list_list pp_elem fmt l and pp_nested_list_list pp_elem fmt l = Format.fprintf fmt "@[<hov 2>%a@]" (ListExt.fprint ListExt.printer_list (pp_nested_list pp_elem)) l (*==========================================================================*) (** {2 Graph Functor} *) (*==========================================================================*) module Make(P:P) : (S with module P = P) = struct (*========================================================================*) (** {2 Types} *) (*========================================================================*) module P = P type node_id = P.NodeId.t type edge_id = P.EdgeId.t type port = P.Port.t module NodeHash = Hashtbl.Make(P.NodeId) module EdgeHash = Hashtbl.Make(P.EdgeId) module NodeMap = MapExt.Make(P.NodeId) module EdgeMap = MapExt.Make(P.EdgeId) module NodeSet = SetExt.Make(P.NodeId) module EdgeSet = SetExt.Make(P.EdgeId) type ('n,'e) node = { n_id: node_id; mutable n_data: 'n; mutable n_in: (port * ('n,'e) edge) list; mutable n_out: (port * ('n,'e) edge) list; } and ('n,'e) edge = { e_id: edge_id; mutable e_data: 'e; mutable e_src: (port * ('n,'e) node) list; mutable e_dst: (port * ('n,'e) node) list; } and ('n,'e) graph = { mutable g_entries: (port * ('n,'e) node) list; mutable g_exits: (port * ('n,'e) node) list; mutable g_nodes: ('n,'e) node NodeHash.t; mutable g_edges: ('n,'e) edge EdgeHash.t; } (*========================================================================*) (** {2 Internal utilities} *) (*========================================================================*) let node_eq n1 n2 = P.NodeId.equal n1.n_id n2.n_id let node_neq n1 n2 = not (P.NodeId.equal n1.n_id n2.n_id) let edge_eq e1 e2 = P.EdgeId.equal e1.e_id e2.e_id let edge_neq e1 e2 = not (P.EdgeId.equal e1.e_id e2.e_id) let port_eq t1 t2 = P.Port.equal t1 t2 let port_neq t1 t2 = not ( P.Port.equal t1 t2) let port_node_eq (t1,n1) (t2,n2) = node_eq n1 n2 && port_eq t1 t2 let port_node_neq (t1,n1) (t2,n2) = node_neq n1 n2 || port_neq t1 t2 let port_edge_eq (t1,e1) (t2,e2) = edge_eq e1 e2 && port_eq t1 t2 let port_edge_neq (t1,e1) (t2,e2) = edge_neq e1 e2 || port_neq t1 t2 let node_compare n1 n2 = P.NodeId.compare n1.n_id n2.n_id let edge_compare e1 e2 = P.EdgeId.compare e1.e_id e2.e_id let port_compare t1 t2 = P.Port.compare t1 t2 let port_node_compare (t1,n1) (t2,n2) = match port_compare t1 t2 with 0 -> node_compare n1 n2 | x -> x let port_edge_compare (t1,e1) (t2,e2) = match port_compare t1 t2 with 0 -> edge_compare e1 e2 | x -> x let filter_port port l = List.map snd (List.filter (fun (port',_) -> port_eq port port') l) (*========================================================================*) (** {2 Construction} *) (*========================================================================*) let create () = { g_entries = []; g_exits = []; g_nodes = NodeHash.create 16; g_edges = EdgeHash.create 16; } let add_node g id ?(inc=[]) ?(out=[]) ?entry ?exit data = if NodeHash.mem g.g_nodes id then invalid_arg "Node identifier already present in Graph.add_node"; let n = { n_id = id; n_data = data; n_in = inc; n_out = out; } in List.iter (fun (port,e) -> e.e_dst <- (port,n)::e.e_dst) inc; List.iter (fun (port,e) -> e.e_src <- (port,n)::e.e_src) out; (match entry with | Some entry -> g.g_entries <- (entry,n)::g.g_entries | None -> () ); (match exit with | Some exit -> g.g_exits <- (exit,n)::g.g_exits | None -> () ); NodeHash.add g.g_nodes id n; n let add_edge g id ?(src=[]) ?(dst=[]) data = if EdgeHash.mem g.g_edges id then invalid_arg "Edge identifier already present in Graph.add_node"; let e = { e_id = id; e_data = data; e_src = src; e_dst = dst; } in List.iter (fun (port,n) -> n.n_out <- (port,e):: n.n_out) src; List.iter (fun (port,n) -> n.n_in <- (port,e):: n.n_in) dst; EdgeHash.add g.g_edges id e; e let remove_node g n = if NodeHash.mem g.g_nodes n.n_id then ( List.iter (fun (_,e) -> e.e_dst <- List.filter (fun (_,n') -> node_neq n n') e.e_dst ) n.n_in; List.iter (fun (_,e) -> e.e_src <- List.filter (fun (_,n') -> node_neq n n') e.e_src ) n.n_out; n.n_in <- []; n.n_out <- []; NodeHash.remove g.g_nodes n.n_id; g.g_entries <- List.filter (fun (_,n') -> node_neq n n') g.g_entries; g.g_exits <- List.filter (fun (_,n') -> node_neq n n') g.g_exits ) let remove_edge g e = if EdgeHash.mem g.g_edges e.e_id then ( List.iter (fun (_,n) -> n.n_out <- List.filter (fun (_,e') -> edge_neq e e') n.n_out ) e.e_src; List.iter (fun (_,n) -> n.n_in <- List.filter (fun (_,e') -> edge_neq e e') n.n_in ) e.e_dst; e.e_src <- []; e.e_dst <- []; EdgeHash.remove g.g_edges e.e_id; ) let node_set_entry g n entry = g.g_entries <- List.filter (fun (_,n') -> node_neq n n') g.g_entries; (match entry with | Some entry -> g.g_entries <- (entry,n)::g.g_entries | None -> () ) let node_set_exit g n exit = g.g_exits <- List.filter (fun (_,n') -> node_neq n n') g.g_exits; (match exit with | Some exit -> g.g_exits <- (exit,n)::g.g_exits | None -> () ) let node_add_in n port e = n.n_in <- (port,e)::n.n_in; e.e_dst <- (port,n)::e.e_dst let node_add_out n port e = n.n_out <- (port,e)::n.n_out; e.e_src <- (port,n)::e.e_src let node_add_in_list n v = List.iter (fun (port,e) -> node_add_in n port e) v let node_add_out_list n v = List.iter (fun (port,e) -> node_add_out n port e) v let edge_add_src e port n = node_add_out n port e let edge_add_dst e port n = node_add_in n port e let edge_add_src_list e v = List.iter (fun (port,n) -> node_add_out n port e) v let edge_add_dst_list e v = List.iter (fun (port,n) -> node_add_in n port e) v let node_remove_in_port n port e = n.n_in <- List.filter (port_edge_neq (port,e)) n.n_in; e.e_dst <- List.filter (port_node_neq (port,n)) e.e_dst let node_remove_out_port n port e = e.e_src <- List.filter (port_node_neq (port,n)) e.e_src; n.n_out <- List.filter (port_edge_neq (port,e)) n.n_out let node_remove_in n e = n.n_in <- List.filter (fun (_,e') -> edge_neq e e') n.n_in; e.e_dst <- List.filter (fun (_,n') -> node_neq n n') e.e_dst let node_remove_out n e = n.n_out <- List.filter (fun (_,e') -> edge_neq e e') n.n_out; e.e_src <- List.filter (fun (_,n') -> node_neq n n') e.e_src let node_remove_all_in n = List.iter (fun (port,e) -> e.e_dst <- List.filter (port_node_neq (port,n)) e.e_dst ) n.n_in; n.n_in <- [] let node_remove_all_out n = List.iter (fun (port,e) -> e.e_src <- List.filter (port_node_neq (port,n)) e.e_src ) n.n_out; n.n_out <- [] let edge_remove_src_port e port n = node_remove_out_port n port e let edge_remove_dst_port e port n = node_remove_in_port n port e let edge_remove_src e n = node_remove_out n e let edge_remove_dst e n = node_remove_in n e let edge_remove_all_src e = List.iter (fun (port,n) -> n.n_out <- List.filter (port_edge_neq (port,e)) n.n_out ) e.e_src; e.e_src <- [] let edge_remove_all_dst e = List.iter (fun (port,n) -> n.n_in <- List.filter (port_edge_neq (port,e)) n.n_in ) e.e_dst; e.e_dst <- [] let node_set_in n v = node_remove_all_in n; node_add_in_list n v let node_set_out n v = node_remove_all_in n; node_add_out_list n v let edge_set_src e v = edge_remove_all_src e; edge_add_src_list e v let edge_set_dst e v = edge_remove_all_dst e; edge_add_dst_list e v (*========================================================================*) (** {2 Exploration} *) (*========================================================================*) let node_list g = NodeHash.fold (fun _ n acc -> n::acc) g.g_nodes [] let edge_list g = EdgeHash.fold (fun _ e acc -> e::acc) g.g_edges [] let node_set g = NodeSet.of_list (NodeHash.fold (fun id _ acc -> id::acc) g.g_nodes []) let edge_set g = EdgeSet.of_list (EdgeHash.fold (fun id _ acc -> id::acc) g.g_edges []) let map_nodes f g = NodeHash.fold (fun id n acc -> NodeMap.add id (f id n) acc) g.g_nodes NodeMap.empty let map_edges f g = EdgeHash.fold (fun id n acc -> EdgeMap.add id (f id n) acc) g.g_edges EdgeMap.empty let node_map g = map_nodes (fun _ n -> n) g let edge_map g = map_edges (fun _ e -> e) g let has_node g id = NodeHash.mem g.g_nodes id let has_edge g id = EdgeHash.mem g.g_edges id let get_node g id = NodeHash.find g.g_nodes id let get_edge g id = EdgeHash.find g.g_edges id let entries g = g.g_entries let exits g = g.g_exits let edge_id e = e.e_id let edge_data e = e.e_data let edge_set_data e data = e.e_data <- data let edge_src e = e.e_src let edge_dst e = e.e_dst let edge_src_port e port = filter_port port (edge_src e) let edge_dst_port e port = filter_port port (edge_dst e) let edge_src_size e = List.length (edge_src e) let edge_dst_size e = List.length (edge_dst e) let edge_src_port_size e port = List.length (edge_src_port e port) let edge_dst_port_size e port = List.length (edge_dst_port e port) let node_id n = n.n_id let node_data n = n.n_data let node_set_data n data = n.n_data <- data let node_in n = n.n_in let node_out n = n.n_out let node_in_port n port = filter_port port (node_in n) let node_out_port n port = filter_port port (node_out n) let node_in_size n = List.length (node_in n) let node_out_size n = List.length (node_out n) let node_in_port_size n port = List.length (node_in_port n port) let node_out_port_size n port = List.length (node_out_port n port) let node_entry_port g n = try Some (fst (List.find (fun (_,n') -> node_eq n n') g.g_entries)) with Not_found -> None let node_exit_port g n = try Some (fst (List.find (fun (_,n') -> node_eq n n') g.g_exits)) with Not_found -> None let node_has_out n e = List.exists (fun (_,e') -> edge_eq e e') n.n_out let node_has_out_port n port e = List.exists (port_edge_eq (port,e)) n.n_out let node_has_in n e = List.exists (fun (_,e') -> edge_eq e e') n.n_in let node_has_in_port n port e = List.exists (port_edge_eq (port,e)) n.n_in let edge_has_src e n = List.exists (fun (_,n') -> node_eq n n') e.e_src let edge_has_src_port e port n = List.exists (port_node_eq (port,n)) e.e_src let edge_has_dst e n = List.exists (fun (_,n') -> node_eq n n') e.e_dst let edge_has_dst_port e port n = List.exists (port_node_eq (port,n)) e.e_dst let node_out_nodes n = List.concat (List.map (fun (port1,e) -> List.map (fun (port2,n2) -> (port1,e,port2,n2)) e.e_dst ) n.n_out) let node_in_nodes n = List.concat (List.map (fun (port1,e) -> List.map (fun (port2,n2) -> (n2,port2,e,port1)) e.e_src ) n.n_in) let node_out_nodes_port n port1 port2 = List.concat (List.map (fun (port,e) -> if port_neq port port1 then [] else List.map (fun (_,n2) -> (e,n2)) (List.filter (fun (port,n2) -> port_eq port port2) e.e_dst) ) n.n_out) let node_in_nodes_port n port1 port2 = List.concat (List.map (fun (port,e) -> if port_neq port port1 then [] else List.map (fun (_,n2) -> (n2,e)) (List.filter (fun (port,n2) -> port_eq port port2) e.e_src) ) n.n_in) let node_has_node_out n1 n2 = List.exists (fun (_,e) -> List.exists (fun (_,n) -> node_eq n n2) e.e_dst) n1.n_out let node_has_node_in n1 n2 = List.exists (fun (_,e) -> List.exists (fun (_,n) -> node_eq n n2) e.e_src) n1.n_in let node_has_node_out_port n1 port1 port2 n2 = List.exists (fun (port,e) -> port_eq port port1 && List.exists (port_node_eq (port2,n2)) e.e_dst ) n1.n_out let node_has_node_in_port n1 port1 port2 n2 = List.exists (fun (port,e) -> port_eq port port1 && List.exists (port_node_eq (port2,n2)) e.e_src ) n1.n_in let node_add_in_unique n port e = if not (node_has_in_port n port e) then node_add_in n port e let node_add_out_unique n port e = if not (node_has_out_port n port e) then node_add_out n port e let node_add_in_list_unique n v = List.iter (fun (port,e) -> node_add_in_unique n port e) v let node_add_out_list_unique n v = List.iter (fun (port,e) -> node_add_out_unique n port e) v let edge_add_src_unique e port n = node_add_out_unique n port e let edge_add_dst_unique e port n = node_add_in_unique n port e let edge_add_src_list_unique e v = List.iter (fun (port,n) -> node_add_out_unique n port e) v let edge_add_dst_list_unique e v = List.iter (fun (port,n) -> node_add_in_unique n port e) v let node_set_in_unique n v = node_remove_all_in n; node_add_in_list_unique n v let node_set_out_unique n v = node_remove_all_in n; node_add_out_list_unique n v let edge_set_src_unique e v = edge_remove_all_src e; edge_add_src_list_unique e v let edge_set_dst_unique e v = edge_remove_all_dst e; edge_add_dst_list_unique e v (*========================================================================*) (** {2 Maps and folds} *) (*========================================================================*) let clone_map nmap emap g = let gg = create () in (* map data *) NodeHash.iter (fun id n -> ignore (add_node gg id (nmap n.n_data))) g.g_nodes; EdgeHash.iter (fun id e -> ignore (add_edge gg id (emap e.e_data))) g.g_edges; (* fix in/out, src/dst *) NodeHash.iter (fun id n -> let nn = get_node gg id in nn.n_in <- List.map (fun (port,e) -> port, get_edge gg e.e_id) n.n_in; nn.n_out <- List.map (fun (port,e) -> port, get_edge gg e.e_id) n.n_out ) g.g_nodes; EdgeHash.iter (fun id e -> let ee = get_edge gg id in ee.e_src <- List.map (fun (port,n) -> port, get_node gg n.n_id) e.e_src; ee.e_dst <- List.map (fun (port,n) -> port, get_node gg n.n_id) e.e_dst ) g.g_edges; gg.g_entries <- List.map (fun (port,n) -> port, get_node gg n.n_id) g.g_entries; gg.g_exits <- List.map (fun (port,n) -> port, get_node gg n.n_id) g.g_exits; gg let clone g = clone_map (fun n -> n) (fun e -> e) g let transpose g = NodeHash.iter (fun _ n -> let a = n.n_in in n.n_in <- n.n_out; n.n_out <- a) g.g_nodes; EdgeHash.iter (fun _ e -> let a = e.e_src in e.e_src <- e.e_dst; e.e_dst <- a) g.g_edges; let a = g.g_entries in g.g_entries <- g.g_exits; g.g_exits <- a let iter_nodes f g = NodeHash.iter (fun id n -> f id n) g.g_nodes let iter_edges f g = EdgeHash.iter (fun id e -> f id e) g.g_edges let fold_nodes f g a = NodeHash.fold (fun id n a -> f id n a) g.g_nodes a let fold_edges f g a = EdgeHash.fold (fun id e a -> f id e a) g.g_edges a let map_nodes_ordered f g = NodeMap.mapi f (node_map g) let map_edges_ordered f g = EdgeMap.mapi f (edge_map g) let iter_nodes_ordered f g = NodeMap.iter f (node_map g) let iter_edges_ordered f g = EdgeMap.iter f (edge_map g) let fold_nodes_ordered f g a = NodeMap.fold f (node_map g) a let fold_edges_ordered f g a = EdgeMap.fold f (edge_map g) a (*========================================================================*) (** {Simplification} *) (*========================================================================*) let remove_orphan g = iter_nodes (fun _ n -> if n.n_in = [] && n.n_out = [] then remove_node g n) g; iter_edges (fun _ e -> if e.e_src = [] && e.e_dst = [] then remove_edge g e) g (*========================================================================*) (** {Topological ordering} *) (*========================================================================*) (* Bourdoncle's algorithm to compute a weak topological order by hierarchical decomposition into strongly connected components (FMPA'93, p. 128-141, 1993, Springer). *) let weak_topological_order g = let stack = Stack.create () in let index = NodeHash.create 16 in let idx = ref 0 in (* Tarjan's strongly connected component algorithm *) let rec visit node acc = Stack.push (node_id node) stack; incr idx; let orghead = !idx in NodeHash.replace index (node_id node) orghead; let acc,head,loop = List.fold_left (fun (acc,head,loop) (_,_,_,succ) -> let acc, min = if NodeHash.mem index (node_id succ) then acc, NodeHash.find index (node_id succ) else visit succ acc in if min >= 0 && min <= head then acc, min, true else acc, head ,loop ) (acc,orghead,false) (node_out_nodes node) in let acc = if head = orghead then ( NodeHash.replace index (node_id node) (-1); let elem = Stack.pop stack in if loop then let rec pop_all elem = if not (P.NodeId.equal (node_id node) elem) then ( NodeHash.remove index elem; pop_all (Stack.pop stack) ) in pop_all elem; (Composed (component node))::acc else (Simple node)::acc ) else acc in acc, head (* recursively decompose a strongly connected component *) and component node = let acc = List.fold_left (fun acc (_,_,_,succ) -> if NodeHash.mem index (node_id succ) then acc else fst (visit succ acc) ) [] (node_out_nodes node) in (Simple node)::acc in List.fold_left (fun acc (_,node) -> if NodeHash.mem index (node_id node) then acc else fst (visit node acc) ) [] (entries g) let widening_points l = let rec add_head acc = function | (Simple x)::_ -> x::acc | _ -> acc and iter acc = function | Simple _ -> acc | Composed l -> List.fold_left iter (add_head acc l) l in List.fold_left iter [] l (*========================================================================*) (** {2 Printing} *) (*========================================================================*) type ('n,'e) printer = { print_node: Format.formatter -> ('n,'e) node -> unit; print_edge: Format.formatter -> ('n,'e) edge -> unit; print_src: Format.formatter -> ('n,'e) node -> port -> ('n,'e) edge -> unit; print_dst: Format.formatter -> ('n,'e) edge -> port -> ('n,'e) node -> unit; print_entry: Format.formatter -> ('n,'e) node -> port -> unit; print_exit: Format.formatter -> ('n,'e) node -> port -> unit; } let print p fmt g = (* ordering *) let nodes = NodeHash.fold NodeMap.add g.g_nodes NodeMap.empty in (* ensure that each edge is printer only once *) let edges = EdgeHash.create 16 in (* print each node *) NodeMap.iter (fun id n -> (match node_entry_port g n with | None -> () | Some port -> p.print_entry fmt n port ); p.print_node fmt n; (match node_exit_port g n with | None -> () | Some port -> p.print_exit fmt n port ); List.iter (fun (_,e) -> if not (EdgeHash.mem edges e.e_id) then ( EdgeHash.add edges e.e_id (); List.iter (fun (port,n) -> p.print_src fmt n port e) (List.sort port_node_compare e.e_src); p.print_edge fmt e; List.iter (fun (port,n) -> p.print_dst fmt e port n) (List.sort port_node_compare e.e_dst) ) ) (List.sort port_edge_compare n.n_out) ) nodes type ('n,'e) dot_printer = { dot_pp_node: Format.formatter -> ('n,'e) node -> unit; dot_pp_edge: Format.formatter -> ('n,'e) edge -> unit; dot_pp_port: Format.formatter -> port -> unit; dot_filter_node: ('n,'e) node -> bool; dot_filter_edge: ('n,'e) edge -> bool; dot_filter_port: port -> bool; } let print_dot p name fmt g = (* printing with escaped new lines *) let buf = Buffer.create 16 in let sfmt = Format.formatter_of_buffer buf in let to_string p x = Buffer.clear buf; Format.fprintf sfmt "@[<v>%a@]@?" p x; let s = Buffer.contents buf in let ss = String.split_on_char '\n' s in if List.length ss <= 1 then s else (String.concat "\\l" ss)^"\\l" in (* numbering node and edge id *) let nid = NodeHash.create 16 and eid = EdgeHash.create 16 and count = ref 0 in EdgeHash.iter (fun id _ -> incr count; EdgeHash.add eid id !count) g.g_edges; (* header *) Format.fprintf fmt "digraph %s {\n" name; (* emit dot nodes for nodes and edges *) NodeHash.iter (fun id n -> if p.dot_filter_node n then ( incr count; NodeHash.add nid id !count; Format.fprintf fmt " n%i [label=\"%s\"];\n" !count (to_string p.dot_pp_node n) ) ) g.g_nodes; EdgeHash.iter (fun id e -> if p.dot_filter_edge e then ( incr count; EdgeHash.add eid id !count; Format.fprintf fmt " n%i [shape=box label=\"%s\"];\n" !count (to_string p.dot_pp_edge e) ) ) g.g_edges; (* emit dot edges to connect nodes and edges *) EdgeHash.iter (fun id e -> let did1 = EdgeHash.find eid id in List.iter (fun (port,n) -> if p.dot_filter_node n && p.dot_filter_port port && p.dot_filter_edge e then ( let did2 = NodeHash.find nid n.n_id in Format.fprintf fmt " n%i -> n%i [label=\"%s\"];\n" did2 did1 (to_string p.dot_pp_port port) ) ) e.e_src; List.iter (fun (port,n) -> if p.dot_filter_node n && p.dot_filter_port port && p.dot_filter_edge e then ( let did2 = NodeHash.find nid n.n_id in Format.fprintf fmt " n%i -> n%i [label=\"%s\"];\n" did1 did2 (to_string p.dot_pp_port port) ) ) e.e_dst ) g.g_edges; (* entry / exit nodes *) List.iter (fun (port,n) -> if p.dot_filter_node n && p.dot_filter_port port then ( incr count; let did = NodeHash.find nid n.n_id in Format.fprintf fmt " n%i [shape=point label=\"\"];\n n%i -> n%i [label=\"%s\"];\n" !count !count did (to_string p.dot_pp_port port) ) ) g.g_entries; List.iter (fun (port,n) -> if p.dot_filter_node n && p.dot_filter_port port then ( incr count; let did = NodeHash.find nid n.n_id in Format.fprintf fmt " n%i [shape=point label=\"\"];\n n%i -> n%i [label=\"%s\"];\n" !count did !count (to_string p.dot_pp_port port) ) ) g.g_exits; (* footer *) Format.fprintf fmt "}\n" end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>