package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/congUtils/intCong.ml.html
Source file intCong.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2018-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** IntCong - Integer congruences. We rely on Zarith for arithmetic operations. *) open Bot (** {2 Types} *) type t = Z.t (** stride *) * Z.t (** offset *) (** The type of non-empty congruence sets (a,b) represents aℤ + b. a must be positive, and 0 ≤ b < a when a > 0. 0ℤ+b represents the singleton {b}. 1ℤ+0 represents the whole set of integers. aℤ+b represents the set { ak + b | k ∊ ℕ }. *) type t_with_bot = t with_bot (** The type of possibly empty congruence sets. *) let is_valid ((a,b):t) : bool = a = Z.zero || (a > Z.zero && Z.zero <= b && b < a) module I = ItvUtils.IntItv module B = ItvUtils.IntBound (** {2 Arithmetic utilities} *) let gcd (a:Z.t) (b:Z.t) : Z.t = if a = Z.zero then b else if b = Z.zero then a else Z.gcd a b (** Greatest common divisor of |a| and |b|. 0 is neutral. *) let gcd3 (a:Z.t) (b:Z.t) (c:Z.t) : Z.t = gcd (gcd a b) c let gcd_ext (a:Z.t) (b:Z.t) : Z.t * Z.t * Z.t * Z.t = let gcd, u, v = Z.gcdext a b in gcd, Z.div (Z.mul a b) gcd, u, v (** Returns the gcd, lcm and cofactors u, v such that ua+vb=gcd. Undefined if a or b is 0. *) let divides (a:Z.t) (b:Z.t) : bool = if a = Z.zero then b = Z.zero else Z.rem b a = Z.zero (** Wheter b is a multiple of a. Always true if b = 0. *) let rem_zero (a:Z.t) (b:Z.t) : Z.t = if b = Z.zero then a else Z.erem a b (** As Z.erem, but rem_zero a 0 = a. *) (** {2 Constructors} *) let of_z (a:Z.t) (b:Z.t) : t = if a = Z.zero then a, b else let a = Z.abs a in a, Z.erem b a (** Returns aℤ + b. *) let of_int (a:int) (b:int) : t = of_z (Z.of_int a) (Z.of_int b) let of_int64 (a:int64) (b:int64) : t = of_z (Z.of_int64 a) (Z.of_int64 b) let cst (b:Z.t) : t = Z.zero, b (** Returns 0ℤ + b *) let cst_int (b:int) : t = cst (Z.of_int b) let cst_int64 (b:int64) : t = cst (Z.of_int64 b) let zero : t = cst_int 0 (** 0ℤ+0 *) let one : t = cst_int 1 (** 0ℤ+1 *) let mone : t = cst_int (-1) (** 0ℤ-1 *) let minf_inf : t = of_int 1 0 (** 1ℤ+0 *) let of_range (lo:Z.t) (hi:Z.t) : t = if lo = hi then cst lo else minf_inf let of_range_bot (lo:Z.t) (hi:Z.t) : t with_bot = if lo = hi then Nb (cst lo) else if lo > hi then BOT else Nb minf_inf let of_bound (lo:B.t) (hi:B.t) : t = match lo,hi with | B.Finite l, B.Finite h -> of_range l h | _ -> minf_inf let of_bound_bot (lo:B.t) (hi:B.t) : t with_bot = match lo,hi with | B.Finite l, B.Finite h -> of_range_bot l h | _ -> Nb minf_inf (** Congruence overapproximating an interval. *) (** {2 Predicates} *) let equal (a:t) (b:t) : bool = a = b (** Equality. = also works. *) let equal_bot : t_with_bot -> t_with_bot -> bool = bot_equal equal let included ((a,b):t) ((c,d):t) : bool = divides c a && rem_zero b c = d (** Set ordering. *) let included_bot : t_with_bot -> t_with_bot -> bool = bot_included included let intersect ((a,b):t) ((a',b'):t) : bool = rem_zero (Z.sub b b') (gcd a a') = Z.zero (** Whether the intersection is non-empty. *) let intersect_bot : t_with_bot -> t_with_bot -> bool = bot_dfl2 false intersect let contains (x:Z.t) ((a,b):t) : bool = rem_zero x a = b (** Whether the set contains some value x. *) let compare ((a,b):t) ((a',b'):t) : int = if a = a' then Z.compare b b' else Z.compare a a' (** A total ordering (lexical ordering) returning -1, 0, or 1. Can be used as compare for sets, maps, etc. *) let compare_bot (x:t with_bot) (y:t with_bot) : int = Bot.bot_compare compare x y (** Total ordering on possibly empty congruences. *) let contains_zero ((a,b):t) : bool = b = Z.zero (** Whether the congruence contains zero. *) let contains_one ((a,b):t) : bool = a = Z.one || b = Z.one (** Whether the congruence contains one. *) let contains_nonzero (ab:t) : bool = ab <> zero (** Whether the congruence contains a non-zero value. *) let is_zero (ab:t) : bool = ab = zero let is_positive ((a,b):t) : bool = a = Z.zero && b >= Z.zero let is_negative ((a,b):t) : bool = a = Z.zero && b <= Z.zero let is_positive_strict ((a,b):t) : bool = a = Z.zero && b > Z.zero let is_negative_strict ((a,b):t) : bool = a = Z.zero && b < Z.zero let is_nonzero ((a,b):t) : bool = b <> Z.zero (** Sign. *) let is_minf_inf ((a,b):t) : bool = a = Z.one (** The congruence represents [-∞,+∞]. *) let is_singleton ((a,b):t) : bool = a = Z.zero (** Whether the congruence contains a single element. *) let is_bounded (ab:t) : bool = is_singleton ab (** Whether the congruence contains a finite number of elements. *) let is_in_range ((a,b):t) (lo:Z.t) (up:Z.t) = a = Z.zero && b >= lo && b <= up (** Whether the congruence is included in the range [lo,up]. *) (** {2 Printing} *) let to_string ((a,b):t) : string = if a = Z.zero then Z.to_string b else let prefix = (if a = Z.one then "" else Z.to_string a) in match Z.sign b with | 1 -> prefix^"ℤ+"^(Z.to_string b) | -1 -> prefix^"ℤ"^(Z.to_string b) | _ -> prefix^"ℤ" let print ch (x:t) = output_string ch (to_string x) let fprint ch (x:t) = Format.pp_print_string ch (to_string x) let bprint ch (x:t) = Buffer.add_string ch (to_string x) let to_string_bot = bot_to_string to_string let print_bot = bot_print print let fprint_bot = bot_fprint fprint let bprint_bot = bot_bprint bprint (** {2 Set operations} *) let join ((a,b):t) ((a',b'):t) : t = of_z (gcd3 a a' (Z.sub b b')) b' (** Abstract union. *) let join_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_neutral2 join a b let join_list (l:t list) : t_with_bot = List.fold_left (fun a b -> join_bot a (Nb b)) BOT l let meet ((a,b):t) ((a',b'):t) : t_with_bot = match a = Z.zero, a' = Z.zero with | true, true -> if b = b' then Nb (a,b) else BOT | true, false -> if contains b (a',b') then Nb (a,b) else BOT | false, true -> if contains b' (a,b) then Nb (a',b') else BOT | false, false -> let gcd, lcm, u, _ = gcd_ext a a' in if Z.rem (Z.sub b b') gcd = Z.zero then Nb (of_z lcm (Z.sub b (Z.div (Z.mul a (Z.mul u (Z.sub b b'))) gcd))) else BOT (** Abstract intersection. *) let meet_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_absorb2 meet a b let meet_list (l:t list) : t_with_bot = List.fold_left (fun a b -> meet_bot a (Nb b)) (Nb minf_inf) l let meet_range ((a,b):t) (lo:Z.t) (up:Z.t) : t_with_bot = if a = Z.zero && b < lo || b > up then BOT else Nb (a,b) (** Abstract intersection with [lo,up]. *) let positive (a:t) : t_with_bot = if is_negative_strict a then BOT else Nb a let negative (a:t) : t_with_bot = if is_positive_strict a then BOT else Nb a (** Positive and negative part. *) let meet_zero (a:t) : t_with_bot = meet a zero (** Intersects with {0}. *) let meet_nonzero (a:t) : t_with_bot = if equal a zero then BOT else Nb a (** Keeps only non-zero elements. *) (** {2 Forward operations} *) let neg ((a,b):t) : t = of_z a (Z.neg b) (** Negation. *) let abs ((a,b):t) : t = if a = Z.zero then a, Z.abs b else if b = Z.zero then a, b else join (a,b) (a,Z.sub a b) (** Absolute value. *) let succ ((a,b):t) = of_z a (Z.succ b) (** Adding 1. *) let pred ((a,b):t) = of_z a (Z.pred b) (** Subtracting 1. *) let add ((a,b):t) ((a',b'):t) : t = of_z (gcd a a') (Z.add b b') (** Addition. *) let sub ((a,b):t) ((a',b'):t) : t = of_z (gcd a a') (Z.sub b b') (** Subtraction. *) let mul ((a,b):t) ((a',b'):t) : t = of_z (gcd3 (Z.mul a a') (Z.mul a b') (Z.mul a' b)) (Z.mul b b') (** Multiplication. *) let div ((a,b):t) ((a',b'):t) : t_with_bot = if a' = Z.zero then if b' = Z.zero then BOT (* aℤ+b / 0 *) else if divides b' a && divides b' b then Nb (of_z (Z.div a b') (Z.div b b')) (* aℤ+b / b' where b' divides a and b *) else Nb minf_inf (* aℤ+b / b' for other cases *) else Nb minf_inf (* general case *) (** Division (with truncation). *) let rem ((a,b):t) ((a',b'):t) : t_with_bot = if a' = Z.zero then if b' = Z.zero then BOT (* aℤ+b mod 0 *) else if a = Z.zero then Nb (cst (Z.rem b b')) (* b mod b' *) else Nb (of_z (gcd a b') (Z.rem b b')) (* aℤ+b mod b' *) else Nb (of_z (gcd3 a a' b') b) (* general case *) (** Remainder. Uses the C semantics for remainder (%). *) let wrap ((a,b):t) (lo:Z.t) (up:Z.t) : t = let w = Z.succ (Z.sub up lo) in if a = Z.zero then of_z Z.zero (Z.add lo (Z.erem (Z.sub b lo) w)) (* singleton *) else of_z (gcd a w) (Z.add lo (Z.erem (Z.sub b lo) w)) (* non-singleton *) (** Put back inside [lo,up] by modular arithmetics. *) let to_bool (can_be_zero:bool) (can_be_one:bool) : t = match can_be_zero, can_be_one with | true, false -> zero | false, true -> one | true, true -> minf_inf | _ -> failwith "unreachable case encountered in IntCong.to_bool" (* helper function for operators returning a boolean that can be zero and/or one *) let log_cast (ab:t) : t = to_bool (contains_zero ab) (contains_nonzero ab) (** Conversion from integer to boolean in [0,1]: maps 0 to 0 (false) and non-zero to 1 (true). [0;1] is over-approximated as ℤ. *) let log_not (ab:t) : t = to_bool (contains_nonzero ab) (contains_zero ab) (** Logical negation. Logical operation use the C semantics: they accept 0 and non-0 respectively as false and true, but they always return 0 and 1 respectively for false and true. [0;1] is over-approximated as ℤ. *) let log_and (ab:t) (ab':t) : t = to_bool (contains_zero ab || contains_zero ab') (contains_nonzero ab && contains_nonzero ab') (** Logical and. *) let log_or (ab:t) (ab':t) : t = to_bool (contains_zero ab && contains_zero ab') (contains_nonzero ab || contains_nonzero ab') (** Logical or. *) let log_xor (ab:t) (ab':t) : t = let f,f' = contains_zero ab, contains_zero ab' and t,t' = contains_nonzero ab, contains_nonzero ab' in to_bool ((f && f') || (t && t')) ((f && t') || (t && f')) (** Logical exclusive or. *) let log_eq (ab:t) (ab':t) : t = to_bool (not (equal ab ab' && is_singleton ab)) (intersect ab ab') let log_neq (ab:t) (ab':t) : t = to_bool (intersect ab ab') (not (equal ab ab' && is_singleton ab)) let log_sgl op ((a,b):t) ((a',b'):t) : t = if a <> Z.zero || a' <> Z.zero then minf_inf else if op b b' then one else zero (* utility function, only handles the case of singletons *) let log_leq = log_sgl (<=) let log_geq = log_sgl (>=) let log_lt = log_sgl (<) let log_gt = log_sgl (>) (** C comparison tests. Returns an interval included in [0,1] (a boolean) *) let is_log_eq (ab:t) (ab':t) : bool = intersect ab ab' let is_log_neq (ab:t) (ab':t) : bool = not (equal ab ab' && is_singleton ab) let is_log_sgl op ((a,b):t) ((a',b'):t) : bool = a <> Z.zero || a' <> Z.zero || op b b' (* utility function, only handles the case of singletons *) let is_log_leq = is_log_sgl (<=) let is_log_geq = is_log_sgl (>=) let is_log_lt = is_log_sgl (<) let is_log_gt = is_log_sgl (>) (** C comparison tests. Returns a boolean if the test may succeed *) let shift_left ((a,b):t) ((a',b'):t) : t_with_bot = try if a' = Z.zero then if b' < Z.zero then BOT (* aℤ+b << negative constant *) else let bb' = Z.to_int b' in Nb (of_z (Z.shift_left a bb') (Z.shift_left b bb')) (* aℤ+b << b' *) else Nb minf_inf with Z.Overflow -> Nb minf_inf (** Bitshift left: multiplication by a power of 2. *) let shift_right ((a,b):t) ((a',b'):t) : t_with_bot = try if a' = Z.zero then if b' < Z.zero then BOT (* aℤ+b >> negative constant *) else let bb' = Z.to_int b' in let z = Z.shift_left Z.one bb' in if a = Z.zero then Nb (cst (Z.shift_right b bb')) (* b >> b' *) else if divides z a && divides z b then Nb (of_z (Z.shift_right a bb') (Z.shift_right b bb')) (* aℤ+b >> b' exact *) else Nb minf_inf else Nb minf_inf with Z.Overflow -> Nb minf_inf (** Bitshift right: division by a power of 2 rounding towards -∞. *) let shift_right_trunc ((a,b):t) ((a',b'):t) : t_with_bot = try if a' = Z.zero then if b' < Z.zero then BOT (* aℤ+b >> negative constant *) else let bb' = Z.to_int b' in let z = Z.shift_left Z.one bb' in if a = Z.zero then Nb (cst (Z.shift_right_trunc b bb')) (* b >> b' *) else if divides z a && divides z b then Nb (of_z (Z.shift_right a bb') (Z.shift_right b bb')) (* aℤ+b >> b' exact *) else Nb minf_inf else Nb minf_inf with Z.Overflow -> Nb minf_inf (** Unsigned bitshift right: division by a power of 2 with truncation. *) let bit_not (ab:t) : t = pred (neg ab) (** Bitwise negation: ~x = -x-1 *) (* TODO: other bitwise operations? *) (** {2 Filters} *) (** Given two interval aruments, return the arguments assuming that the predicate holds. *) let filter_eq (ab:t) (ab':t) : (t*t) with_bot = match meet ab ab' with BOT -> BOT | Nb x -> Nb (x,x) let filter_sgl op ((a,b) as ab:t) ((a',b') as ab':t) : (t*t) with_bot = if a = Z.zero && a' = Z.zero && not (op b b') then BOT else Nb (ab,ab') (* utility function: we only handle the simple case of singletons *) let filter_neq = filter_sgl (<>) let filter_leq = filter_sgl (<=) let filter_geq = filter_sgl (>=) let filter_lt = filter_sgl (<) let filter_gt = filter_sgl (>) (** {2 Backward operations} *) (** Given one or two interval argument(s) and a result interval, return the argument(s) assuming the result in the operation is in the given result. *) let bwd_neg (a:t) (r:t) : t_with_bot = meet a (neg r) let bwd_abs (a:t) (r:t) : t_with_bot = meet a (join r (neg r)) let bwd_succ (a:t) (r:t) : t_with_bot = meet a (pred r) let bwd_pred (a:t) (r:t) : t_with_bot = meet a (succ r) let bwd_add (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a + b ⇒ a = r - b ∧ b = r - a *) bot_merge2 (meet a (sub r b)) (meet b (sub r a)) let bwd_sub (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a - b ⇒ a = b + r ∧ b = a - r *) bot_merge2 (meet a (add b r)) (meet b (sub a r)) let bwd_mul (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a * b ⇒ ((a = r / b) ∨ (b = r = 0)) ∧ ((b = r / a) ∨ (a = r = 0)) *) let aa = if contains_zero b && contains_zero r then Nb a else div r b and bb = if contains_zero a && contains_zero r then Nb b else div r a in bot_merge2 aa bb let bwd_bit_not (a:t) (r:t) : t_with_bot = meet a (bit_not r) let bwd_join (a:t) (b:t) (r:t) : (t*t) with_bot = bot_merge2 (meet a r) (meet b r) (** Backward join: both arguments and intersected with the result. *) let bwd_rem (a:t) ((b1,b2) as b:t) (r:t) = (* r = a % b => a = (a/b)*b + r => a in bℤ + r *) bot_merge2 (meet a (add (of_z (gcd b1 b2) Z.zero) r)) (Nb b) let bwd_div (a:t) (b:t) (r:t) = Nb (a,b) let bwd_wrap (a:t) range (r:t) : t_with_bot = Nb a let bwd_shift_left (a:t) (b:t) (r:t) = Nb (a,b) let bwd_shift_right (a:t) (b:t) (r:t) = Nb (a,b) let bwd_shift_right_trunc (a:t) (b:t) (r:t) = Nb (a,b) (* TODO: more precise backward for those, and also bit-wise operations *) (** {2 Reduction} *) let meet_inter ((a,b):t) ((l,h):I.t) : (t * I.t) with_bot = (* smallest element in aℤ+b greater or equal to l *) let l' = match l with | B.Finite f -> B.Finite (Z.add f (rem_zero (Z.sub b f) a)) | _ -> l (* greatest element in aℤ+b smaller or equal to h *) and h' = match h with | B.Finite f -> B.Finite (Z.sub f (rem_zero (Z.sub f b) a)) | _ -> h in match l',h' with | B.Finite ll, B.Finite hh -> if ll > hh then BOT else if ll = hh then Nb (cst ll, (l',h')) else Nb ((a,b),(l',h')) | _ -> Nb ((a,b),(l',h')) (** Intersects a congruence with an interval, and returns the set represented both as a congruence and as an interval. Useful to implement reductions. *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>