package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/bitfields/intBitfields.ml.html
Source file intBitfields.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2018-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Bitfields - Sequences of bits that can be set, cleared, or unknown We rely on Zarith for arithmetic operations. *) open Bot (** {2 Types} *) type t = Z.t (** set *) * Z.t (** cleared *) (** Bitfields: bit sequences with bit values in a 3-valued logic: set, cleared, or unknown. Alternatively, this can be seen representing a set of arbtirary precision integers through a Cartesian (non-relational) abstraction: each bit is abstracted independently. The first component has a 1 for each bit that can be set. The second component has a 1 for each bit that can be cleared. A bit can be both in the set and the clear state, indicating a bit that may be set of cleared (set & cleared gives the bits at top). At least one of set or cleared must be true for each bit (set | cleared = -1), i.e., an element of [t] is not empty. set and cleared can be negative, indicating bit sequences starting with infinitely many 1s in 2's complement representation. *) type t_with_bot = t with_bot (** The type of possibly empty bitfields. *) module I = ItvUtils.IntItv module B = ItvUtils.IntBound module C = CongUtils.IntCong let is_valid ((set,clr):t) : bool = Z.logor set clr = Z.minus_one (** Every bit in a bitfield must be set, cleared, or both. *) (** {2 Constructors} *) let of_z (set:Z.t) (clr:Z.t) : t = if not (is_valid (set,clr)) then invalid_arg (Printf.sprintf "Bitfields.of_z (set:%s,clear:%s)" (Z.to_string set) (Z.to_string clr)); (set,clr) let of_z_bot (set:Z.t) (clr:Z.t) : t_with_bot = if Z.logor set clr <> Z.minus_one then BOT else Nb (set,clr) let cst (c:Z.t) : t = (* all bits at 1 in c must be set, and all bits at 0 must be cleared *) c, Z.lognot c (** Constant. *) let cst_int (c:int) : t = cst (Z.of_int c) let cst_int64 (c:int64) : t = cst (Z.of_int64 c) let zero : t = cst Z.zero (** 0 *) let one : t = cst Z.one (** 1 *) let mone : t = cst Z.minus_one (** -1 *) let zero_one : t = (* bit 0 can be in set or cleared, other bits must be cleared *) Z.one, Z.minus_one (** [0,1] *) let minf_inf : t = (* all bits can be set and cleared *) Z.minus_one, Z.minus_one (** All integers. Indistiguishable from [0,+∞]. *) let unsigned (sz:int) : t = (* bits 0 to sz can be set or cleared, other bits must be cleared *) Z.pred (Z.shift_left Z.one sz), Z.minus_one (** Bitfields of unsigned integers with the specified bitsize. *) let unsigned8 : t = unsigned 8 let unsigned16 : t = unsigned 16 let unsigned32 : t = unsigned 32 let unsigned64 : t = unsigned 64 let of_range_bot (lo:Z.t) (hi:Z.t) : t with_bot = if lo > hi then (* empty set *) BOT else if lo < Z.zero && hi >= Z.zero then (* contains -1 and 0 -> every bit can be 0 and can be 1 *) Nb minf_inf else (* mask is all 1 after the highest bit != in lo and hi *) let to_mask = Z.numbits (Z.logxor lo hi) in let mask = Z.pred (Z.shift_left Z.one to_mask) in (* the bits in the mask can be set or cleared, other bits are fixed to lo (or equivalently to hi) *) Nb (Z.logor lo mask, Z.logor (Z.lognot lo) mask) (** Bitfield enclosing the range [lo,hi]. *) let of_bound_bot (lo:B.t) (hi:B.t) : t with_bot = match lo,hi with | B.Finite l, B.Finite h -> of_range_bot l h | _ -> Nb minf_inf (** Bitfield enclosing the range [lo,hi]. *) let of_range (lo:Z.t) (hi:Z.t) : t = match of_range_bot lo hi with | Nb x -> x | BOT -> invalid_arg (Printf.sprintf "IntBitfields.of_range [%s,%s]" (Z.to_string lo) (Z.to_string hi)) (** Bitfield enclosing the range [lo,hi]. Fails with [invalid_arg] if the range is empty. *) let of_bound (lo:B.t) (hi:B.t) : t = match of_bound_bot lo hi with | Nb x -> x | BOT -> invalid_arg (Printf.sprintf "IntBitfields.of_bound [%s,%s]" (B.to_string lo) (B.to_string hi)) (** Bitfield enclosing the range [lo,hi]. Fails with [invalid_arg] if the range is empty. *) (** {2 Predicates} *) let equal ((set1,clr1):t) ((set2,clr2):t) : bool = set1 = set2 && clr1 = clr2 (** Equality. = also works. *) let equal_bot : t_with_bot -> t_with_bot -> bool = bot_equal equal let included ((set1,clr1):t) ((set2,clr2):t) : bool = (* set1 (resp. clr1) has less bits at 1 than set2 (resp. clr2) *) Z.logor set1 set2 = set2 && Z.logor clr1 clr2 = clr2 (** Set ordering. *) let included_bot : t_with_bot -> t_with_bot -> bool = bot_included included let intersect ((set1,clr1):t) ((set2,clr2):t) : bool = (* for each bit, it must be set in both arguments, or cleared in both *) Z.logor (Z.logand set1 set2) (Z.logand clr1 clr2) = Z.minus_one (** Whether the intersection is non-empty. *) let intersect_bot : t_with_bot -> t_with_bot -> bool = bot_dfl2 false intersect let contains (x:Z.t) ((set,clr):t) : bool = (* each bit at 1 in x must be in set, and each bit at 0 must be in clr *) (x = Z.logand x set) && (x = Z.logor x (Z.lognot clr)) let compare ((set1,clr1):t) ((set2,clr2):t) : int = if set1 = set2 then Z.compare clr1 clr2 else Z.compare set1 set2 (** A total ordering on bitfields, returning -1, 0, or 1. Can be used as compare for sets, maps, etc. *) let compare_bot (x:t with_bot) (y:t with_bot) : int = Bot.bot_compare compare x y (** Total ordering on possibly empty bitfields. *) let contains_zero ((set,clr):t) : bool = (* all bits must be in clr *) clr = Z.minus_one (** Whether the bifield contains zero. *) let contains_one (x:t) : bool = contains Z.one x (** Whether the bifield contains one. *) let contains_nonzero ((set,clr):t) : bool = (* at least one bit must be in set *) set <> Z.zero (** Whether the bifield contains a non-zero value. *) let is_zero (x:t) : bool = x = zero let is_positive ((set,clr):t) : bool = (* there are only finitely many bits that cn be 1 *) set >= Z.zero let is_positive_strict (a:t) : bool = is_positive a && not (contains_zero a) let is_negative_strict ((set,clr):t) : bool = (* there are only finitely many bits that can be 0 *) clr >= Z.zero let is_negative (a:t) : bool = (* any bitfield allowing 0 and a negative number also allows a strictly positive number; the only way to be negative or nul is to either contain only strictly negative numbers, or to contain only 0 *) is_negative_strict a || is_zero a let is_nonzero ((set,clr):t) : bool = (* there is a position with a bit that cannot be 0 *) clr <> Z.minus_one (** Contains only non-zero elements. *) let is_minf_inf ((a,b):t) : bool = a = Z.minus_one && b = Z.minus_one (** The bitfield represents [-∞,+∞]. *) let is_singleton ((set,clr):t) : bool = (* every bit can be either set of cleared, but not both *) set = Z.lognot clr (** Whether the bitfield contains a single element. *) let is_bounded ((set,clr):t) : bool = (* the set of bits that can be both set and cleared is finite *) Z.logand set clr >= Z.zero (** Whether the bitfield contains a finite number of elements. *) let lower_bound ((set,clr):t) : B.t = if set < Z.zero && clr < Z.zero then B.MINF (* can be arbitrarily negative *) else B.Finite (Z.lognot clr) (* clear all the bits that can be cleared *) (** Get the lower bound (possibly MINF). *) let upper_bound ((set,clr):t) : B.t = if set < Z.zero && clr < Z.zero then B.PINF (* can be arbitrarily positive *) else B.Finite set (* set all the bits that can be set *) (** Get the upper bound (possibly PINF). *) (** {2 Printing} *) let to_string ((set,clr):t) : string = let b = Buffer.create 10 in let both = Z.logand set clr in (match set < Z.zero, clr < Z.zero with | true, false -> Buffer.add_string b "…1" | true, true -> Buffer.add_string b "…⊤" | _ -> () ); for i = Z.numbits both-1 downto 0 do match Z.testbit set i, Z.testbit clr i with | true, false -> Buffer.add_string b "1" | false, true -> Buffer.add_string b "0" | true,true -> Buffer.add_string b "⊤" | _ -> invalid_arg (Printf.sprintf "IntBitfields.to_string (set:%s,clear:%s)" (Z.to_string set) (Z.to_string clr)); done; Buffer.contents b let print ch (x:t) = output_string ch (to_string x) let fprint ch (x:t) = Format.pp_print_string ch (to_string x) let bprint ch (x:t) = Buffer.add_string ch (to_string x) let to_string_bot = bot_to_string to_string let print_bot = bot_print print let fprint_bot = bot_fprint fprint let bprint_bot = bot_bprint bprint (** {2 Enumeration} *) let size ((set,clr):t) : int = let both = Z.logand set clr in if both < Z.zero then invalid_arg (Printf.sprintf "Bitfields.size: unbounded set %s" (to_string (set,clr))); Z.popcount both (** Number of elements. Raises an invalid argument if it is unbounded. *) let to_list ((set,clr):t) : Z.t list = let both = Z.logand set clr in if both < Z.zero then invalid_arg (Printf.sprintf "Bitfields.size: unbounded set %s" (to_string (set,clr))); let rec doit acc v i = if i < 0 then v::acc else (* bit i can be 0 *) let acc = if Z.testbit clr i then doit acc v (i-1) else acc in (* bit i can be 1 *) if Z.testbit set i then doit acc (Z.logor v (Z.shift_left Z.one i)) (i-1) else acc in let org = Z.lognot clr in doit [] org (Z.numbits both - 1) (** List of elements, in increasing order. Raises an invalid argument if it is unbounded. *) (** {2 Set operations} *) let join ((set,clr):t) ((set',clr'):t) : t = Z.logor set set', Z.logor clr clr' (** Abstract union. *) let join_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_neutral2 join a b let join_list (l:t list) : t_with_bot = List.fold_left (fun a b -> join_bot a (Nb b)) BOT l let meet ((set,clr):t) ((set',clr'):t) : t_with_bot = of_z_bot (Z.logand set set') (Z.logand clr clr') (** Abstract intersection. *) let meet_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_absorb2 meet a b let meet_list (l:t list) : t_with_bot = List.fold_left (fun a b -> meet_bot a (Nb b)) (Nb minf_inf) l (** {2 Forward operations} *) let to_bool (can_be_zero:bool) (can_be_one:bool) : t = match can_be_zero, can_be_one with | true, false -> zero | false, true -> one | true, true -> zero_one | _ -> failwith "unreachable case encountered in IntBitfields.to_bool" (* helper function for operators returning a boolean that can be zero and/or one *) let log_cast (a:t) : t = to_bool (contains_zero a) (contains_nonzero a) (** Conversion from integer to boolean in [0,1]: maps 0 to 0 (false) and non-zero to 1 (true). *) let log_not (a:t) : t = to_bool (contains_nonzero a) (contains_zero a) (** Logical negation. Logical operation use the C semantics: they accept 0 and non-0 respectively as false and true, but they always return 0 and 1 respectively for false and true. *) let log_and (a:t) (b:t) : t = to_bool (contains_zero a || contains_zero b) (contains_nonzero a && contains_nonzero b) (** Logical and. *) let log_or (a:t) (b:t) : t = to_bool (contains_zero a && contains_zero b) (contains_nonzero a || contains_nonzero b) (** Logical or. *) let log_xor (a:t) (b:t) : t = let f,f' = contains_zero a, contains_zero b and t,t' = contains_nonzero a, contains_nonzero b in to_bool ((f && f') || (t && t')) ((f && t') || (t && f')) (** Logical exclusive or. *) let log_eq (a:t) (b:t) : t = to_bool (not (equal a b && is_singleton a)) (intersect a b) let log_neq (a:t) (b:t) : t = to_bool (intersect a b) (not (equal a b && is_singleton a)) let log_leq (a:t) (b:t) : t = to_bool (B.gt (upper_bound a) (lower_bound b)) (B.leq (lower_bound a) (upper_bound b)) let log_geq (a:t) (b:t) : t = to_bool (B.lt (lower_bound a) (upper_bound b)) (B.geq (upper_bound a) (lower_bound b)) let log_lt (a:t) (b:t) : t = to_bool (B.geq (upper_bound a) (lower_bound b)) (B.lt (lower_bound a) (upper_bound b)) let log_gt (a:t) (b:t) : t = to_bool (B.leq (lower_bound a) (upper_bound b)) (B.gt (upper_bound a) (lower_bound b)) (** C comparison tests. Returns an interval included in [0,1] (a boolean) *) let is_log_eq (a:t) (b:t) : bool = intersect a b let is_log_neq (a:t) (b:t) : bool = not (equal a b && is_singleton a) let is_log_leq (a:t) (b:t) : bool = B.leq (lower_bound a) (upper_bound b) let is_log_geq (a:t) (b:t) : bool = B.geq (upper_bound a) (lower_bound b) let is_log_lt (a:t) (b:t) : bool = B.lt (lower_bound a) (upper_bound b) let is_log_gt (a:t) (b:t) : bool = B.gt (upper_bound a) (lower_bound b) (** C comparison tests. Returns a boolean if the test may succeed *) let shift_left ((set,clr):t) ((set',clr'):t) : t = if is_singleton (set',clr') && set' >= Z.zero then (* exact when the right argument is a positive singleton, top else *) try let l = Z.to_int set' in Z.shift_left set l, Z.shift_left clr l with Z.Overflow -> minf_inf else minf_inf (** Bitshift left: multiplication by a power of 2. *) let shift_right ((set,clr):t) ((set',clr'):t) : t = if is_singleton (set',clr') && set' >= Z.zero then (* exact when the right argument is a positive singleton, top else *) try let l = Z.to_int set' in Z.shift_right set l, Z.shift_right clr l with Z.Overflow -> minf_inf else minf_inf (** Bitshift right: division by a power of 2 rounding towards -∞. *) let shift_right_trunc ((set,clr):t) ((set',clr'):t) : t = if is_singleton (set',clr') && set' >= Z.zero then (* exact when the right argument is a positive singleton, top else *) try let l = Z.to_int set' in Z.shift_right_trunc set l, Z.shift_right_trunc clr l with Z.Overflow -> minf_inf else minf_inf (** Unsigned bitshift right: division by a power of 2 with truncation. *) let bit_not ((set,clr):t) : t = clr, set (** Bitwise negation. *) let bit_or ((set,clr):t) ((set',clr'):t) : t = Z.logor set set', Z.logand clr clr' (** Bitwise or. *) let bit_and ((set,clr):t) ((set',clr'):t) : t = Z.logand set set', Z.logor clr clr' (** Bitwise and. *) let bit_xor ((set,clr):t) ((set',clr'):t) : t = Z.logor (Z.logand set clr') (Z.logand set' clr), Z.logor (Z.logand clr clr') (Z.logand set set') (** Bitwise exclusive or. *) (** {2 Filters} *) (** Given two interval aruments, return the arguments assuming that the predicate holds. *) let filter_eq (a:t) (b:t) : (t*t) with_bot = match meet a b with BOT -> BOT | Nb x -> Nb (x,x) let filter_sgl op ((set,clr) as a:t) ((set',clr') as a':t) : (t*t) with_bot = if is_singleton (set,clr) && is_singleton (set',clr') && not (op set set') then BOT else Nb (a,a') (* utility function: we only handle the simple case of singletons *) let filter_neq = filter_sgl (<>) let filter_leq = filter_sgl (<=) let filter_geq = filter_sgl (>=) let filter_lt = filter_sgl (<) let filter_gt = filter_sgl (>) (** {2 Reduction} *) let of_interval ((lo,hi):I.t) : t = of_bound lo hi let to_interval ((set,clr):t) : I.t = lower_bound (set,clr), upper_bound (set,clr) let meet_inter (b:t) (i:I.t) : (t * I.t) with_bot = bot_merge2 (meet b (of_interval i)) (I.meet i (to_interval b)) (** Intersects a bitfield with an interval, and returns the set represented both as a bitfield and as an interval. Useful to implement reductions. *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>