package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.0.tar.gz
md5=9f673f79708b44a7effb3b6bb3618d2c
sha512=cb91cb428e43a22f1abbcb8219710d0c10a5b3756d0da392d4084b3b3a6157350776c596983e63def344f617d39964e91f244f60c07958695ee5c8c809a9f0f4
doc/src/lattices/powerset.ml.html
Source file powerset.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** Powerset lattice with finite cardinality elements or ⊺. *) open Mopsa_utils open Core.All open Top module type ELT = sig type t val compare: t -> t -> int val print : printer -> t -> unit end module Make(Elt: ELT) = struct module Set = SetExt.Make(Elt) type v = Set.t type t = v with_top let bottom : t = Nt Set.empty let top : t = TOP let is_top (abs: t) = abs = TOP let subset (abs1:t) (abs2:t) : bool = top_included Set.subset abs1 abs2 let equal (abs1:t) (abs2:t) : bool = top_equal Set.equal abs1 abs2 let compare (abs1:t) (abs2:t) : int = match abs1, abs2 with | TOP, TOP -> 0 | TOP, _ -> -1 | _, TOP -> 1 | Nt x1, Nt x2 -> Set.compare x1 x2 let join (abs1:t) (abs2:t) : t = if abs1 == abs2 then abs1 else top_lift2 Set.union abs1 abs2 let meet (abs1:t) (abs2:t) : t = if abs1 == abs2 then abs1 else top_neutral2 Set.inter abs1 abs2 let union = join let inter = meet let diff (abs1:t) (abs2:t) : t = if is_top abs2 then bottom else top_lift2 Set.diff abs1 abs2 let widen ctx (abs1:t) (abs2:t) : t = top_absorb2 (fun s1 s2 -> if Set.subset s2 s1 then abs2 else TOP ) abs1 abs2 let print printer (abs:t) = match abs with | Top.TOP -> pp_string printer "⊤" | Top.Nt s -> if Set.is_empty s then pp_string printer "∅" else pp_set Elt.print printer (Set.to_poly_set s) ~sopen:"{" ~ssep:"," ~sclose:"}" let add v (abs:t) : t = top_lift1 (Set.add v) abs let fold (f:Elt.t->'a->'a) (abs:t) (init:'a) : 'a = top_to_exn abs |> (fun s -> Set.fold f s init) let remove (v:Elt.t) (abs:t) : t = top_lift1 (Set.remove v) abs let mem (v:Elt.t) (abs:t) : bool = top_dfl1 true (Set.mem v) abs let filter f (abs:t) : t = top_lift1 (Set.filter f) abs let partition f (abs:t) : t * t = match abs with | TOP -> TOP, TOP | Nt a -> let r1, r2 = Set.partition f a in Nt r1, Nt r2 let exists f (abs:t) : bool = top_to_exn abs |> (fun s -> Set.exists f s) let for_all f (abs:t) : bool = top_to_exn abs |> (fun s -> Set.for_all f s) let cardinal (abs:t) : int = top_to_exn abs |> (fun s -> Set.cardinal s) let find f (abs:t) : Elt.t = top_to_exn abs |> (fun s -> Set.find f s) let choose (abs:t) : Elt.t = top_to_exn abs |> (fun s -> Set.choose s) let singleton (x:Elt.t) : t = Nt (Set.singleton x) let of_list (l:Elt.t list) = Nt (Set.of_list l) let is_empty (abs:t) = top_dfl1 false Set.is_empty abs let is_singleton a = top_apply (fun s -> Set.cardinal s = 1 (* FIXME: computing the cardinal for this check is inefficient *) ) false a let empty = bottom let is_bottom = is_empty let elements (abs:t) = top_to_exn abs |> Set.elements let map (f:Elt.t -> Elt.t) (abs:t) : t = top_lift1 (Set.map f) abs let iter (f:Elt.t -> unit) (abs:t) : unit = top_to_exn abs |> Set.iter f let apply (f:Set.t -> 'a) (dfl:'a) (abs:t) : 'a = Top.top_apply f dfl abs end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>