package mm
The mm library contains high-level to create and manipulate multimedia streams (audio, video, MIDI)
Install
Dune Dependency
Authors
Maintainers
Sources
v0.7.1.tar.gz
md5=948721e8a3e15015eb0b013d9f59f37b
sha512=f78edef4eb03d14c7a77a605241650e4bc2b3fb7ab7cfc37e0ea3acdcae8279ea7538179796ffd007456e2f657fe8335f3d57255e91c4db599c827161e5b92b2
doc/src/mm.audio/audio.ml.html
Source file audio.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
(* * Copyright 2011 The Savonet Team * * This file is part of ocaml-mm. * * ocaml-mm is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * ocaml-mm is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with ocaml-mm; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * As a special exception to the GNU Library General Public License, you may * link, statically or dynamically, a "work that uses the Library" with a publicly * distributed version of the Library to produce an executable file containing * portions of the Library, and distribute that executable file under terms of * your choice, without any of the additional requirements listed in clause 6 * of the GNU Library General Public License. * By "a publicly distributed version of the Library", we mean either the unmodified * Library as distributed by The Savonet Team, or a modified version of the Library that is * distributed under the conditions defined in clause 3 of the GNU Library General * Public License. This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU Library General Public License. * *) (* TODO: - lots of functions require offset and length whereas in most cases we want to apply the operations on the whole buffers -> labeled optional arguments? - do we want to pass samplerate as an argument or to store it in buffers? *) open Mm_base let list_filter_ctxt f l = let rec aux b = function | [] -> [] | h :: t -> if f b h t then h :: aux (b @ [h]) t else aux (b @ [h]) t in aux [] l let pi = 3.14159265358979323846 let lin_of_dB x = 10. ** (x /. 20.) let dB_of_lin x = 20. *. log x /. log 10. (** Fractional part of a float. *) let fracf x = if x < 1. then x else if x < 2. then x -. 1. else fst (modf x) let samples_of_seconds sr t = int_of_float (float sr *. t) let seconds_of_samples sr n = float n /. float sr module Note = struct (* A4 = 69 *) type t = int let a4 = 69 let c5 = 72 let c0 = 12 let create name oct = name + (12 * (oct + 1)) let freq n = 440. *. (2. ** ((float n -. 69.) /. 12.)) let of_freq f = int_of_float (0.5 +. ((12. *. log (f /. 440.) /. log 2.) +. 69.)) let name n = n mod 12 let octave n = (n / 12) - 1 let modulo n = (name n, octave n) let to_string n = let n, o = modulo n in ( match n with | 0 -> "A" | 1 -> "A#" | 2 -> "B" | 3 -> "C" | 4 -> "C#" | 5 -> "D" | 6 -> "D#" | 7 -> "E" | 8 -> "F" | 9 -> "F#" | 10 -> "G" | 11 -> "G#" | _ -> assert false ) ^ " " ^ string_of_int o (* TODO: sharps and flats *) let of_string s = assert (String.length s >= 2); let note = String.sub s 0 (String.length s - 1) in let oct = int_of_char s.[String.length s - 1] - int_of_char '0' in let off = match note with | "a" | "A" -> 0 | "b" | "B" -> 2 | "c" | "C" -> 3 | "d" | "D" -> 5 | "e" | "E" -> 7 | "f" | "F" -> 8 | "g" | "G" -> 10 | _ -> raise Not_found in 64 + (12 * (oct - 4)) + off end module Sample = struct type t = float let clip x = let x = max (-1.) x in let x = min 1. x in x end module Mono = struct type t = (float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Array1.t type buffer = t let create n : t = Bigarray.Array1.create Bigarray.float32 Bigarray.c_layout n let length (buf : t) = Bigarray.Array1.dim buf let buffer_length = length let clear (b : t) = Bigarray.Array1.fill b 0. let make n x = let buf = create n in Bigarray.Array1.fill buf x; buf let unsafe_get (buf : t) = Bigarray.Array1.unsafe_get buf let unsafe_set (buf : t) = Bigarray.Array1.unsafe_set buf let of_array a = let len = Array.length a in let buf = create len in for i = 0 to len - 1 do unsafe_set buf i a.(i) done; buf let to_array buf = Array.init (length buf) (fun i -> unsafe_get buf i) let sub buf off len = Bigarray.Array1.sub buf off len let blit src dst = Bigarray.Array1.blit src dst let copy buf = let len = length buf in let ans = create len in blit buf ans; ans let append b1 b2 = let l1 = length b1 in let l2 = length b2 in let ans = create (l1 + l2) in blit b1 (sub ans 0 l1); blit b2 (sub ans l1 l2); ans (* TODO: implement the following functions on the C side *) let add b1 b2 = let len = length b1 in assert (length b2 = len); for i = 0 to len - 1 do unsafe_set b1 i (unsafe_get b1 i +. unsafe_get b2 i) done let add_coeff b1 k b2 = let len = length b1 in assert (length b2 = len); for i = 0 to len - 1 do b1.{i} <- b1.{i} +. (k *. b2.{i}) done let add_coeff b1 k b2 = if k = 0. then () else if k = 1. then add b1 b2 else add_coeff b1 k b2 let mult b1 b2 = let len = length b1 in assert (length b2 = len); for i = 0 to len - 1 do b1.{i} <- b1.{i} *. b2.{i} done let amplify k b = for i = 0 to length b - 1 do unsafe_set b i (k *. unsafe_get b i) done let clip buf = for i = 0 to length buf - 1 do buf.{i} <- Sample.clip buf.{i} done let noise buf = for i = 0 to length buf - 1 do buf.{i} <- Random.float 2. -. 1. done let resample ?(mode = `Linear) ratio inbuf = let len = length inbuf in if ratio = 1. then ( let outbuf = create len in Bigarray.Array1.blit inbuf outbuf; outbuf ) else if mode = `Nearest then ( let outlen = int_of_float ((float len *. ratio) +. 0.5) in let outbuf = create outlen in for i = 0 to outlen - 1 do let pos = min (int_of_float ((float i /. ratio) +. 0.5)) (len - 1) in Bigarray.Array1.unsafe_set outbuf i (Bigarray.Array1.unsafe_get inbuf pos) done; outbuf ) else ( let outlen = int_of_float (float len *. ratio) in let outbuf = create outlen in for i = 0 to outlen - 1 do let ir = float i /. ratio in let pos = min (int_of_float ir) (len - 1) in if pos = len - 1 then Bigarray.Array1.unsafe_set outbuf i (Bigarray.Array1.unsafe_get inbuf pos) else ( let a = ir -. float pos in outbuf.{i} <- (inbuf.{pos} *. (1. -. a)) +. (inbuf.{pos + 1} *. a) ) done; outbuf ) module B = struct type t = buffer let create = create let blit src soff dst doff len = blit (sub src soff len) (sub dst doff len) end module Ringbuffer_ext = Ringbuffer.Make_ext (B) module Ringbuffer = Ringbuffer.Make (B) (* TODO: refined allocation/deallocation policies *) module Buffer_ext = struct type t = { mutable buffer : buffer } let prepare buf len = if length buf.buffer >= len then sub buf.buffer 0 len else ( (* TODO: optionally blit the old buffer onto the new one. *) (* let oldbuf = buf.buffer in *) let newbuf = create len in buf.buffer <- newbuf; newbuf ) let create len = { buffer = create len } let length buf = length buf.buffer end module Analyze = struct let rms buf = let len = length buf in let r = ref 0. in for i = 0 to len - 1 do let x = buf.{i} in r := !r +. (x *. x) done; sqrt (!r /. float len) module FFT = struct type t = { b : int; (* number of bits *) n : int; (* number of samples *) circle : Complex.t array; temp : Complex.t array; } let init b = let n = 1 lsl b in let h = n / 2 in let fh = float h in let circle = Array.make h Complex.zero in for i = 0 to h - 1 do let theta = pi *. float_of_int i /. fh in circle.(i) <- { Complex.re = cos theta; Complex.im = sin theta } done; { b; n; circle; temp = Array.make n Complex.zero } let length f = f.n let complex_create buf = Array.init (buffer_length buf) (fun i -> { Complex.re = buf.{i}; Complex.im = 0. }) let ccoef k c = { Complex.re = k *. c.Complex.re; Complex.im = k *. c.Complex.im } let fft f d = (* TODO: greater should be ok too? *) assert (Array.length d = f.n); let ( +~ ) = Complex.add in let ( -~ ) = Complex.sub in let ( *~ ) = Complex.mul in let rec fft t (* temporary buffer *) d (* data *) s (* stride in the data array *) n (* number of samples *) = if n > 1 then ( let h = n / 2 in for i = 0 to h - 1 do t.(s + i) <- d.(s + (2 * i)); (* even *) t.(s + h + i) <- d.(s + (2 * i) + 1) (* odd *) done; fft d t s h; fft d t (s + h) h; let a = f.n / n in for i = 0 to h - 1 do let wkt = f.circle.(i * a) *~ t.(s + h + i) in d.(s + i) <- t.(s + i) +~ wkt; d.(s + h + i) <- t.(s + i) -~ wkt done ) in fft f.temp d 0 f.n (* See http://en.wikipedia.org/wiki/Window_function *) module Window = struct let iter f d = let len = Array.length d in let n = float len in for i = 0 to len - 1 do let k = f (float i) n in d.(i) <- ccoef k d.(i) done let hann d = iter (fun i n -> 0.5 *. (1. -. cos (2. *. pi *. i /. n))) d let hamming d = iter (fun i n -> 0.54 *. (0.46 *. cos (2. *. pi *. i /. n))) d let cosine d = iter (fun i n -> sin (pi *. i /. n)) d let lanczos d = let sinc x = let px = pi *. x in sin px /. px in iter (fun i n -> sinc (2. *. i /. n)) d let triangular d = iter (fun i n -> if i <= n /. 2. then 2. *. i /. n else ((n /. 2.) -. i) *. 2. /. n) d let bartlett_hann d = let a0 = 0.62 in let a1 = 0.48 in let a2 = 0.38 in iter (fun i n -> a0 -. (a1 *. abs_float ((i /. n) -. 0.5)) -. (a2 *. cos (2. *. pi *. i /. n))) d let blackman ?(alpha = 0.16) d = let a = alpha in let a0 = (1. -. a) /. 2. in let a1 = 1. /. 2. in let a2 = a /. 2. in iter (fun i n -> a0 -. (a1 *. cos (2. *. pi *. i /. n)) +. (a2 *. cos (4. *. pi *. i /. n))) d (* TODO: use circle to compute cosines *) let low_res a0 a1 a2 a3 d = iter (fun i n -> a0 -. (a1 *. cos (2. *. pi *. i /. n)) +. (a2 *. cos (4. *. pi *. i /. n)) -. (a3 *. cos (6. *. pi *. i /. n))) d let nuttall d = low_res 0.355768 0.487396 0.144232 0.012604 d let blackman_harris d = low_res 0.35875 0.48829 0.14128 0.01168 d let blackman_nuttall d = low_res 0.3635819 0.4891775 0.1365995 0.0106411 d end let band_freq sr f k = float k *. float sr /. float f.n let notes sr f ?(note_min = Note.c0) ?(note_max = 128) ?(volume_min = 0.01) ?(filter_harmonics = true) buf = let len = buffer_length buf in assert (len = length f); let bdur = float len /. float sr in let fdf = float (length f) in let c = complex_create buf in fft f c; let ans = ref [] in let kstart = max 0 (int_of_float (Note.freq note_min *. bdur)) in let kend = min (len / 2) (int_of_float (Note.freq note_max *. bdur)) in for k = kstart + 1 to kend - 2 do (* Quadratic interpolation. *) let v' = Complex.norm c.(k - 1) in let v = Complex.norm c.(k) in let v'' = Complex.norm c.(k - 1) in (* Do we have a maximum here? *) if v' +. v'' < 2. *. v then ( let p = (v'' -. v') /. ((2. *. v') -. (2. *. v) +. v'') in let v = v -. ((v' -. v'') *. p /. 4.) in let v = v /. fdf in let p = p +. float k in if v >= volume_min then ans := (p, v) :: !ans ) done; let ans = List.map (fun (k, v) -> (Note.of_freq (k /. bdur), v)) !ans in (* TODO: improve this filtering... *) let ans = if filter_harmonics then list_filter_ctxt (fun b (n, _) t -> let o = Note.octave n in let n = Note.name n in List.for_all (fun (n', _) -> Note.name n' <> n || Note.octave n' >= o) (b @ t)) ans else ans in ans let loudest_note l = match l with | [] -> None | h :: t -> Some (List.fold_left (fun (nmax, vmax) (n, v) -> if v > vmax then (n, v) else (nmax, vmax)) h t) end end module Effect = struct let compand_mu_law mu buf = for i = 0 to length buf - 1 do let bufi = buf.{i} in let sign = if bufi < 0. then -1. else 1. in buf.{i} <- sign *. log (1. +. (mu *. abs_float bufi)) /. log (1. +. mu) done class type t = object method process : buffer -> unit end class amplify k : t = object method process = amplify k end class clip c : t = object method process buf = for i = 0 to length buf - 1 do unsafe_set buf i (max (-.c) (min c (unsafe_get buf i))) done end (* Digital filter based on "Cookbook formulae for audio EQ biquad filter coefficients" by Robert Bristow-Johnson <rbj@audioimagination.com>. URL: http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt *) class biquad_filter samplerate (kind : [ `Low_pass | `High_pass | `Band_pass | `Notch | `All_pass | `Peaking | `Low_shelf | `High_shelf ]) ?(gain = 0.) freq q = let samplerate = float samplerate in object (self) val mutable p0 = 0. val mutable p1 = 0. val mutable p2 = 0. val mutable q1 = 0. val mutable q2 = 0. method private init = let w0 = 2. *. pi *. freq /. samplerate in let cos_w0 = cos w0 in let sin_w0 = sin w0 in let alpha = sin w0 /. (2. *. q) in let a = if gain = 0. then 1. else 10. ** (gain /. 40.) in let b0, b1, b2, a0, a1, a2 = match kind with | `Low_pass -> let b1 = 1. -. cos_w0 in let b0 = b1 /. 2. in (b0, b1, b0, 1. +. alpha, -2. *. cos_w0, 1. -. alpha) | `High_pass -> let b1 = 1. +. cos_w0 in let b0 = b1 /. 2. in let b1 = -.b1 in (b0, b1, b0, 1. +. alpha, -2. *. cos_w0, 1. -. alpha) | `Band_pass -> let b0 = sin_w0 /. 2. in (b0, 0., -.b0, 1. +. alpha, -2. *. cos_w0, 1. -. alpha) | `Notch -> let b1 = -2. *. cos_w0 in (1., b1, 1., 1. +. alpha, b1, 1. -. alpha) | `All_pass -> let b0 = 1. -. alpha in let b1 = -2. *. cos_w0 in let b2 = 1. +. alpha in (b0, b1, b2, b2, b1, b0) | `Peaking -> let ama = alpha *. a in let ada = alpha /. a in let b1 = -2. *. cos_w0 in (1. +. ama, b1, 1. -. ama, 1. +. ada, b1, 1. -. ada) | `Low_shelf -> let s = 2. *. sqrt a *. alpha in ( a *. (a +. 1. -. ((a -. 1.) *. cos_w0) +. s), 2. *. a *. (a -. 1. -. ((a +. 1.) *. cos_w0)), a *. (a +. 1. -. ((a -. 1.) *. cos_w0) -. s), a +. 1. +. ((a -. 1.) *. cos_w0) +. s, (-2. *. (a -. 1.)) +. ((a +. 1.) *. cos_w0), a +. 1. +. ((a -. 1.) *. cos_w0) -. s ) | `High_shelf -> let s = 2. *. sqrt a *. alpha in ( a *. (a +. 1. +. ((a -. 1.) *. cos_w0) +. s), -2. *. a *. (a -. 1. +. ((a +. 1.) *. cos_w0)), a *. (a +. 1. +. ((a -. 1.) *. cos_w0) -. s), a +. 1. -. ((a -. 1.) *. cos_w0) +. s, (2. *. (a -. 1.)) -. ((a +. 1.) *. cos_w0), a +. 1. -. ((a -. 1.) *. cos_w0) -. s ) in p0 <- b0 /. a0; p1 <- b1 /. a0; p2 <- b2 /. a0; q1 <- a1 /. a0; q2 <- a2 /. a0 initializer self#init val mutable x1 = 0. val mutable x2 = 0. val mutable y0 = 0. val mutable y1 = 0. val mutable y2 = 0. method process (buf : buffer) = for i = 0 to length buf - 1 do let x0 = buf.{i} in let y0 = (p0 *. x0) +. (p1 *. x1) +. (p2 *. x2) -. (q1 *. y1) -. (q2 *. y2) in buf.{i} <- y0; x2 <- x1; x1 <- x0; y2 <- y1; y1 <- y0 done end module ADSR = struct type t = int * int * float * int (** Convert adsr in seconds to samples. *) let make sr (a, d, s, r) = ( samples_of_seconds sr a, samples_of_seconds sr d, s, samples_of_seconds sr r ) (** State in the ADSR enveloppe (A/D/S/R/dead + position in the state). *) type state = int * int let init () = (0, 0) let release (_, p) = (3, p) let dead (s, _) = s = 4 let rec process adsr st (buf : buffer) = let a, (d : int), s, (r : int) = adsr in let state, state_pos = st in let len = length buf in match state with | 0 -> let fa = float a in for i = 0 to min len (a - state_pos) - 1 do buf.{i} <- float (state_pos + i) /. fa *. buf.{i} done; if len < a - state_pos then (0, state_pos + len) else process adsr (1, 0) (sub buf (a - state_pos) (len - (a - state_pos))) | 1 -> let fd = float d in for i = 0 to min len (d - state_pos) - 1 do buf.{i} <- (1. -. (float (state_pos + i) /. fd *. (1. -. s))) *. buf.{i} done; if len < d - state_pos then (1, state_pos + len) else if (* Negative sustain means release immediately. *) s >= 0. then process adsr (2, 0) (sub buf (d - state_pos) (len - (d - state_pos))) else process adsr (3, 0) (sub buf (d - state_pos) (len - (d - state_pos))) | 2 -> amplify s buf; st | 3 -> let fr = float r in for i = 0 to min len (r - state_pos) - 1 do buf.{i} <- s *. (1. -. (float (state_pos + i) /. fr)) *. buf.{i} done; if len < r - state_pos then (3, state_pos + len) else process adsr (4, 0) (sub buf (r - state_pos) (len - (r - state_pos))) | 4 -> clear buf; st | _ -> assert false end end module Generator = struct let white_noise buf = noise buf class type t = object method set_volume : float -> unit method set_frequency : float -> unit method fill : buffer -> unit method fill_add : buffer -> unit method release : unit method dead : bool end class virtual base sample_rate ?(volume = 1.) freq = object (self) val mutable vol = volume val mutable freq : float = freq val mutable dead = false method dead = dead method release = vol <- 0.; dead <- true method private sample_rate : int = sample_rate method private volume : float = vol method set_volume v = vol <- v method set_frequency f = freq <- f method virtual fill : buffer -> unit (* TODO: might be optimized by various synths *) method fill_add (buf : buffer) = let tmp = create (length buf) in self#fill tmp; add buf tmp end class white_noise ?volume sr = object (self) inherit base sr ?volume 0. method fill buf = let volume = self#volume in for i = 0 to length buf - 1 do buf.{i} <- volume *. (Random.float 2. -. 1.) done end class sine sr ?volume ?(phase = 0.) freq = object (self) inherit base sr ?volume freq val mutable phase = phase method fill buf = let len = length buf in let sr = float self#sample_rate in let omega = 2. *. pi *. freq /. sr in let volume = self#volume in for i = 0 to len - 1 do buf.{i} <- volume *. sin ((float i *. omega) +. phase) done; phase <- mod_float (phase +. (float len *. omega)) (2. *. pi) end class square sr ?volume ?(phase = 0.) freq = object (self) inherit base sr ?volume freq val mutable phase = phase method fill buf = let len = length buf in let sr = float self#sample_rate in let volume = self#volume in let omega = freq /. sr in for i = 0 to len - 1 do let t = fracf ((float i *. omega) +. phase) in buf.{i} <- (if t < 0.5 then volume else -.volume) done; phase <- mod_float (phase +. (float len *. omega)) 1. end class saw sr ?volume ?(phase = 0.) freq = object (self) inherit base sr ?volume freq val mutable phase = phase method fill buf = let len = length buf in let volume = self#volume in let sr = float self#sample_rate in let omega = freq /. sr in for i = 0 to len - 1 do let t = fracf ((float i *. omega) +. phase) in buf.{i} <- volume *. ((2. *. t) -. 1.) done; phase <- mod_float (phase +. (float len *. omega)) 1. end class triangle sr ?volume ?(phase = 0.) freq = object (self) inherit base sr ?volume freq val mutable phase = phase method fill buf = let len = length buf in let sr = float self#sample_rate in let volume = self#volume in let omega = freq /. sr in for i = 0 to len - 1 do let t = fracf ((float i *. omega) +. phase +. 0.25) in buf.{i} <- ( volume *. if t < 0.5 then (4. *. t) -. 1. else (4. *. (1. -. t)) -. 1. ) done; phase <- mod_float (phase +. (float len *. omega)) 1. end class chain (g : t) (e : Effect.t) : t = object method fill buf = g#fill buf; e#process buf val tmpbuf = Buffer_ext.create 0 method fill_add (buf : buffer) = let tmpbuf = Buffer_ext.prepare tmpbuf (length buf) in g#fill tmpbuf; add buf tmpbuf method set_volume = g#set_volume method set_frequency = g#set_frequency method release = g#release method dead = g#dead end class combine f (g1 : t) (g2 : t) : t = object val tmpbuf = Buffer_ext.create 0 val tmpbuf2 = Buffer_ext.create 0 method fill buf = g1#fill buf; let tmpbuf = Buffer_ext.prepare tmpbuf (length buf) in g2#fill tmpbuf; f buf tmpbuf method fill_add buf = let len = length buf in let tmpbuf = Buffer_ext.prepare tmpbuf len in g1#fill tmpbuf; let tmpbuf2 = Buffer_ext.prepare tmpbuf2 len in g2#fill tmpbuf2; f tmpbuf tmpbuf2; add buf tmpbuf method set_volume v = g1#set_volume v; g2#set_volume v method set_frequency v = g1#set_frequency v; g2#set_frequency v method release = g1#release; g2#release method dead = g1#dead && g2#dead end class add g1 g2 = object inherit combine add g1 g2 end class mult g1 g2 = object inherit combine mult g1 g2 end class adsr (adsr : Effect.ADSR.t) (g : t) = object (self) val mutable adsr_st = Effect.ADSR.init () val tmpbuf = Buffer_ext.create 0 method set_volume = g#set_volume method set_frequency = g#set_frequency method fill buf = g#fill buf; adsr_st <- Effect.ADSR.process adsr adsr_st buf method fill_add buf = let len = length buf in let tmpbuf = Buffer_ext.prepare tmpbuf len in self#fill tmpbuf; blit tmpbuf buf method release = adsr_st <- Effect.ADSR.release adsr_st; g#release method dead = Effect.ADSR.dead adsr_st || g#dead end end end (** An audio buffer. *) type t = Mono.buffer array type buffer = t (** Iterate a function on each channel of the buffer. *) let iter f b = Array.iter f b let iter2 f b1 b2 = for c = 0 to Array.length b1 - 1 do f b1.(c) b2.(c) done let map f b = Array.map f b let create chans n = Array.init chans (fun _ -> Mono.create n) let make chans n x = Array.init chans (fun _ -> Mono.make n x) let of_array a = Array.map Mono.of_array a let to_array a = Array.map Mono.to_array a let channels buf = Array.length buf let length buf = Mono.length buf.(0) let buffer_length = length let same_length buf = let len = length buf in let ans = ref true in for c = 0 to channels buf - 1 do if Mono.length buf.(c) <> len then ans := false done; !ans let create_same buf = create (channels buf) (length buf) (* TODO: in C *) let interleave buf = assert (same_length buf); let chans = channels buf in let len = length buf in let ibuf = Bigarray.Array1.create Bigarray.float32 Bigarray.c_layout (chans * len) in for c = 0 to chans - 1 do let bufc = buf.(c) in for i = 0 to len - 1 do Bigarray.Array1.unsafe_set ibuf ((chans * i) + c) (Mono.unsafe_get bufc i) done done; ibuf (* TODO: in C *) let deinterleave chans ibuf = let len = Bigarray.Array1.dim ibuf / chans in let buf = Array.init chans (fun _ -> Mono.create len) in for c = 0 to chans - 1 do let bufc = buf.(c) in for i = 0 to len - 1 do Bigarray.Array1.unsafe_set bufc i (Bigarray.Array1.unsafe_get ibuf ((chans * i) + c)) done done; buf let append b1 b2 = Array.mapi (fun i b1 -> Mono.append b1 b2.(i)) b1 let clear = iter Mono.clear let clip = iter Mono.clip let noise = iter Mono.noise let copy b = Array.init (Array.length b) (fun i -> Mono.copy b.(i)) let blit b1 b2 = iter2 (fun b1 b2 -> Mono.blit b1 b2) b1 b2 let sub b ofs len = Array.map (fun buf -> Bigarray.Array1.sub buf ofs len) b let to_mono b = let channels = channels b in if channels = 1 then b.(0) else ( let len = length b in let chans = float channels in let ans = Mono.create len in Mono.clear ans; for i = 0 to len - 1 do for c = 0 to channels - 1 do ans.{i} <- ans.{i} +. b.(c).{i} done; ans.{i} <- ans.{i} /. chans done; ans ) let of_mono b = [| b |] let resample ?mode ratio buf = map (fun buf -> Mono.resample ?mode ratio buf) buf module U8 = struct let size channels samples = channels * samples external of_audio : buffer -> Bytes.t -> int -> unit = "caml_float_pcm_to_u8" external to_audio : string -> int -> buffer -> unit = "caml_float_pcm_of_u8" end module S16LE = struct let size channels samples = channels * samples * 2 let length channels len = len / (2 * channels) external of_audio : bool -> buffer -> Bytes.t -> int -> unit = "caml_float_pcm_to_s16" let of_audio = of_audio true let make buf = let len = buffer_length buf in let slen = size (channels buf) len in let sbuf = Bytes.create slen in of_audio buf sbuf 0; Bytes.unsafe_to_string sbuf external to_audio : bool -> string -> int -> buffer -> unit = "caml_float_pcm_convert_s16" let to_audio = to_audio true end module S16BE = struct let size channels samples = channels * samples * 2 let length channels len = len / (2 * channels) external of_audio : bool -> buffer -> Bytes.t -> int -> unit = "caml_float_pcm_to_s16" let of_audio = of_audio false let make buf = let len = buffer_length buf in let slen = size (channels buf) len in let sbuf = Bytes.create slen in of_audio buf sbuf 0; Bytes.unsafe_to_string sbuf external to_audio : bool -> string -> int -> buffer -> unit = "caml_float_pcm_convert_s16" let to_audio = to_audio false end module S24LE = struct let size channels samples = channels * samples * 3 external of_audio : buffer -> Bytes.t -> int -> unit = "caml_float_pcm_to_s24le" external to_audio : string -> int -> buffer -> unit = "caml_float_pcm_convert_s24le" end module S32LE = struct let size channels samples = channels * samples * 4 external of_audio : buffer -> Bytes.t -> int -> unit = "caml_float_pcm_to_s32le" external to_audio : string -> int -> buffer -> unit = "caml_float_pcm_convert_s32le" end let add b1 b2 = iter2 Mono.add b1 b2 let add_coeff b1 k b2 = iter2 (fun b1 b2 -> Mono.add_coeff b1 k b2) b1 b2 let amplify k buf = if k <> 1. then iter (fun buf -> Mono.amplify k buf) buf (* x between -1 and 1 *) let pan x buf = if x > 0. then ( let x = 1. -. x in Mono.amplify x buf.(0) ) else if x < 0. then ( let x = 1. +. x in Mono.amplify x buf.(1) ) (* TODO: we cannot share this with mono, right? *) module Buffer_ext = struct type t = { mutable buffer : buffer } let chans = channels let prepare buf ?channels len = match channels with | Some channels when chans buf.buffer <> channels -> let newbuf = create channels len in buf.buffer <- newbuf; newbuf | _ -> if length buf.buffer >= len then sub buf.buffer 0 len else ( (* TODO: optionally blit the old buffer onto the new one. *) let oldbuf = buf.buffer in let newbuf = create (chans oldbuf) len in buf.buffer <- newbuf; newbuf ) let length buf = length buf.buffer let create chans len = { buffer = create chans len } end (* TODO: share code with ringbuffer module! *) module Ringbuffer = struct type t = { size : int; buffer : buffer; mutable rpos : int; (** current read position *) mutable wpos : int; (** current write position *) } let create chans size = { (* size + 1 so we can store full buffers, while keeping rpos and wpos different for implementation matters *) size = size + 1; buffer = create chans (size + 1); rpos = 0; wpos = 0; } let channels t = channels t.buffer let read_space t = if t.wpos >= t.rpos then t.wpos - t.rpos else t.size - (t.rpos - t.wpos) let write_space t = if t.wpos >= t.rpos then t.size - (t.wpos - t.rpos) - 1 else t.rpos - t.wpos - 1 let read_advance t n = assert (n <= read_space t); if t.rpos + n < t.size then t.rpos <- t.rpos + n else t.rpos <- t.rpos + n - t.size let write_advance t n = assert (n <= write_space t); if t.wpos + n < t.size then t.wpos <- t.wpos + n else t.wpos <- t.wpos + n - t.size let peek t buf = let len = length buf in assert (len <= read_space t); let pre = t.size - t.rpos in let extra = len - pre in if extra > 0 then ( blit (sub t.buffer t.rpos pre) (sub buf 0 pre); blit (sub t.buffer 0 extra) (sub buf pre extra) ) else blit (sub t.buffer t.rpos len) buf let read t buf = peek t buf; read_advance t (length buf) let write t buf = let len = length buf in assert (len <= write_space t); let pre = t.size - t.wpos in let extra = len - pre in if extra > 0 then ( blit (sub buf 0 pre) (sub t.buffer t.wpos pre); blit (sub buf pre extra) (sub t.buffer 0 extra) ) else blit buf (sub t.buffer t.wpos len); write_advance t len let transmit t f = if t.wpos = t.rpos then 0 else ( let len0 = if t.wpos >= t.rpos then t.wpos - t.rpos else t.size - t.rpos in let len = f (sub t.buffer t.rpos len0) in assert (len <= len0); read_advance t len; len ) end module Ringbuffer_ext = struct type t = { mutable ringbuffer : Ringbuffer.t } let prepare buf len = if Ringbuffer.write_space buf.ringbuffer >= len then buf.ringbuffer else ( let rb = Ringbuffer.create (Ringbuffer.channels buf.ringbuffer) (Ringbuffer.read_space buf.ringbuffer + len) in while Ringbuffer.read_space buf.ringbuffer <> 0 do ignore (Ringbuffer.transmit buf.ringbuffer (fun buf -> Ringbuffer.write rb buf; length buf)) done; buf.ringbuffer <- rb; rb ) let channels rb = Ringbuffer.channels rb.ringbuffer let peek rb = Ringbuffer.peek rb.ringbuffer let read rb = Ringbuffer.read rb.ringbuffer let write rb buf = let rb = prepare rb (length buf) in Ringbuffer.write rb buf let transmit rb = Ringbuffer.transmit rb.ringbuffer let read_space rb = Ringbuffer.read_space rb.ringbuffer let write_space rb = Ringbuffer.write_space rb.ringbuffer let read_advance rb = Ringbuffer.read_advance rb.ringbuffer let write_advance rb = Ringbuffer.write_advance rb.ringbuffer let create chans len = { ringbuffer = Ringbuffer.create chans len } end module Analyze = struct let rms buf = Array.init (channels buf) (fun i -> Mono.Analyze.rms buf.(i)) end module Effect = struct class type t = object method process : buffer -> unit end class chain (e1 : t) (e2 : t) = object method process buf = e1#process buf; e2#process buf end class of_mono chans (g : unit -> Mono.Effect.t) = object val g = Array.init chans (fun _ -> g ()) method process buf = for c = 0 to chans - 1 do g.(c)#process buf.(c) done end class biquad_filter chans samplerate kind ?gain freq q = of_mono chans (fun () -> ( new Mono.Effect.biquad_filter samplerate kind ?gain freq q :> Mono.Effect.t )) class type delay_t = object inherit t method set_delay : float -> unit method set_feedback : float -> unit end class delay_only chans sample_rate delay = let delay = int_of_float (float sample_rate *. delay) in object val mutable delay = delay method set_delay d = delay <- int_of_float (float sample_rate *. d) val rb = Ringbuffer_ext.create chans 0 initializer Ringbuffer_ext.write rb (create chans delay) method process buf = Ringbuffer_ext.write rb buf; Ringbuffer_ext.read rb buf end class delay chans sample_rate delay once feedback = let delay = int_of_float (float sample_rate *. delay) in object val mutable delay = delay method set_delay d = delay <- int_of_float (float sample_rate *. d) val mutable feedback = feedback method set_feedback f = feedback <- f val rb = Ringbuffer_ext.create chans 0 val tmpbuf = Buffer_ext.create chans 0 method process buf = if once then Ringbuffer_ext.write rb buf; (* Make sure that we have a past of exactly d samples. *) if Ringbuffer_ext.read_space rb < delay then Ringbuffer_ext.write rb (create chans delay); if Ringbuffer_ext.read_space rb > delay then Ringbuffer_ext.read_advance rb (Ringbuffer_ext.read_space rb - delay); let len = length buf in if len > delay then add_coeff (sub buf delay (len - delay)) feedback (sub buf 0 (len - delay)); let rlen = min delay len in let tmpbuf = Buffer_ext.prepare tmpbuf rlen in Ringbuffer_ext.read rb (sub tmpbuf 0 rlen); add_coeff (sub buf 0 rlen) feedback (sub tmpbuf 0 rlen); if not once then Ringbuffer_ext.write rb buf end class delay_ping_pong chans sample_rate delay once feedback = let r1 = new delay_only 1 sample_rate delay in let d1 = new delay 1 sample_rate (2. *. delay) once feedback in let d1' = new chain (r1 :> t) (d1 :> t) in let d2 = new delay 1 sample_rate (2. *. delay) once feedback in object initializer assert (chans = 2) method set_delay d = r1#set_delay d; d1#set_delay (2. *. d); d2#set_delay (2. *. d) method set_feedback f = d1#set_feedback f; d2#set_feedback f method process buf = assert (channels buf = 2); (* Add original on channel 0. *) d1'#process [| buf.(0) |]; d2#process [| buf.(1) |] end let delay chans sample_rate d ?(once = false) ?(ping_pong = false) feedback = if ping_pong then new delay_ping_pong chans sample_rate d once feedback else new delay chans sample_rate d once feedback (* See http://www.musicdsp.org/archive.php?classid=4#169 *) (* times in sec, ratios in dB, gain linear *) class compress ?(attack = 0.1) ?(release = 0.1) ?(threshold = -10.) ?(ratio = 3.) ?(knee = 1.) ?(rms_window = 0.1) ?(gain = 1.) chans samplerate = (* Number of samples for computing rms. *) let rmsn = samples_of_seconds samplerate rms_window in let samplerate = float samplerate in object val mutable attack = attack method set_attack a = attack <- a val mutable release = release method set_release r = release <- r val mutable threshold = threshold method set_threshold t = threshold <- t val mutable ratio = ratio method set_ratio r = ratio <- r val mutable knee = knee method set_knee k = knee <- k val mutable gain = gain method set_gain g = gain <- g (* [rmsn] last squares. *) val rmsv = Array.make rmsn 0. (* Current position in [rmsv]. *) val mutable rmsp = 0 (* Current squares of RMS. *) val mutable rms = 0. (* Processing variables. *) val mutable amp = 0. (* Envelope. *) val mutable env = 0. (* Current gain. *) val mutable g = 1. method process (buf : buffer) = let ratio = (ratio -. 1.) /. ratio in (* Attack and release "per sample decay". *) let g_attack = if attack = 0. then 0. else exp (-1. /. (samplerate *. attack)) in let ef_a = g_attack *. 0.25 in let g_release = if release = 0. then 0. else exp (-1. /. (samplerate *. release)) in let ef_ai = 1. -. ef_a in (* Knees. *) let knee_min = lin_of_dB (threshold -. knee) in let knee_max = lin_of_dB (threshold +. knee) in for i = 0 to length buf - 1 do (* Input level. *) let lev_in = let ans = ref 0. in for c = 0 to chans - 1 do let x = buf.(c).{i} *. gain in ans := !ans +. (x *. x) done; !ans /. float chans in (* RMS *) rms <- rms -. rmsv.(rmsp) +. lev_in; rms <- abs_float rms; (* Sometimes the rms was -0., avoid that. *) rmsv.(rmsp) <- lev_in; rmsp <- (rmsp + 1) mod rmsn; amp <- sqrt (rms /. float rmsn); (* Dynamic selection: attack or release? *) (* Smoothing with capacitor, envelope extraction... Here be aware of * pIV denormal numbers glitch. *) if amp > env then env <- (env *. g_attack) +. (amp *. (1. -. g_attack)) else env <- (env *. g_release) +. (amp *. (1. -. g_release)); (* Compute the gain. *) let gain_t = if env < knee_min then (* Do not compress. *) 1. else if env < knee_max then ( (* Knee: compress smoothly. *) let x = (knee +. dB_of_lin env -. threshold) /. (2. *. knee) in lin_of_dB (0. -. (knee *. ratio *. x *. x)) ) else (* Maximal (n:1) compression. *) lin_of_dB ((threshold -. dB_of_lin env) *. ratio) in g <- (g *. ef_a) +. (gain_t *. ef_ai); (* Apply the gain. *) let g = g *. gain in for c = 0 to chans - 1 do buf.(c).{i} <- buf.(c).{i} *. g done (* (* Debug messages. *) count <- count + 1; if count mod 10000 = 0 then self#log#f 4 "RMS:%7.02f Env:%7.02f Gain: %4.02f\r%!" (Audio.dB_of_lin amp) (Audio.dB_of_lin env) gain *) done method reset = rms <- 0.; rmsp <- 0; for i = 0 to rmsn - 1 do rmsv.(i) <- 0. done; g <- 1.; env <- 0.; amp <- 0. end class auto_gain_control channels samplerate rmst (* target RMS *) rms_len (* duration of the RMS collection in seconds *) kup (* speed when volume is going up in coeff per sec *) kdown (* speed when volume is going down *) rms_threshold (* RMS threshold under which the volume should not be changed *) vol_init (* initial volume *) vol_min (* minimal gain *) vol_max (* maximal gain *) = let rms_len = samples_of_seconds samplerate rms_len in let rms_lenf = float rms_len in (* TODO: is this the right conversion? *) let kup = kup ** seconds_of_samples samplerate rms_len in let kdown = kdown ** seconds_of_samples samplerate rms_len in object (** Square of the currently computed rms. *) val mutable rms = Array.make channels 0. (** Number of samples collected so far. *) val mutable rms_collected = 0 (** Current volume. *) val mutable vol = vol_init (** Previous value of volume. *) val mutable vol_old = vol_init (** Is it enabled? (disabled if below the threshold) *) val mutable enabled = true method process (buf : buffer) = for c = 0 to channels - 1 do let bufc = buf.(c) in for i = 0 to length buf - 1 do let bufci = bufc.{i} in if rms_collected >= rms_len then ( let rms_cur = let ans = ref 0. in for c = 0 to channels - 1 do ans := !ans +. rms.(c) done; sqrt (!ans /. float channels) in rms <- Array.make channels 0.; rms_collected <- 0; enabled <- rms_cur >= rms_threshold; if enabled then ( let vol_opt = rmst /. rms_cur in vol_old <- vol; if rms_cur < rmst then vol <- vol +. (kup *. (vol_opt -. vol)) else vol <- vol +. (kdown *. (vol_opt -. vol)); vol <- max vol_min vol; vol <- min vol_max vol ) ); rms.(c) <- rms.(c) +. (bufci *. bufci); rms_collected <- rms_collected + 1; (* Affine transition between vol_old and vol. *) bufc.{i} <- (vol_old +. (float rms_collected /. rms_lenf *. (vol -. vol_old))) *. bufci done done end (* TODO: check default parameters. *) let auto_gain_control channels samplerate ?(rms_target = 1.) ?(rms_window = 0.2) ?(kup = 0.6) ?(kdown = 0.8) ?(rms_threshold = 0.01) ?(volume_init = 1.) ?(volume_min = 0.1) ?(volume_max = 10.) () = new auto_gain_control channels samplerate rms_target rms_window kup kdown rms_threshold volume_init volume_min volume_max (* module ADSR = struct type t = Mono.Effect.ADSR.t type state = Mono.Effect.ADSR.state end *) end module Generator = struct let white_noise buf = for c = 0 to channels buf - 1 do Mono.Generator.white_noise buf.(c) done class type t = object method set_volume : float -> unit method set_frequency : float -> unit method release : unit method dead : bool method fill : buffer -> unit method fill_add : buffer -> unit end class of_mono (g : Mono.Generator.t) = object val tmpbuf = Mono.Buffer_ext.create 0 method set_volume = g#set_volume method set_frequency = g#set_frequency method fill buf = g#fill buf.(0); for c = 1 to channels buf - 1 do Mono.blit buf.(0) buf.(c) done method fill_add (buf : buffer) = let len = length buf in let tmpbuf = Mono.Buffer_ext.prepare tmpbuf len in g#fill tmpbuf; for c = 0 to channels buf - 1 do Mono.add buf.(c) tmpbuf done method release = g#release method dead = g#dead end class chain (g : t) (e : Effect.t) : t = object method fill buf = g#fill buf; e#process buf val tmpbuf = Buffer_ext.create 0 0 method fill_add buf = let tmpbuf = Buffer_ext.prepare tmpbuf ~channels:(channels buf) (length buf) in g#fill tmpbuf; add buf tmpbuf method set_volume = g#set_volume method set_frequency = g#set_frequency method release = g#release method dead = g#dead end end module IO = struct exception Invalid_file exception Invalid_operation exception End_of_stream module Reader = struct class type t = object method channels : int method sample_rate : int method length : int method duration : float method seek : int -> unit method close : unit method read : buffer -> int end class virtual base = object (self) method virtual channels : int method virtual sample_rate : int method virtual length : int method duration = float self#length /. float self#sample_rate (* method virtual seek : int -> unit method virtual close : unit method virtual read : buffer -> int -> int -> int *) end (* TODO: handle more formats... *) class virtual wav = object (self) inherit IO.helper method virtual private stream_close : unit method virtual private stream_seek : int -> unit method virtual private stream_cur_pos : int val mutable sample_rate = 0 val mutable channels = 0 (* Size of a sample in bits. *) val mutable sample_size = 0 val mutable bytes_per_sample = 0 (* Length in samples. *) val mutable length = 0 val mutable data_offset = 0 method sample_rate = sample_rate method channels = channels method length = length initializer if self#input 4 <> "RIFF" then (* failwith "Bad header: \"RIFF\" not found"; *) raise Invalid_file; (* Ignore the file size *) ignore (self#input 4); if self#input 8 <> "WAVEfmt " then (* failwith "Bad header: \"WAVEfmt \" not found"; *) raise Invalid_file; (* Now we always have the following uninteresting bytes: * 0x10 0x00 0x00 0x00 0x01 0x00 *) ignore (self#really_input 6); channels <- self#input_short; sample_rate <- self#input_int; (* byt_per_sec *) ignore self#input_int; (* byt_per_samp *) ignore self#input_short; sample_size <- self#input_short; let section = self#really_input 4 in if section <> "data" then ( if section = "INFO" then (* failwith "Valid wav file but unread"; *) raise Invalid_file; (* failwith "Bad header : string \"data\" not found" *) raise Invalid_file ); let len_dat = self#input_int in data_offset <- self#stream_cur_pos; bytes_per_sample <- sample_size / 8 * channels; length <- len_dat / bytes_per_sample method read (buf : buffer) = let len = buffer_length buf in let sbuflen = len * channels * 2 in let sbuf = self#input sbuflen in let sbuflen = String.length sbuf in let len = sbuflen / (channels * 2) in begin match sample_size with | 16 -> S16LE.to_audio sbuf 0 buf | 8 -> U8.to_audio sbuf 0 buf | _ -> assert false end; len method seek n = let n = data_offset + (n * bytes_per_sample) in self#stream_seek n method close = self#stream_close end class of_wav_file fname = object inherit IO.Unix.rw ~read:true fname inherit base inherit wav end end module Writer = struct class type t = object method write : buffer -> unit method close : unit end class virtual base chans sr = object method private channels : int = chans method private sample_rate : int = sr end class virtual wav = object (self) inherit IO.helper method virtual private stream_write : string -> int -> int -> int method virtual private stream_seek : int -> unit method virtual private stream_close : unit method virtual private channels : int method virtual private sample_rate : int initializer let bits_per_sample = 16 in (* RIFF *) self#output "RIFF"; self#output_int 0; self#output "WAVE"; (* Format *) self#output "fmt "; self#output_int 16; self#output_short 1; self#output_short self#channels; self#output_int self#sample_rate; self#output_int (self#sample_rate * self#channels * bits_per_sample / 8); self#output_short (self#channels * bits_per_sample / 8); self#output_short bits_per_sample; (* Data *) self#output "data"; (* size of the data, to be updated afterwards *) self#output_short 0xffff; self#output_short 0xffff val mutable datalen = 0 method write buf = let s = S16LE.make buf in self#output s; datalen <- datalen + String.length s method close = self#stream_seek 4; self#output_int (36 + datalen); self#stream_seek 40; self#output_int datalen; self#stream_close end class to_wav_file chans sr fname = object inherit base chans sr inherit IO.Unix.rw ~write:true fname inherit wav end end module RW = struct class type t = object method read : buffer -> unit method write : buffer -> unit method close : unit end class virtual bufferized channels ~min_duration ~fill_duration ~max_duration ~drop_duration = object method virtual io_read : buffer -> unit method virtual io_write : buffer -> unit initializer assert (fill_duration <= max_duration); assert (drop_duration <= max_duration) val rb = Ringbuffer.create channels max_duration method read buf = let len = length buf in let rs = Ringbuffer.read_space rb in if rs < min_duration + len then ( let ps = min_duration + len - rs in Ringbuffer.write rb (create channels ps) ); Ringbuffer.read rb buf method write buf = let len = length buf in let ws = Ringbuffer.write_space rb in if ws + len > max_duration then Ringbuffer.read_advance rb (ws - drop_duration); Ringbuffer.write rb buf end end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>