package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.ocaml_typing/value_rec_check.ml.html
Source file value_rec_check.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
(**************************************************************************) (* *) (* OCaml *) (* *) (* Jeremy Yallop, University of Cambridge *) (* Gabriel Scherer, Project Parsifal, INRIA Saclay *) (* Alban Reynaud, ENS Lyon *) (* *) (* Copyright 2017 Jeremy Yallop *) (* Copyright 2018 Alban Reynaud *) (* Copyright 2018 INRIA *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (** Static checking of recursive declarations, as described in A practical mode system for recursive definitions Alban Reynaud, Gabriel Scherer and Jeremy Yallop POPL 2021 Some recursive definitions are meaningful {[ let rec factorial = function 0 -> 1 | n -> n * factorial (n - 1) let rec infinite_list = 0 :: infinite_list ]} but some other are meaningless {[ let rec x = x let rec x = x+1 ]} Intuitively, a recursive definition makes sense when the body of the definition can be evaluated without fully knowing what the recursive name is yet. In the [factorial] example, the name [factorial] refers to a function, evaluating the function definition [function ...] can be done immediately and will not force a recursive call to [factorial] -- this will only happen later, when [factorial] is called with an argument. In the [infinite_list] example, we can evaluate [0 :: infinite_list] without knowing the full content of [infinite_list], but with just its address. This is a case of productive/guarded recursion. On the contrary, [let rec x = x] is unguarded recursion (the meaning is undetermined), and [let rec x = x+1] would need the value of [x] while evaluating its definition [x+1]. This file implements a static check to decide which definitions are known to be meaningful, and which may be meaningless. In the general case, we handle a set of mutually-recursive definitions {[ let rec x1 = e1 and x2 = e2 ... and xn = en ]} Our check (see function [is_valid_recursive_expression] is defined using two criteria: Usage of recursive variables: how does each of the [e1 .. en] use the recursive variables [x1 .. xn]? Static or dynamic size: for which of the [ei] can we compute the in-memory size of the value without evaluating [ei] (so that we can pre-allocate it, and thus know its final address before evaluation). The "static or dynamic size" is decided by the classify_* functions below. The "variable usage" question is decided by a static analysis looking very much like a type system. The idea is to assign "access modes" to variables, where an "access mode" [m] is defined as either m ::= Ignore (* the value is not used at all *) | Delay (* the value is not needed at definition time *) | Guard (* the value is stored under a data constructor *) | Return (* the value result is directly returned *) | Dereference (* full access and inspection of the value *) The access modes of an expression [e] are represented by a "context" [G], which is simply a mapping from variables (the variables used in [e]) to access modes. The core notion of the static check is a type-system-like judgment of the form [G |- e : m], which can be interpreted as meaning either of: - If we are allowed to use the variables of [e] at the modes in [G] (but not more), then it is safe to use [e] at the mode [m]. - If we want to use [e] at the mode [m], then its variables are used at the modes in [G]. In practice, for a given expression [e], our implementation takes the desired mode of use [m] as *input*, and returns a context [G] as *output*, which is (uniquely determined as) the most permissive choice of modes [G] for the variables of [e] such that [G |- e : m] holds. *) open Asttypes open Typedtree open Types (** {1 Static or dynamic size} *) type sd = Value_rec_types.recursive_binding_kind let is_ref : Types.value_description -> bool = function | { Types.val_kind = Types.Val_prim { Primitive.prim_name = "%makemutable"; prim_arity = 1 } } -> true | _ -> false (* See the note on abstracted arguments in the documentation for Typedtree.Texp_apply *) let is_abstracted_arg : arg_label * expression option -> bool = function | (_, None) -> true | (_, Some _) -> false let classify_expression : Typedtree.expression -> sd = (* We need to keep track of the size of expressions bound by local declarations, to be able to predict the size of variables. Compare: let rec r = let y = fun () -> r () in y and let rec r = let y = if Random.bool () then ignore else fun () -> r () in y In both cases the final address of `r` must be known before `y` is compiled, and this is only possible if `r` has a statically-known size. The first definition can be allowed (`y` has a statically-known size) but the second one is unsound (`y` has no statically-known size). *) let rec classify_expression env e : sd = match e.exp_desc with (* binding and variable cases *) | Texp_let (rec_flag, vb, e) -> let env = classify_value_bindings rec_flag env vb in classify_expression env e | Texp_letmodule (Some mid, _, _, mexp, e) -> (* Note on module presence: For absent modules (i.e. module aliases), the module being bound does not have a physical representation, but its size can still be derived from the alias itself, so we can reuse the same code as for modules that are present. *) let size = classify_module_expression env mexp in let env = Ident.add mid size env in classify_expression env e | Texp_ident (path, _, _) -> classify_path env path (* non-binding cases *) | Texp_open (_, e) | Texp_letmodule (None, _, _, _, e) | Texp_sequence (_, e) | Texp_letexception (_, e) -> classify_expression env e | Texp_construct (_, {cstr_tag = Cstr_unboxed}, [e]) -> classify_expression env e | Texp_construct _ -> Static | Texp_record { representation = Record_unboxed _; fields = [| _, Overridden (_,e) |] } -> classify_expression env e | Texp_record _ -> Static | Texp_variant _ | Texp_tuple _ | Texp_extension_constructor _ | Texp_constant _ -> Static | Texp_for _ | Texp_setfield _ | Texp_while _ | Texp_setinstvar _ -> (* Unit-returning expressions *) Static | Texp_unreachable -> Static | Texp_apply ({exp_desc = Texp_ident (_, _, vd)}, _) when is_ref vd -> Static | Texp_apply (_,args) when List.exists is_abstracted_arg args -> Static | Texp_apply _ -> Dynamic | Texp_array _ -> Static | Texp_pack mexp -> classify_module_expression env mexp | Texp_function _ -> Static | Texp_lazy e -> (* The code below was copied (in part) from translcore.ml *) begin match Typeopt.classify_lazy_argument e with | `Constant_or_function -> (* A constant expr (of type <> float if [Config.flat_float_array] is true) gets compiled as itself. *) classify_expression env e | `Float_that_cannot_be_shortcut | `Identifier `Forward_value -> (* Forward blocks *) Static | `Identifier `Other -> classify_expression env e | `Other -> (* other cases compile to a lazy block holding a function *) Static end | Texp_new _ | Texp_instvar _ | Texp_object _ | Texp_match _ | Texp_ifthenelse _ | Texp_send _ | Texp_field _ | Texp_assert _ | Texp_try _ | Texp_override _ | Texp_letop _ -> Dynamic | Texp_typed_hole -> Static and classify_value_bindings rec_flag env bindings = (* We use a non-recursive classification, classifying each binding with respect to the old environment (before all definitions), even if the bindings are recursive. Note: computing a fixpoint in some way would be more precise, as the following could be allowed: let rec topdef = let rec x = y and y = fun () -> topdef () in x *) ignore rec_flag; let old_env = env in let add_value_binding env vb = match vb.vb_pat.pat_desc with | Tpat_var (id, _loc, _uid) -> let size = classify_expression old_env vb.vb_expr in Ident.add id size env | _ -> (* Note: we don't try to compute any size for complex patterns *) env in List.fold_left add_value_binding env bindings and classify_path env : _ -> Value_rec_types.recursive_binding_kind = function | Path.Pident x -> begin try Ident.find_same x env with Not_found -> (* an identifier will be missing from the map if either: - it is a non-local identifier (bound outside the letrec-binding we are analyzing) - or it is bound by a complex (let p = e in ...) local binding - or it is bound within a module (let module M = ... in ...) that we are not traversing for size computation For non-local identifiers it might be reasonable (although not completely clear) to consider them Static (they have already been evaluated), but for the others we must under-approximate with Not_recursive. This could be fixed by a more complete implementation. *) Dynamic end | Path.Pdot _ | Path.Papply _ | Path.Pextra_ty _ -> (* local modules could have such paths to local definitions; classify_expression could be extend to compute module shapes more precisely *) Dynamic and classify_module_expression env mexp : sd = match mexp.mod_desc with | Tmod_typed_hole -> Dynamic | Tmod_ident (path, _) -> classify_path env path | Tmod_structure _ -> Static | Tmod_functor _ -> Static | Tmod_apply _ -> Dynamic | Tmod_apply_unit _ -> Dynamic | Tmod_constraint (mexp, _, _, coe) -> begin match coe with | Tcoerce_none -> classify_module_expression env mexp | Tcoerce_structure _ -> Static | Tcoerce_functor _ -> Static | Tcoerce_primitive _ -> Misc.fatal_error "letrec: primitive coercion on a module" | Tcoerce_alias _ -> Misc.fatal_error "letrec: alias coercion on a module" end | Tmod_unpack (e, _) -> classify_expression env e in classify_expression Ident.empty (** {1 Usage of recursive variables} *) module Mode = struct (** For an expression in a program, its "usage mode" represents static information about how the value produced by the expression will be used by the context around it. *) type t = | Ignore (** [Ignore] is for subexpressions that are not used at all during the evaluation of the whole program. This is the mode of a variable in an expression in which it does not occur. *) | Delay (** A [Delay] context can be fully evaluated without evaluating its argument , which will only be needed at a later point of program execution. For example, [fun x -> ?] or [lazy ?] are [Delay] contexts. *) | Guard (** A [Guard] context returns the value as a member of a data structure, for example a variant constructor or record. The value can safely be defined mutually-recursively with their context, for example in [let rec li = 1 :: li]. When these subexpressions participate in a cyclic definition, this definition is productive/guarded. The [Guard] mode is also used when a value is not dereferenced, it is returned by a sub-expression, but the result of this sub-expression is discarded instead of being returned. For example, the subterm [?] is in a [Guard] context in [let _ = ? in e] and in [?; e]. When these subexpressions participate in a cyclic definition, they cannot create a self-loop. *) | Return (** A [Return] context returns its value without further inspection. This value cannot be defined mutually-recursively with its context, as there is a risk of self-loop: in [let rec x = y and y = x], the two definitions use a single variable in [Return] context. *) | Dereference (** A [Dereference] context consumes, inspects and uses the value in arbitrary ways. Such a value must be fully defined at the point of usage, it cannot be defined mutually-recursively with its context. *) let equal = ((=) : t -> t -> bool) (* Lower-ranked modes demand/use less of the variable/expression they qualify -- so they allow more recursive definitions. Ignore < Delay < Guard < Return < Dereference *) let rank = function | Ignore -> 0 | Delay -> 1 | Guard -> 2 | Return -> 3 | Dereference -> 4 (* Returns the more conservative (highest-ranking) mode of the two arguments. In judgments we write (m + m') for (join m m'). *) let join m m' = if rank m >= rank m' then m else m' (* If x is used with the mode m in e[x], and e[x] is used with mode m' in e'[e[x]], then x is used with mode m'[m] (our notation for "compose m' m") in e'[e[x]]. Return is neutral for composition: m[Return] = m = Return[m]. Composition is associative and [Ignore] is a zero/annihilator for it: (compose Ignore m) and (compose m Ignore) are both Ignore. *) let compose m' m = match m', m with | Ignore, _ | _, Ignore -> Ignore | Dereference, _ -> Dereference | Delay, _ -> Delay | Guard, Return -> Guard | Guard, ((Dereference | Guard | Delay) as m) -> m | Return, Return -> Return | Return, ((Dereference | Guard | Delay) as m) -> m end type mode = Mode.t = Ignore | Delay | Guard | Return | Dereference module Env : sig type t val single : Ident.t -> Mode.t -> t (** Create an environment with a single identifier used with a given mode. *) val empty : t (** An environment with no used identifiers. *) val find : Ident.t -> t -> Mode.t (** Find the mode of an identifier in an environment. The default mode is Ignore. *) val unguarded : t -> Ident.t list -> Ident.t list (** unguarded e l: the list of all identifiers in l that are dereferenced or returned in the environment e. *) val dependent : t -> Ident.t list -> Ident.t list (** dependent e l: the list of all identifiers in l that are used in e (not ignored). *) val join : t -> t -> t val join_list : t list -> t (** Environments can be joined pointwise (variable per variable) *) val compose : Mode.t -> t -> t (** Environment composition m[G] extends mode composition m1[m2] by composing each mode in G pointwise *) val remove : Ident.t -> t -> t (** Remove an identifier from an environment. *) val take: Ident.t -> t -> Mode.t * t (** Remove an identifier from an environment, and return its mode *) val remove_list : Ident.t list -> t -> t (** Remove all the identifiers of a list from an environment. *) val equal : t -> t -> bool end = struct module M = Map.Make(Ident) (** A "t" maps each rec-bound variable to an access status *) type t = Mode.t M.t let equal = M.equal Mode.equal let find (id: Ident.t) (tbl: t) = try M.find id tbl with Not_found -> Ignore let empty = M.empty let join (x: t) (y: t) = M.fold (fun (id: Ident.t) (v: Mode.t) (tbl: t) -> let v' = find id tbl in M.add id (Mode.join v v') tbl) x y let join_list li = List.fold_left join empty li let compose m env = M.map (Mode.compose m) env let single id mode = M.add id mode empty let unguarded env li = List.filter (fun id -> Mode.rank (find id env) > Mode.rank Guard) li let dependent env li = List.filter (fun id -> Mode.rank (find id env) > Mode.rank Ignore) li let remove = M.remove let take id env = (find id env, remove id env) let remove_list l env = List.fold_left (fun env id -> M.remove id env) env l end let remove_pat pat env = Env.remove_list (pat_bound_idents pat) env let remove_patlist pats env = List.fold_right remove_pat pats env (* Usage mode judgments. There are two main groups of judgment functions: - Judgments of the form "G |- ... : m" compute the environment G of a subterm ... from its mode m, so the corresponding function has type [... -> Mode.t -> Env.t]. We write [... -> term_judg] in this case. - Judgments of the form "G |- ... : m -| G'" correspond to binding constructs (for example "let x = e" in the term "let x = e in body") that have both an exterior environment G (the environment of the whole term "let x = e in body") and an interior environment G' (the environment at the "in", after the binding construct has introduced new names in scope). For example, let-binding could be given the following rule: G |- e : m + m' ----------------------------------- G+G' |- (let x = e) : m -| x:m', G' Checking the whole term composes this judgment with the "G |- e : m" form for the let body: G |- (let x = e) : m -| G' G' |- body : m ------------------------------- G |- let x = e in body : m To this judgment "G |- e : m -| G'" our implementation gives the type [... -> Mode.t -> Env.t -> Env.t]: it takes the mode and interior environment as inputs, and returns the exterior environment. We write [... -> bind_judg] in this case. *) type term_judg = Mode.t -> Env.t type bind_judg = Mode.t -> Env.t -> Env.t let option : 'a. ('a -> term_judg) -> 'a option -> term_judg = fun f o m -> match o with | None -> Env.empty | Some v -> f v m let list : 'a. ('a -> term_judg) -> 'a list -> term_judg = fun f li m -> List.fold_left (fun env item -> Env.join env (f item m)) Env.empty li let array : 'a. ('a -> term_judg) -> 'a array -> term_judg = fun f ar m -> Array.fold_left (fun env item -> Env.join env (f item m)) Env.empty ar let single : Ident.t -> term_judg = Env.single let remove_id : Ident.t -> term_judg -> term_judg = fun id f m -> Env.remove id (f m) let remove_ids : Ident.t list -> term_judg -> term_judg = fun ids f m -> Env.remove_list ids (f m) let join : term_judg list -> term_judg = fun li m -> Env.join_list (List.map (fun f -> f m) li) let empty = fun _ -> Env.empty (* A judgment [judg] takes a mode from the context as input, and returns an environment. The judgment [judg << m], given a mode [m'] from the context, evaluates [judg] in the composed mode [m'[m]]. *) let (<<) : term_judg -> Mode.t -> term_judg = fun f inner_mode -> fun outer_mode -> f (Mode.compose outer_mode inner_mode) (* A binding judgment [binder] expects a mode and an inner environment, and returns an outer environment. [binder >> judg] computes the inner environment as the environment returned by [judg] in the ambient mode. *) let (>>) : bind_judg -> term_judg -> term_judg = fun binder term mode -> binder mode (term mode) (* Expression judgment: G |- e : m where (m) is an input of the code and (G) is an output; in the Prolog mode notation, this is (+G |- -e : -m). *) let rec expression : Typedtree.expression -> term_judg = fun exp -> match exp.exp_desc with | Texp_ident (pth, _, _) -> path pth | Texp_let (rec_flag, bindings, body) -> (* G |- <bindings> : m -| G' G' |- body : m ------------------------------- G |- let <bindings> in body : m *) value_bindings rec_flag bindings >> expression body | Texp_letmodule (x, _, _, mexp, e) -> module_binding (x, mexp) >> expression e | Texp_match (e, cases, eff_cases, _) -> (* TODO: update comment below for eff_cases (Gi; mi |- pi -> ei : m)^i G |- e : sum(mi)^i ---------------------------------------------- G + sum(Gi)^i |- match e with (pi -> ei)^i : m *) (fun mode -> let pat_envs, pat_modes = List.split (List.map (fun c -> case c mode) cases) in let env_e = expression e (List.fold_left Mode.join Ignore pat_modes) in let eff_envs, eff_modes = List.split (List.map (fun c -> case c mode) eff_cases) in let eff_e = expression e (List.fold_left Mode.join Ignore eff_modes) in Env.join_list ((Env.join_list (env_e :: pat_envs)) :: (eff_e :: eff_envs))) | Texp_for (_, _, low, high, _, body) -> (* G1 |- low: m[Dereference] G2 |- high: m[Dereference] G3 |- body: m[Guard] --- G1 + G2 + G3 |- for _ = low to high do body done: m *) join [ expression low << Dereference; expression high << Dereference; expression body << Guard; ] | Texp_constant _ -> empty | Texp_new (pth, _, _) -> (* G |- c: m[Dereference] ----------------------- G |- new c: m *) path pth << Dereference | Texp_instvar (self_path, pth, _inst_var) -> join [path self_path << Dereference; path pth] | Texp_apply ({exp_desc = Texp_ident (_, _, vd)}, [_, Some arg]) when is_ref vd -> (* G |- e: m[Guard] ------------------ G |- ref e: m *) expression arg << Guard | Texp_apply (e, args) -> (* [args] may contain omitted arguments, corresponding to labels in the function's type that were not passed in the actual application. The arguments before the first omitted argument are passed to the function immediately, so they are dereferenced. The arguments after the first omitted one are stored in a closure, so guarded. The function itself is called immediately (dereferenced) if there is at least one argument before the first omitted one. On the other hand, if the first argument is omitted then the function is stored in the closure without being called. *) let rec split_args ~has_omitted_arg = function | [] -> [], [] | (_, None) :: rest -> split_args ~has_omitted_arg:true rest | (_, Some arg) :: rest -> let applied, delayed = split_args ~has_omitted_arg rest in if has_omitted_arg then applied, arg :: delayed else arg :: applied, delayed in let applied, delayed = split_args ~has_omitted_arg:false args in let function_mode = match applied with | [] -> Guard | _ :: _ -> Dereference in join [expression e << function_mode; list expression applied << Dereference; list expression delayed << Guard] | Texp_tuple exprs -> list expression exprs << Guard | Texp_array exprs -> let array_mode = match Typeopt.array_kind exp with | Lambda.Pfloatarray -> (* (flat) float arrays unbox their elements *) Dereference | Lambda.Pgenarray -> (* This is counted as a use, because constructing a generic array involves inspecting to decide whether to unbox (PR#6939). *) Dereference | Lambda.Paddrarray | Lambda.Pintarray -> (* non-generic, non-float arrays act as constructors *) Guard in list expression exprs << array_mode | Texp_construct (_, desc, exprs) -> let access_constructor = match desc.cstr_tag with | Cstr_extension (pth, _) -> path pth << Dereference | _ -> empty in let m' = match desc.cstr_tag with | Cstr_unboxed -> Return | Cstr_constant _ | Cstr_block _ | Cstr_extension _ -> Guard in join [ access_constructor; list expression exprs << m' ] | Texp_variant (_, eo) -> (* G |- e: m[Guard] ------------------ ----------- G |- `A e: m [] |- `A: m *) option expression eo << Guard | Texp_record { fields = es; extended_expression = eo; representation = rep } -> let field_mode = match rep with | Record_float -> Dereference | Record_unboxed _ -> Return | Record_regular | Record_inlined _ | Record_extension _ -> Guard in let field (_label, field_def) = match field_def with Kept _ -> empty | Overridden (_, e) -> expression e in join [ array field es << field_mode; option expression eo << Dereference ] | Texp_ifthenelse (cond, ifso, ifnot) -> (* Gc |- c: m[Dereference] G1 |- e1: m G2 |- e2: m --- Gc + G1 + G2 |- if c then e1 else e2: m Note: `if c then e1 else e2` is treated in the same way as `match c with true -> e1 | false -> e2` *) join [ expression cond << Dereference; expression ifso; option expression ifnot; ] | Texp_setfield (e1, _, _, e2) -> (* G1 |- e1: m[Dereference] G2 |- e2: m[Dereference] --- G1 + G2 |- e1.x <- e2: m Note: e2 is dereferenced in the case of a field assignment to a record of unboxed floats in that case, e2 evaluates to a boxed float and it is unboxed on assignment. *) join [ expression e1 << Dereference; expression e2 << Dereference; ] | Texp_sequence (e1, e2) -> (* G1 |- e1: m[Guard] G2 |- e2: m -------------------- G1 + G2 |- e1; e2: m Note: `e1; e2` is treated in the same way as `let _ = e1 in e2` *) join [ expression e1 << Guard; expression e2; ] | Texp_while (cond, body) -> (* G1 |- cond: m[Dereference] G2 |- body: m[Guard] --------------------------------- G1 + G2 |- while cond do body done: m *) join [ expression cond << Dereference; expression body << Guard; ] | Texp_send (e1, _) -> (* G |- e: m[Dereference] ---------------------- (plus weird 'eo' option) G |- e#x: m *) join [ expression e1 << Dereference ] | Texp_field (e, _, _) -> (* G |- e: m[Dereference] ----------------------- G |- e.x: m *) expression e << Dereference | Texp_setinstvar (pth,_,_,e) -> (* G |- e: m[Dereference] ---------------------- G |- x <- e: m *) join [ path pth << Dereference; expression e << Dereference; ] | Texp_letexception ({ext_id}, e) -> (* G |- e: m ---------------------------- G |- let exception A in e: m *) remove_id ext_id (expression e) | Texp_assert (e, _) -> (* G |- e: m[Dereference] ----------------------- G |- assert e: m Note: `assert e` is treated just as if `assert` was a function. *) expression e << Dereference | Texp_pack mexp -> (* G |- M: m ---------------- G |- module M: m *) modexp mexp | Texp_object (clsstrct, _) -> class_structure clsstrct | Texp_try (e, cases, eff_cases) -> (* G |- e: m (Gi; _ |- pi -> ei : m)^i -------------------------------------------- G + sum(Gi)^i |- try e with (pi -> ei)^i : m Contrarily to match, the patterns p do not inspect the value of e, so their mode does not influence the mode of e. *) let case_env c m = fst (case c m) in join [ expression e; list case_env cases; list case_env eff_cases; ] | Texp_override (pth, fields) -> (* G |- pth : m (Gi |- ei : m[Dereference])^i ---------------------------------------------------- G + sum(Gi)^i |- {< (xi = ei)^i >} (at path pth) : m Note: {< .. >} is desugared to a function application, but the function implementation might still use its arguments in a guarded way only -- intuitively it should behave as a constructor. We could possibly refine the arguments' Dereference into Guard here. *) let field (_, _, arg) = expression arg in join [ path pth << Dereference; list field fields << Dereference; ] | Texp_function (params, body) -> (* G |-{body} b : m[Delay] (Hj |-{def} Pj : m[Delay])^j H := sum(Hj)^j ps := sum(pat(Pj))^j ----------------------------------- G + H - ps |- fun (Pj)^j -> b : m *) let param_pat param = (* param P ::= | ?(pat = expr) | pat Define pat(P) as pat if P = ?(pat = expr) pat if P = pat *) match param.fp_kind with | Tparam_pat pat -> pat | Tparam_optional_default (pat, _) -> pat in (* Optional argument defaults. G |-{def} P : m *) let param_default param = match param.fp_kind with | Tparam_optional_default (_, default) -> (* G |- e : m ------------------ G |-{def} ?(p=e) : m *) expression default | Tparam_pat _ -> (* ------------------ . |-{def} p : m *) empty in let patterns = List.map param_pat params in let defaults = List.map param_default params in let body = function_body body in let f = join (body :: defaults) << Delay in (fun m -> let env = f m in remove_patlist patterns env) | Texp_lazy e -> (* G |- e: m[Delay] ---------------- (modulo some subtle compiler optimizations) G |- lazy e: m *) let lazy_mode = match Typeopt.classify_lazy_argument e with | `Constant_or_function | `Identifier _ | `Float_that_cannot_be_shortcut -> Return | `Other -> Delay in expression e << lazy_mode | Texp_letop{let_; ands; body; _} -> let case_env c m = fst (case c m) in join [ list binding_op (let_ :: ands) << Dereference; case_env body << Delay ] | Texp_unreachable | Texp_typed_hole -> (* ---------- [] |- .: m *) empty | Texp_extension_constructor (_lid, pth) -> path pth << Dereference | Texp_open (od, e) -> open_declaration od >> expression e (* Function bodies. G |-{body} b : m *) and function_body body = match body with | Tfunction_body body -> (* G |- e : m ------------------ G |-{body} e : m (**) (**) The "e" here stands for [Tfunction_body] as opposed to [Tfunction_cases]. *) expression body | Tfunction_cases { cases; _ } -> (* (Gi; _ |- pi -> ei : m)^i (**) ------------------ sum(Gi)^i |-{body} function (pi -> ei)^i : m (**) Contrarily to match, the values that are pattern-matched are bound locally, so the pattern modes do not influence the final environment. *) List.map (fun c mode -> fst (case c mode)) cases |> join and binding_op : Typedtree.binding_op -> term_judg = fun bop -> join [path bop.bop_op_path; expression bop.bop_exp] and class_structure : Typedtree.class_structure -> term_judg = fun cs -> list class_field cs.cstr_fields and class_field : Typedtree.class_field -> term_judg = fun cf -> match cf.cf_desc with | Tcf_inherit (_, ce, _super, _inh_vars, _inh_meths) -> class_expr ce << Dereference | Tcf_val (_lab, _mut, _, cfk, _) -> class_field_kind cfk | Tcf_method (_, _, cfk) -> class_field_kind cfk | Tcf_constraint _ -> empty | Tcf_initializer e -> expression e << Dereference | Tcf_attribute _ -> empty and class_field_kind : Typedtree.class_field_kind -> term_judg = fun cfk -> match cfk with | Tcfk_virtual _ -> empty | Tcfk_concrete (_, e) -> expression e << Dereference and modexp : Typedtree.module_expr -> term_judg = fun mexp -> match mexp.mod_desc with | Tmod_ident (pth, _) -> path pth | Tmod_structure s -> structure s | Tmod_functor (_, e) -> modexp e << Delay | Tmod_apply (f, p, _) -> join [ modexp f << Dereference; modexp p << Dereference; ] | Tmod_apply_unit f -> modexp f << Dereference | Tmod_constraint (mexp, _, _, coe) -> let rec coercion coe k = match coe with | Tcoerce_none -> k Return | Tcoerce_structure _ | Tcoerce_functor _ -> (* These coercions perform a shallow copy of the input module, by creating a new module with fields obtained by accessing the same fields in the input module. *) k Dereference | Tcoerce_primitive _ -> (* This corresponds to 'external' declarations, and the coercion ignores its argument *) k Ignore | Tcoerce_alias (_, pth, coe) -> (* Alias coercions ignore their arguments, but they evaluate their alias module 'pth' under another coercion. *) coercion coe (fun m -> path pth << m) in coercion coe (fun m -> modexp mexp << m) | Tmod_unpack (e, _) -> expression e | Tmod_typed_hole -> fun _ -> Env.empty (* G |- pth : m *) and path : Path.t -> term_judg = (* ------------ x: m |- x: m G |- A: m[Dereference] ----------------------- G |- A.x: m G1 |- A: m[Dereference] G2 |- B: m[Dereference] ------------------------ (as for term application) G1 + G2 |- A(B): m *) fun pth -> match pth with | Path.Pident x -> single x | Path.Pdot (t, _) -> path t << Dereference | Path.Papply (f, p) -> join [ path f << Dereference; path p << Dereference; ] | Path.Pextra_ty (p, _extra) -> path p (* G |- struct ... end : m *) and structure : Typedtree.structure -> term_judg = (* G1, {x: _, x in vars(G1)} |- item1: G2 + ... + Gn in m G2, {x: _, x in vars(G2)} |- item2: G3 + ... + Gn in m ... Gn, {x: _, x in vars(Gn)} |- itemn: [] in m --- (G1 + ... + Gn) - V |- struct item1 ... itemn end: m *) fun s m -> List.fold_right (fun it env -> structure_item it m env) s.str_items Env.empty (* G |- <structure item> : m -| G' where G is an output and m, G' are inputs *) and structure_item : Typedtree.structure_item -> bind_judg = fun s m env -> match s.str_desc with | Tstr_eval (e, _) -> (* Ge |- e: m[Guard] G |- items: m -| G' --------------------------------- Ge + G |- (e;; items): m -| G' The expression `e` is treated in the same way as let _ = e *) let judg_e = expression e << Guard in Env.join (judg_e m) env | Tstr_value (rec_flag, bindings) -> value_bindings rec_flag bindings m env | Tstr_module {mb_id; mb_expr} -> module_binding (mb_id, mb_expr) m env | Tstr_recmodule mbs -> let bindings = List.map (fun {mb_id; mb_expr} -> (mb_id, mb_expr)) mbs in recursive_module_bindings bindings m env | Tstr_primitive _ -> env | Tstr_type _ -> (* ------------------- G |- type t: m -| G *) env | Tstr_typext {tyext_constructors = exts; _} -> let ext_ids = List.map (fun {ext_id = id; _} -> id) exts in Env.join (list extension_constructor exts m) (Env.remove_list ext_ids env) | Tstr_exception {tyexn_constructor = ext; _} -> Env.join (extension_constructor ext m) (Env.remove ext.ext_id env) | Tstr_modtype _ | Tstr_class_type _ | Tstr_attribute _ -> env | Tstr_open od -> open_declaration od m env | Tstr_class classes -> let class_ids = let class_id ({ci_id_class = id; _}, _) = id in List.map class_id classes in let class_declaration ({ci_expr; _}, _) m = Env.remove_list class_ids (class_expr ci_expr m) in Env.join (list class_declaration classes m) (Env.remove_list class_ids env) | Tstr_include { incl_mod = mexp; incl_type = mty; _ } -> let included_ids = List.map Types.signature_item_id mty in Env.join (modexp mexp m) (Env.remove_list included_ids env) (* G |- module M = E : m -| G *) and module_binding : (Ident.t option * Typedtree.module_expr) -> bind_judg = fun (id, mexp) m env -> (* GE |- E: m[mM + Guard] ------------------------------------- GE + G |- module M = E : m -| M:mM, G *) let judg_E, env = match id with | None -> modexp mexp << Guard, env | Some id -> let mM, env = Env.take id env in let judg_E = modexp mexp << (Mode.join mM Guard) in judg_E, env in Env.join (judg_E m) env and open_declaration : Typedtree.open_declaration -> bind_judg = fun { open_expr = mexp; open_bound_items = sg; _ } m env -> let judg_E = modexp mexp in let bound_ids = List.map Types.signature_item_id sg in Env.join (judg_E m) (Env.remove_list bound_ids env) and recursive_module_bindings : (Ident.t option * Typedtree.module_expr) list -> bind_judg = fun m_bindings m env -> let mids = List.filter_map fst m_bindings in let binding (mid, mexp) m = let judg_E = match mid with | None -> modexp mexp << Guard | Some mid -> let mM = Env.find mid env in modexp mexp << (Mode.join mM Guard) in Env.remove_list mids (judg_E m) in Env.join (list binding m_bindings m) (Env.remove_list mids env) and class_expr : Typedtree.class_expr -> term_judg = fun ce -> match ce.cl_desc with | Tcl_ident (pth, _, _) -> path pth << Dereference | Tcl_structure cs -> class_structure cs | Tcl_fun (_, _, args, ce, _) -> let ids = List.map fst args in remove_ids ids (class_expr ce << Delay) | Tcl_apply (ce, args) -> let arg (_label, eo) = option expression eo in join [ class_expr ce << Dereference; list arg args << Dereference; ] | Tcl_let (rec_flag, bindings, _, ce) -> value_bindings rec_flag bindings >> class_expr ce | Tcl_constraint (ce, _, _, _, _) -> class_expr ce | Tcl_open (_, ce) -> class_expr ce and extension_constructor : Typedtree.extension_constructor -> term_judg = fun ec -> match ec.ext_kind with | Text_decl _ -> empty | Text_rebind (pth, _lid) -> path pth (* G |- let (rec?) (pi = ei)^i : m -| G' *) and value_bindings : rec_flag -> Typedtree.value_binding list -> bind_judg = fun rec_flag bindings mode bound_env -> let all_bound_pats = List.map (fun vb -> vb.vb_pat) bindings in let outer_env = remove_patlist all_bound_pats bound_env in let bindings_env = match rec_flag with | Nonrecursive -> (* (Gi, pi:_ |- ei : m[mbody_i])^i (pi : mbody_i -| D)^i ------------------------------------------------------------ Sum(Gi) + (D - (pi)^i) |- let (pi=ei)^i : m -| D *) let binding_env {vb_pat; vb_expr; _} m = let m' = Mode.compose m (pattern vb_pat bound_env) in remove_pat vb_pat (expression vb_expr m') in list binding_env bindings mode | Recursive -> (* (Gi, (xj : mdef_ij)^j |- ei : m[mbody_i])^i (xi : mbody_i -| D)^i G'i = Gi + mdef_ij[G'j] ------------------------------------------------------------------- Sum(G'i) + (D - (pi)^i) |- let rec (xi=ei)^i : m -| D The (mdef_ij)^i,j are a family of modes over two indices: mdef_ij represents the mode of use, within e_i the definition of x_i, of the mutually-recursive variable x_j. The (G'i)^i are defined from the (Gi)^i as a family of equations, whose smallest solution is computed as a least fixpoint. The (Gi)^i are the "immediate" dependencies of each (ei)^i on the outer context (excluding the mutually-defined variables). The (G'i)^i contain the "transitive" dependencies as well: if ei depends on xj, then the dependencies of G'i of xi must contain the dependencies of G'j, composed by the mode mdef_ij of use of xj in ei. For example, consider: let rec z = let rec x = ref y and y = ref z in f x this definition should be rejected as the body [f x] dereferences [x], which can be used to access the yet-unitialized value [z]. This requires realizing that [x] depends on [z] through [y], which requires the transitive closure computation. An earlier version of our check would take only the (Gi)^i instead of the (G'i)^i, which is incorrect and would accept the example above. *) (* [binding_env] takes a binding (x_i = e_i) and computes (Gi, (mdef_ij)^j). *) let binding_env {vb_pat = x_i; vb_expr = e_i; _} = let mbody_i = pattern x_i bound_env in (* Gi, (x_j:mdef_ij)^j *) let rhs_env_i = expression e_i (Mode.compose mode mbody_i) in (* (mdef_ij)^j (for a fixed i) *) let mutual_modes = let mdef_ij {vb_pat = x_j; _} = pattern x_j rhs_env_i in List.map mdef_ij bindings in (* Gi *) let env_i = remove_patlist all_bound_pats rhs_env_i in (* (Gi, (mdef_ij)^j) *) (env_i, mutual_modes) in let env, mdef = List.split (List.map binding_env bindings) in let rec transitive_closure env = let transitive_deps env_i mdef_i = (* Gi, (mdef_ij)^j => Gi + Sum_j mdef_ij[Gj] *) Env.join env_i (Env.join_list (List.map2 Env.compose mdef_i env)) in let env' = List.map2 transitive_deps env mdef in if List.for_all2 Env.equal env env' then env' else transitive_closure env' in let env'_i = transitive_closure env in Env.join_list env'_i in Env.join bindings_env outer_env (* G; m' |- (p -> e) : m with outputs G, m' and input m m' is the mode under which the scrutinee of p (the value matched against p) is placed. *) and case : 'k . 'k Typedtree.case -> mode -> Env.t * mode = fun { Typedtree.c_lhs; c_guard; c_rhs } -> (* Ge |- e : m Gg |- g : m[Dereference] G := Ge+Gg p : mp -| G ---------------------------------------- G - p; m[mp] |- (p (when g)? -> e) : m *) let judg = join [ option expression c_guard << Dereference; expression c_rhs; ] in (fun m -> let env = judg m in (remove_pat c_lhs env), Mode.compose m (pattern c_lhs env)) (* p : m -| G with output m and input G m is the mode under which the scrutinee of p is placed. *) and pattern : type k . k general_pattern -> Env.t -> mode = fun pat env -> (* mp := | Dereference if p is destructuring | Guard otherwise me := sum{G(x), x in vars(p)} -------------------------------------------- p : (mp + me) -| G *) let m_pat = if is_destructuring_pattern pat then Dereference else Guard in let m_env = pat_bound_idents pat |> List.map (fun id -> Env.find id env) |> List.fold_left Mode.join Ignore in Mode.join m_pat m_env and is_destructuring_pattern : type k . k general_pattern -> bool = fun pat -> match pat.pat_desc with | Tpat_any -> false | Tpat_var (_, _, _) -> false | Tpat_alias (pat, _, _, _) -> is_destructuring_pattern pat | Tpat_constant _ -> true | Tpat_tuple _ -> true | Tpat_construct _ -> true | Tpat_variant _ -> true | Tpat_record (_, _) -> true | Tpat_array _ -> true | Tpat_lazy _ -> true | Tpat_value pat -> is_destructuring_pattern (pat :> pattern) | Tpat_exception _ -> false | Tpat_or (l,r,_) -> is_destructuring_pattern l || is_destructuring_pattern r let is_valid_recursive_expression idlist expr : sd option = match expr.exp_desc with | Texp_function _ -> (* Fast path: functions can never have invalid recursive references *) Some Static | _ -> let rkind = classify_expression expr in let is_valid = match rkind with | Static -> (* The expression has known size or is constant *) let ty = expression expr Return in Env.unguarded ty idlist = [] | Dynamic -> (* The expression has unknown size *) let ty = expression expr Return in Env.unguarded ty idlist = [] && Env.dependent ty idlist = [] in if is_valid then Some rkind else None (* A class declaration may contain let-bindings. If they are recursive, their validity will already be checked by [is_valid_recursive_expression] during type-checking. This function here prevents a different kind of invalid recursion, which is the unsafe creations of objects of this class in the let-binding. For example, {|class a = let x = new a in object ... end|} is forbidden, but {|class a = let x () = new a in object ... end|} is allowed. *) let is_valid_class_expr idlist ce = let rec class_expr : mode -> Typedtree.class_expr -> Env.t = fun mode ce -> match ce.cl_desc with | Tcl_ident (_, _, _) -> (* ---------- [] |- a: m *) Env.empty | Tcl_structure _ -> (* ----------------------- [] |- struct ... end: m *) Env.empty | Tcl_fun (_, _, _, _, _) -> Env.empty (* --------------------------- [] |- fun x1 ... xn -> C: m *) | Tcl_apply (_, _) -> Env.empty | Tcl_let (rec_flag, bindings, _, ce) -> value_bindings rec_flag bindings mode (class_expr mode ce) | Tcl_constraint (ce, _, _, _, _) -> class_expr mode ce | Tcl_open (_, ce) -> class_expr mode ce in match Env.unguarded (class_expr Return ce) idlist with | [] -> true | _ :: _ -> false
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>