package merlin-lib

  1. Overview
  2. Docs
Merlin's libraries

Install

Dune Dependency

Authors

Maintainers

Sources

merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873

doc/src/merlin-lib.index_format/granular_set.ml.html

Source file granular_set.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

open Granular_marshal

module type S = sig
  type elt
  type t

  val empty : t
  val add : elt -> t -> t
  val is_empty : t -> bool
  val mem : elt -> t -> bool
  val singleton : elt -> t
  val remove : elt -> t -> t
  val filter : (elt -> bool) -> t -> t
  val union : t -> t -> t
  val map : (elt -> elt) -> t -> t
  val iter : (elt -> unit) -> t -> unit
  val cardinal : t -> int
  val elements : t -> elt list
  val fold : ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc
  val schema :
    Granular_marshal.iter -> (Granular_marshal.iter -> elt -> unit) -> t -> unit
end

module Make (Ord : Set.OrderedType) = struct
  type elt = Ord.t

  type t = s link
  and s = Empty | Node of { l : t; v : elt; r : t; h : int }

  let height t =
    match fetch t with
    | Empty -> 0
    | Node { h; _ } -> h

  let create (l : t) v (r : t) : t =
    let hl =
      match fetch l with
      | Empty -> 0
      | Node { h; _ } -> h
    in
    let hr =
      match fetch r with
      | Empty -> 0
      | Node { h; _ } -> h
    in
    link (Node { l; v; r; h = (if hl >= hr then hl + 1 else hr + 1) })

  let bal (l : t) v (r : t) =
    let hl =
      match fetch l with
      | Empty -> 0
      | Node { h; _ } -> h
    in
    let hr =
      match fetch r with
      | Empty -> 0
      | Node { h; _ } -> h
    in
    if hl > hr + 2 then begin
      match fetch l with
      | Empty -> invalid_arg "Set.bal"
      | Node { l = ll; v = lv; r = lr; _ } ->
        if height ll >= height lr then create ll lv (create lr v r)
        else begin
          match fetch lr with
          | Empty -> invalid_arg "Set.bal"
          | Node { l = lrl; v = lrv; r = lrr; _ } ->
            create (create ll lv lrl) lrv (create lrr v r)
        end
    end
    else if hr > hl + 2 then begin
      match fetch r with
      | Empty -> invalid_arg "Set.bal"
      | Node { l = rl; v = rv; r = rr; _ } ->
        if height rr >= height rl then create (create l v rl) rv rr
        else begin
          match fetch rl with
          | Empty -> invalid_arg "Set.bal"
          | Node { l = rll; v = rlv; r = rlr; _ } ->
            create (create l v rll) rlv (create rlr rv rr)
        end
    end
    else link (Node { l; v; r; h = (if hl >= hr then hl + 1 else hr + 1) })

  let empty = link Empty

  let rec add x t : t =
    match fetch t with
    | Empty -> link (Node { l = link Empty; v = x; r = link Empty; h = 1 })
    | Node { l; v; r; _ } as t ->
      let c = Ord.compare x v in
      if c = 0 then link t
      else if c < 0 then
        let ll = add x l in
        if l == ll then link t else bal ll v r
      else
        let rr = add x r in
        if r == rr then link t else bal l v rr

  let singleton x = link (Node { l = link Empty; v = x; r = link Empty; h = 1 })

  let rec min_elt t =
    match fetch t with
    | Empty -> raise Not_found
    | Node { l; v; _ } when fetch l = Empty -> v
    | Node { l; _ } -> min_elt l

  let rec remove_min_elt t =
    match fetch t with
    | Empty -> invalid_arg "Set.remove_min_elt"
    | Node { l; r; _ } when fetch l = Empty -> r
    | Node { l; v; r; _ } -> bal (remove_min_elt l) v r

  let merge t1 t2 =
    match (fetch t1, fetch t2) with
    | Empty, _ -> t2
    | _, Empty -> t1
    | _, _ -> bal t1 (min_elt t2) (remove_min_elt t2)

  let is_empty t =
    match fetch t with
    | Empty -> true
    | _ -> false

  let rec mem x t =
    match fetch t with
    | Empty -> false
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      c = 0 || mem x (if c < 0 then l else r)

  let rec remove x t =
    match fetch t with
    | Empty -> link Empty
    | Node { l; v; r; _ } as t ->
      let c = Ord.compare x v in
      if c = 0 then merge l r
      else if c < 0 then
        let ll = remove x l in
        if l == ll then link t else bal ll v r
      else
        let rr = remove x r in
        if r == rr then link t else bal l v rr

  let rec add_min_element x t =
    match fetch t with
    | Empty -> singleton x
    | Node { l; v; r; _ } -> bal (add_min_element x l) v r

  let rec add_max_element x t =
    match fetch t with
    | Empty -> singleton x
    | Node { l; v; r; _ } -> bal l v (add_max_element x r)

  let rec join (l : t) v (r : t) =
    match (fetch l, fetch r) with
    | Empty, _ -> add_min_element v r
    | _, Empty -> add_max_element v l
    | ( Node { l = ll; v = lv; r = lr; h = lh },
        Node { l = rl; v = rv; r = rr; h = rh } ) ->
      if lh > rh + 2 then bal ll lv (join lr v r)
      else if rh > lh + 2 then bal (join l v rl) rv rr
      else create l v r

  let rec max_elt t =
    match fetch t with
    | Empty -> raise Not_found
    | Node { v; r; _ } when fetch r = Empty -> v
    | Node { r; _ } -> max_elt r

  let concat t1 t2 =
    match (fetch t1, fetch t2) with
    | Empty, _ -> t2
    | _, Empty -> t1
    | _, _ -> join t1 (min_elt t2) (remove_min_elt t2)

  let rec split x t =
    match fetch t with
    | Empty -> (link Empty, false, link Empty)
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      if c = 0 then (l, true, r)
      else if c < 0 then
        let ll, pres, rl = split x l in
        (ll, pres, join rl v r)
      else
        let lr, pres, rr = split x r in
        (join l v lr, pres, rr)

  let rec union t1 t2 =
    match (fetch t1, fetch t2) with
    | Empty, _ -> t2
    | _, Empty -> t1
    | ( Node { l = l1; v = v1; r = r1; h = h1 },
        Node { l = l2; v = v2; r = r2; h = h2 } ) ->
      if h1 >= h2 then
        if h2 = 1 then add v2 t1
        else begin
          let l2, _, r2 = split v1 t2 in
          join (union l1 l2) v1 (union r1 r2)
        end
      else if h1 = 1 then add v1 t2
      else begin
        let l1, _, r1 = split v2 t1 in
        join (union l1 l2) v2 (union r1 r2)
      end

  let rec filter p t =
    match fetch t with
    | Empty -> link Empty
    | Node { l; v; r; _ } as t ->
      let l' = filter p l in
      let pv = p v in
      let r' = filter p r in
      if pv then if l == l' && r == r' then link t else join l' v r'
      else concat l' r'

  let rec cardinal t =
    match fetch t with
    | Empty -> 0
    | Node { l; r; _ } -> cardinal l + 1 + cardinal r

  let rec fold f acc t =
    match fetch t with
    | Empty -> acc
    | Node { l; v; r; _ } -> fold f (f (fold f acc r) v) l

  let elements s = fold (fun acc v -> v :: acc) [] s

  let try_join l v r =
    if
      (fetch l = Empty || Ord.compare (max_elt l) v < 0)
      && (fetch r = Empty || Ord.compare v (min_elt r) < 0)
    then join l v r
    else union l (add v r)

  let rec map f t =
    match fetch t with
    | Empty -> link Empty
    | Node { l; v; r; _ } as t ->
      let l' = map f l in
      let v' = f v in
      let r' = map f r in
      if l == l' && v == v' && r == r' then link t else try_join l' v' r'

  let rec iter f t =
    match fetch t with
    | Empty -> ()
    | Node { l; v; r; _ } ->
      iter f l;
      f v;
      iter f r

  let type_id = Type.Id.make ()

  let rec schema iter f m =
    iter.yield m type_id @@ fun iter tree ->
    match tree with
    | Empty -> ()
    | Node { l; v; r; _ } ->
      schema iter f l;
      f iter v;
      schema iter f r
end
OCaml

Innovation. Community. Security.