package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.index_format/granular_set.ml.html
Source file granular_set.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) open Granular_marshal module type S = sig type elt type t val empty : t val add : elt -> t -> t val is_empty : t -> bool val mem : elt -> t -> bool val singleton : elt -> t val remove : elt -> t -> t val filter : (elt -> bool) -> t -> t val union : t -> t -> t val map : (elt -> elt) -> t -> t val iter : (elt -> unit) -> t -> unit val cardinal : t -> int val elements : t -> elt list val fold : ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc val schema : Granular_marshal.iter -> (Granular_marshal.iter -> elt -> unit) -> t -> unit end module Make (Ord : Set.OrderedType) = struct type elt = Ord.t type t = s link and s = Empty | Node of { l : t; v : elt; r : t; h : int } let height t = match fetch t with | Empty -> 0 | Node { h; _ } -> h let create (l : t) v (r : t) : t = let hl = match fetch l with | Empty -> 0 | Node { h; _ } -> h in let hr = match fetch r with | Empty -> 0 | Node { h; _ } -> h in link (Node { l; v; r; h = (if hl >= hr then hl + 1 else hr + 1) }) let bal (l : t) v (r : t) = let hl = match fetch l with | Empty -> 0 | Node { h; _ } -> h in let hr = match fetch r with | Empty -> 0 | Node { h; _ } -> h in if hl > hr + 2 then begin match fetch l with | Empty -> invalid_arg "Set.bal" | Node { l = ll; v = lv; r = lr; _ } -> if height ll >= height lr then create ll lv (create lr v r) else begin match fetch lr with | Empty -> invalid_arg "Set.bal" | Node { l = lrl; v = lrv; r = lrr; _ } -> create (create ll lv lrl) lrv (create lrr v r) end end else if hr > hl + 2 then begin match fetch r with | Empty -> invalid_arg "Set.bal" | Node { l = rl; v = rv; r = rr; _ } -> if height rr >= height rl then create (create l v rl) rv rr else begin match fetch rl with | Empty -> invalid_arg "Set.bal" | Node { l = rll; v = rlv; r = rlr; _ } -> create (create l v rll) rlv (create rlr rv rr) end end else link (Node { l; v; r; h = (if hl >= hr then hl + 1 else hr + 1) }) let empty = link Empty let rec add x t : t = match fetch t with | Empty -> link (Node { l = link Empty; v = x; r = link Empty; h = 1 }) | Node { l; v; r; _ } as t -> let c = Ord.compare x v in if c = 0 then link t else if c < 0 then let ll = add x l in if l == ll then link t else bal ll v r else let rr = add x r in if r == rr then link t else bal l v rr let singleton x = link (Node { l = link Empty; v = x; r = link Empty; h = 1 }) let rec min_elt t = match fetch t with | Empty -> raise Not_found | Node { l; v; _ } when fetch l = Empty -> v | Node { l; _ } -> min_elt l let rec remove_min_elt t = match fetch t with | Empty -> invalid_arg "Set.remove_min_elt" | Node { l; r; _ } when fetch l = Empty -> r | Node { l; v; r; _ } -> bal (remove_min_elt l) v r let merge t1 t2 = match (fetch t1, fetch t2) with | Empty, _ -> t2 | _, Empty -> t1 | _, _ -> bal t1 (min_elt t2) (remove_min_elt t2) let is_empty t = match fetch t with | Empty -> true | _ -> false let rec mem x t = match fetch t with | Empty -> false | Node { l; v; r; _ } -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec remove x t = match fetch t with | Empty -> link Empty | Node { l; v; r; _ } as t -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then let ll = remove x l in if l == ll then link t else bal ll v r else let rr = remove x r in if r == rr then link t else bal l v rr let rec add_min_element x t = match fetch t with | Empty -> singleton x | Node { l; v; r; _ } -> bal (add_min_element x l) v r let rec add_max_element x t = match fetch t with | Empty -> singleton x | Node { l; v; r; _ } -> bal l v (add_max_element x r) let rec join (l : t) v (r : t) = match (fetch l, fetch r) with | Empty, _ -> add_min_element v r | _, Empty -> add_max_element v l | ( Node { l = ll; v = lv; r = lr; h = lh }, Node { l = rl; v = rv; r = rr; h = rh } ) -> if lh > rh + 2 then bal ll lv (join lr v r) else if rh > lh + 2 then bal (join l v rl) rv rr else create l v r let rec max_elt t = match fetch t with | Empty -> raise Not_found | Node { v; r; _ } when fetch r = Empty -> v | Node { r; _ } -> max_elt r let concat t1 t2 = match (fetch t1, fetch t2) with | Empty, _ -> t2 | _, Empty -> t1 | _, _ -> join t1 (min_elt t2) (remove_min_elt t2) let rec split x t = match fetch t with | Empty -> (link Empty, false, link Empty) | Node { l; v; r; _ } -> let c = Ord.compare x v in if c = 0 then (l, true, r) else if c < 0 then let ll, pres, rl = split x l in (ll, pres, join rl v r) else let lr, pres, rr = split x r in (join l v lr, pres, rr) let rec union t1 t2 = match (fetch t1, fetch t2) with | Empty, _ -> t2 | _, Empty -> t1 | ( Node { l = l1; v = v1; r = r1; h = h1 }, Node { l = l2; v = v2; r = r2; h = h2 } ) -> if h1 >= h2 then if h2 = 1 then add v2 t1 else begin let l2, _, r2 = split v1 t2 in join (union l1 l2) v1 (union r1 r2) end else if h1 = 1 then add v1 t2 else begin let l1, _, r1 = split v2 t1 in join (union l1 l2) v2 (union r1 r2) end let rec filter p t = match fetch t with | Empty -> link Empty | Node { l; v; r; _ } as t -> let l' = filter p l in let pv = p v in let r' = filter p r in if pv then if l == l' && r == r' then link t else join l' v r' else concat l' r' let rec cardinal t = match fetch t with | Empty -> 0 | Node { l; r; _ } -> cardinal l + 1 + cardinal r let rec fold f acc t = match fetch t with | Empty -> acc | Node { l; v; r; _ } -> fold f (f (fold f acc r) v) l let elements s = fold (fun acc v -> v :: acc) [] s let try_join l v r = if (fetch l = Empty || Ord.compare (max_elt l) v < 0) && (fetch r = Empty || Ord.compare v (min_elt r) < 0) then join l v r else union l (add v r) let rec map f t = match fetch t with | Empty -> link Empty | Node { l; v; r; _ } as t -> let l' = map f l in let v' = f v in let r' = map f r in if l == l' && v == v' && r == r' then link t else try_join l' v' r' let rec iter f t = match fetch t with | Empty -> () | Node { l; v; r; _ } -> iter f l; f v; iter f r let type_id = Type.Id.make () let rec schema iter f m = iter.yield m type_id @@ fun iter tree -> match tree with | Empty -> () | Node { l; v; r; _ } -> schema iter f l; f iter v; schema iter f r end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>