package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.index_format/granular_map.ml.html
Source file granular_map.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) open Granular_marshal module type S = sig type key type 'a t val empty : unit -> 'a t val bindings : 'a t -> (key * 'a) list val add : key -> 'a -> 'a t -> 'a t val singleton : key -> 'a -> 'a t val remove : key -> 'a t -> 'a t val union : (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t val cardinal : 'a t -> int val find : key -> 'a t -> 'a val find_opt : key -> 'a t -> 'a option val choose_opt : 'a t -> (key * 'a) option val iter : (key -> 'a -> unit) -> 'a t -> unit val fold : (key -> 'a -> 'acc -> 'acc) -> 'a t -> 'acc -> 'acc val map : ('a -> 'b) -> 'a t -> 'b t val is_empty : 'a t -> bool val mem : key -> 'a t -> bool val update : key -> ('a option -> 'a option) -> 'a t -> 'a t val schema : 'a t Type.Id.t -> Granular_marshal.iter -> (Granular_marshal.iter -> key -> 'a -> unit) -> 'a t -> unit end module Make (Ord : Map.OrderedType) = struct type key = Ord.t type 'a t = 'a s link and 'a s = Empty | Node of { l : 'a t; v : key; d : 'a; r : 'a t; h : int } let empty () = link Empty let height s = match fetch s with | Empty -> 0 | Node { h; _ } -> h let create (l : 'a t) x d (r : 'a t) : 'a t = let hl = height l and hr = height r in link (Node { l; v = x; d; r; h = (if hl >= hr then hl + 1 else hr + 1) }) let singleton x d = let empty = empty () in link (Node { l = empty; v = x; d; r = empty; h = 1 }) let bal (l : 'a t) x d (r : 'a t) : 'a t = let hl = match fetch l with | Empty -> 0 | Node { h; _ } -> h in let hr = match fetch r with | Empty -> 0 | Node { h; _ } -> h in if hl > hr + 2 then begin match fetch l with | Empty -> invalid_arg "Map.bal" | Node { l = ll; v = lv; d = ld; r = lr; _ } -> if height ll >= height lr then create ll lv ld (create lr x d r) else begin match fetch lr with | Empty -> invalid_arg "Map.bal" | Node { l = lrl; v = lrv; d = lrd; r = lrr; _ } -> create (create ll lv ld lrl) lrv lrd (create lrr x d r) end end else if hr > hl + 2 then begin match fetch r with | Empty -> invalid_arg "Map.bal" | Node { l = rl; v = rv; d = rd; r = rr; _ } -> if height rr >= height rl then create (create l x d rl) rv rd rr else begin match fetch rl with | Empty -> invalid_arg "Map.bal" | Node { l = rll; v = rlv; d = rld; r = rlr; _ } -> create (create l x d rll) rlv rld (create rlr rv rd rr) end end else link (Node { l; v = x; d; r; h = (if hl >= hr then hl + 1 else hr + 1) }) let rec bindings_aux accu s = match fetch s with | Empty -> accu | Node { l; v; d; r; _ } -> bindings_aux ((v, d) :: bindings_aux accu r) l let bindings t = bindings_aux [] t let is_empty s = match fetch s with | Empty -> true | _ -> false let rec add x data s : 'a t = match fetch s with | Empty -> link (Node { l = s; v = x; d = data; r = s; h = 1 }) | Node { l; v; d; r; h } -> let c = Ord.compare x v in if c = 0 then if d == data then s else link (Node { l; v = x; d = data; r; h }) else if c < 0 then let ll = add x data l in if l == ll then s else bal ll v d r else let rr = add x data r in if r == rr then s else bal l v d rr let rec find x s = match fetch s with | Empty -> raise Not_found | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then d else find x (if c < 0 then l else r) let rec find_opt x s = match fetch s with | Empty -> None | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then Some d else find_opt x (if c < 0 then l else r) let rec mem x s = match fetch s with | Empty -> false | Node { l; v; r; _ } -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec min_binding (t : 'a t) : key * 'a = match fetch t with | Empty -> raise Not_found | Node { l; v; d; _ } when fetch l = Empty -> (v, d) | Node { l; _ } -> min_binding l let choose_opt t = try Some (min_binding t) with Not_found -> None let rec remove_min_binding (t : 'a t) : 'a t = match fetch t with | Empty -> invalid_arg "Map.remove_min_elt" | Node { l; r; _ } when fetch l = Empty -> r | Node { l; v; d; r; _ } -> bal (remove_min_binding l) v d r let merge (t1 : 'a t) (t2 : 'a t) : 'a t = match (fetch t1, fetch t2) with | Empty, _t -> t2 | _t, Empty -> t1 | _, _ -> let x, d = min_binding t2 in bal t1 x d (remove_min_binding t2) let rec remove x s : 'a t = match fetch s with | Empty -> s | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then let ll = remove x l in if l == ll then s else bal ll v d r else let rr = remove x r in if r == rr then s else bal l v d rr let rec iter f s = match fetch s with | Empty -> () | Node { l; v; d; r; _ } -> iter f l; f v d; iter f r let rec map f s = match fetch s with | Empty -> empty () | Node { l; v; d; r; h } -> let l' = map f l in let d' = f d in let r' = map f r in link (Node { l = l'; v; d = d'; r = r'; h }) let rec fold f m accu = match fetch m with | Empty -> accu | Node { l; v; d; r; _ } -> fold f r (f v d (fold f l accu)) let rec add_min_binding k x s = match fetch s with | Empty -> singleton k x | Node { l; v; d; r; _ } -> bal (add_min_binding k x l) v d r let rec add_max_binding k x s = match fetch s with | Empty -> singleton k x | Node { l; v; d; r; _ } -> bal l v d (add_max_binding k x r) let rec join (l : 'a t) v d (r : 'a t) = match (fetch l, fetch r) with | Empty, _ -> add_min_binding v d r | _, Empty -> add_max_binding v d l | ( Node { l = ll; v = lv; d = ld; r = lr; h = lh }, Node { l = rl; v = rv; d = rd; r = rr; h = rh } ) -> if lh > rh + 2 then bal ll lv ld (join lr v d r) else if rh > lh + 2 then bal (join l v d rl) rv rd rr else create l v d r let concat (t1 : 'a t) (t2 : 'a t) : 'a t = match (fetch t1, fetch t2) with | Empty, _t -> t2 | _t, Empty -> t1 | _, _ -> let x, d = min_binding t2 in join t1 x d (remove_min_binding t2) let concat_or_join t1 v d t2 = match d with | Some d -> join t1 v d t2 | None -> concat t1 t2 let rec split x s = match fetch s with | Empty -> (s, None, s) | Node { l; v; d; r; _ } -> let c = Ord.compare x v in if c = 0 then (l, Some d, r) else if c < 0 then let ll, pres, rl = split x l in (ll, pres, join rl v d r) else let lr, pres, rr = split x r in (join l v d lr, pres, rr) let rec union f (s1 : 'a t) (s2 : 'a t) : 'a t = match (fetch s1, fetch s2) with | _, Empty -> s1 | Empty, _ -> s2 | ( Node { l = l1; v = v1; d = d1; r = r1; h = h1 }, Node { l = l2; v = v2; d = d2; r = r2; h = h2 } ) -> ( if h1 >= h2 then let l2, d2, r2 = split v1 s2 in let l = union f l1 l2 and r = union f r1 r2 in match d2 with | None -> join l v1 d1 r | Some d2 -> concat_or_join l v1 (f v1 d1 d2) r else let l1, d1, r1 = split v2 s1 in let l = union f l1 l2 and r = union f r1 r2 in match d1 with | None -> join l v2 d2 r | Some d1 -> concat_or_join l v2 (f v2 d1 d2) r) let rec cardinal s = match fetch s with | Empty -> 0 | Node { l; r; _ } -> cardinal l + 1 + cardinal r let rec update x f t = match fetch t with | Empty -> begin match f None with | None -> t | Some data -> link (Node { l = t; v = x; d = data; r = t; h = 1 }) end | Node { l; v; d; r; h } -> let c = Ord.compare x v in if c = 0 then begin match f (Some d) with | None -> merge l r | Some data -> if d == data then t else link (Node { l; v = x; d = data; r; h }) end else if c < 0 then let ll = update x f l in if l == ll then t else bal ll v d r else let rr = update x f r in if r == rr then t else bal l v d rr let rec schema type_id iter f m = iter.yield m type_id @@ fun iter tree -> match tree with | Empty -> () | Node { l; v; d; r; _ } -> schema type_id iter f l; f iter v d; schema type_id iter f r end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>