package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.sherlodoc/type_distance.ml.html
Source file type_distance.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
(* {{{ COPYING *( This file is part of Merlin, an helper for ocaml editors Copyright (C) 2013 - 2024 Xavier Van de Woestyne <xaviervdw(_)gmail.com> Arthur Wendling <arthur(_)tarides.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. The Software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the Software. )* }}} *) type step = | Wildcard | Tyname of string | Tyvar of int | Left_arrow | Right_arrow | Product of { position : int; length : int } | Argument of { position : int; length : int } module P = Type_polarity let make_path t = let rec aux prefix = function | Type_expr.Unhandled -> [] | Type_expr.Wildcard -> [ Wildcard :: prefix ] | Type_expr.Tyvar x -> [ Tyvar x :: prefix ] | Type_expr.Arrow (a, b) -> List.rev_append (aux (Left_arrow :: prefix) a) (aux (Right_arrow :: prefix) b) | Type_expr.Tycon (constr, []) -> [ Tyname constr :: prefix ] | Type_expr.Tycon (constr, args) -> let length = String.length constr in let prefix = Tyname constr :: prefix in args |> List.mapi (fun position arg -> let prefix = Argument { position; length } :: prefix in aux prefix arg) |> List.fold_left (fun acc xs -> List.rev_append xs acc) [] | Type_expr.Tuple args -> let length = List.length args in args |> List.mapi (fun position arg -> let prefix = Product { position; length } :: prefix in aux prefix arg) |> List.fold_left (fun acc xs -> List.rev_append xs acc) [] in List.map List.rev (aux [] t) let make_cache xs ys = let h = List.length xs |> succ and w = List.length ys |> succ and not_used = -1 in Array.make_matrix h w not_used let skip_entry = 10 let max_distance = 10_000 let distance xs ys = let cache = make_cache xs ys in let rec memo ~xpolarity ~ypolarity i j xs ys = let cell = cache.(i).(j) in if cell >= 0 then cell else let value = aux ~xpolarity ~ypolarity i j xs ys in let () = cache.(i).(j) <- value in value and aux ~xpolarity ~ypolarity i j xs ys = match (xs, ys) with | [], _ -> 0 | [ Wildcard ], _ -> 0 | _, [] -> max_distance | [ Tyvar _ ], [ Wildcard ] when P.equal xpolarity ypolarity -> 0 | [ Tyvar x ], [ Tyvar y ] when P.equal xpolarity ypolarity -> if Int.equal x y then 0 else 1 | Left_arrow :: xs, Left_arrow :: ys -> let xpolarity = P.negate xpolarity and ypolarity = P.negate ypolarity in memo ~xpolarity ~ypolarity (succ i) (succ j) xs ys | Left_arrow :: xs, _ -> let xpolarity = P.negate xpolarity in memo ~xpolarity ~ypolarity (succ i) j xs ys | _, Left_arrow :: ys -> let ypolarity = P.negate ypolarity in memo ~xpolarity ~ypolarity i (succ j) xs ys | _, Right_arrow :: ys -> memo ~xpolarity ~ypolarity i (succ j) xs ys | Right_arrow :: xs, _ -> memo ~xpolarity ~ypolarity (succ i) j xs ys | Product { length = a; _ } :: xs, Product { length = b; _ } :: ys | Argument { length = a; _ } :: xs, Argument { length = b; _ } :: ys -> let l = abs (a - b) in l + memo ~xpolarity ~ypolarity (succ i) (succ j) xs ys | Product _ :: xs, ys -> 1 + memo ~xpolarity ~ypolarity (succ i) j xs ys | xs, Product _ :: ys -> 1 + memo ~xpolarity ~ypolarity i (succ j) xs ys | Tyname x :: xs', Tyname y :: ys' when P.equal xpolarity ypolarity -> ( match Name_cost.distance x y with | None -> skip_entry + memo ~xpolarity ~ypolarity i (succ j) xs ys' | Some cost -> cost + memo ~xpolarity ~ypolarity (succ i) (succ j) xs' ys' ) | xs, Tyname _ :: ys -> skip_entry + memo ~xpolarity ~ypolarity i (succ j) xs ys | xs, Argument _ :: ys -> memo ~xpolarity ~ypolarity i (succ j) xs ys | _, (Wildcard | Tyvar _) :: _ -> max_distance in let positive = P.positive in aux ~xpolarity:positive ~ypolarity:positive 0 0 xs ys let make_array list = list |> Array.of_list |> Array.map (fun li -> let li = List.mapi (fun i x -> (x, i)) li in List.sort Stdlib.compare li) let init_heuristic list = let used = Array.make List.(length @@ hd list) false in let arr = make_array list in let h = Array.make (succ @@ Array.length arr) 0 in let () = Array.sort Stdlib.compare arr in let () = for i = Array.length h - 2 downto 0 do let best = fst @@ List.hd arr.(i) in h.(i) <- h.(i + 1) + best done in (used, arr, h) let replace_score best score = best := Int.min score !best let minimize = function | [] -> 0 | list -> let used, arr, heuristics = init_heuristic list in let best = ref 1000 and limit = ref 0 in let len_a = Array.length arr in let rec aux rem acc i = let () = incr limit in if !limit > max_distance then false else if rem <= 0 then let score = acc + (1000 * (len_a - i)) in let () = replace_score best score in true else if i >= len_a then let score = acc + (5 * rem) in let () = replace_score best score in true else if acc + heuristics.(i) >= !best then true else let rec find = function | [] -> true | (cost, j) :: rest -> let continue = if used.(j) then true else let () = used.(j) <- true in let continue = aux (pred rem) (acc + cost) (succ i) in let () = used.(j) <- false in continue in if continue then find rest else false in find arr.(i) in let _ = aux (Array.length used) 0 0 in !best let compute ~query ~entry = let query = make_path query in let path = make_path entry in match (path, query) with | _, [] | [], _ -> 1000 | _ -> query |> List.map (fun p -> List.map (distance p) path) |> minimize
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>