package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.ocaml_typing/ctype.ml.html
Source file ctype.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Operations on core types *) open Misc open Asttypes open Types open Btype open Errortrace open Local_store (* General notes ============= - As much sharing as possible should be kept : it makes types smaller and better abbreviated. When necessary, some sharing can be lost. Types will still be printed correctly (+++ TO DO...), and abbreviations defined by a class do not depend on sharing thanks to constrained abbreviations. (Of course, even if some sharing is lost, typing will still be correct.) - All nodes of a type have a level : that way, one knows whether a node need to be duplicated or not when instantiating a type. - Levels of a type are decreasing (generic level being considered as greatest). - The level of a type constructor is superior to the binding time of its path. - Recursive types without limitation should be handled (even if there is still an occur check). This avoid treating specially the case for objects, for instance. Furthermore, the occur check policy can then be easily changed. *) (**** Errors ****) (* There are two classes of errortrace-related exceptions: *traces* and *errors*. The former, whose names end with [_trace], contain [Errortrace.trace]s, representing traces that are currently being built; they are local to this file. All the internal functions that implement unification, type equality, and moregen raise trace exceptions. Once we are done, in the top level functions such as [unify], [equal], and [moregen], we catch the trace exceptions and transform them into the analogous error exception. This indicates that we are done building the trace, and expect the error to flow out of unification, type equality, or moregen into surrounding code (with some few exceptions when these top-level functions are used as building blocks elsewhere.) Only the error exceptions are exposed in [ctype.mli]; the trace exceptions are an implementation detail. Any trace exception that escapes from a function in this file is a bug. *) exception Unify_trace of unification trace exception Equality_trace of comparison trace exception Moregen_trace of comparison trace exception Unify of unification_error exception Equality of equality_error exception Moregen of moregen_error exception Subtype of Subtype.error exception Escape of type_expr escape (* For local use: throw the appropriate exception. Can be passed into local functions as a parameter *) type _ trace_exn = | Unify : unification trace_exn | Moregen : comparison trace_exn | Equality : comparison trace_exn let raise_trace_for (type variant) (tr_exn : variant trace_exn) (tr : variant trace) : 'a = match tr_exn with | Unify -> raise (Unify_trace tr) | Equality -> raise (Equality_trace tr) | Moregen -> raise (Moregen_trace tr) (* Uses of this function are a bit suspicious, as we usually want to maintain trace information; sometimes it makes sense, however, since we're maintaining the trace at an outer exception handler. *) let raise_unexplained_for tr_exn = raise_trace_for tr_exn [] let raise_for tr_exn e = raise_trace_for tr_exn [e] (* Thrown from [moregen_kind] *) exception Public_method_to_private_method let escape kind = {kind; context = None} let escape_exn kind = Escape (escape kind) let scope_escape_exn ty = escape_exn (Equation ty) let raise_escape_exn kind = raise (escape_exn kind) let raise_scope_escape_exn ty = raise (scope_escape_exn ty) exception Tags of label * label let () = let open Format_doc in Location.register_error_of_exn (function | Tags (l, l') -> let pp_tag ppf s = fprintf ppf "`%s" s in let inline_tag = Misc.Style.as_inline_code pp_tag in Some Location. (errorf ~loc:(in_file !input_name) "In this program,@ variant constructors@ %a and %a@ \ have the same hash value.@ Change one of them." inline_tag l inline_tag l' ) | _ -> None ) exception Cannot_expand exception Cannot_apply exception Cannot_subst exception Cannot_unify_universal_variables exception Out_of_scope_universal_variable exception Matches_failure of Env.t * unification_error exception Incompatible (**** Control tracing of GADT instances *) let trace_gadt_instances = ref false let check_trace_gadt_instances ?(force=false) env = not !trace_gadt_instances && (force || Env.has_local_constraints env) && (trace_gadt_instances := true; cleanup_abbrev (); true) let reset_trace_gadt_instances b = if b then trace_gadt_instances := false let wrap_trace_gadt_instances ?force env f x = let b = check_trace_gadt_instances ?force env in Misc.try_finally (fun () -> f x) ~always:(fun () -> reset_trace_gadt_instances b) (**** Abbreviations without parameters ****) (* Shall reset after generalizing *) let simple_abbrevs = ref Mnil let proper_abbrevs tl abbrev = if tl <> [] || !trace_gadt_instances || !Clflags.principal then abbrev else simple_abbrevs (**** Type level management ****) let current_level = s_ref 0 let nongen_level = s_ref 0 let global_level = s_ref 0 let saved_level = s_ref [] (* merlin specific *) type levels = { current_level: int; nongen_level: int; global_level: int; saved_level: (int * int) list; } let save_levels () = { current_level = !current_level; nongen_level = !nongen_level; global_level = !global_level; saved_level = !saved_level } let set_levels l = current_level := l.current_level; nongen_level := l.nongen_level; global_level := l.global_level; saved_level := l.saved_level (* end merlin specific *) let get_current_level () = !current_level let init_def level = current_level := level; nongen_level := level let begin_def () = saved_level := (!current_level, !nongen_level) :: !saved_level; incr current_level; nongen_level := !current_level let begin_class_def () = saved_level := (!current_level, !nongen_level) :: !saved_level; incr current_level let raise_nongen_level () = saved_level := (!current_level, !nongen_level) :: !saved_level; nongen_level := !current_level let end_def () = let (cl, nl) = List.hd !saved_level in saved_level := List.tl !saved_level; current_level := cl; nongen_level := nl let create_scope () = let level = !current_level + 1 in init_def level; level let wrap_end_def f = Misc.try_finally f ~always:end_def (* [with_local_level_gen] handles both the scoping structure of levels and automatic generalization through pools (cf. btype.ml) *) let with_local_level_gen ~begin_def ~structure ?before_generalize f = begin_def (); let level = !current_level in let result, pool = with_new_pool ~level:!current_level begin fun () -> let result = wrap_end_def f in Option.iter (fun g -> g result) before_generalize; result end in simple_abbrevs := Mnil; (* Nodes in [pool] were either created by the above calls to [f] and [before_generalize], or they were created before, generalized, and then added to the pool by [update_level]. In the latter case, their level was already kept for backtracking by a call to [set_level] inside [update_level]. Since backtracking can only go back to a snapshot taken before [f] was called, this means that either they did not exists in that snapshot, or that they original level is already stored, so that there is no need to register levels for backtracking when we change them with [Transient_expr.set_level] here *) List.iter begin fun ty -> (* Already generic nodes are not tracked *) if ty.level = generic_level then () else match ty.desc with | Tvar _ when structure -> (* In structure mode, we do do not generalize type variables, so we need to lower their level, and move them to an outer pool. The goal of this mode is to allow unsharing inner nodes without introducing polymorphism *) if ty.level >= level then Transient_expr.set_level ty !current_level; add_to_pool ~level:ty.level ty | Tlink _ -> () (* If a node is no longer used as representative, no need to track it anymore *) | _ -> if ty.level < level then (* If a node was introduced locally, but its level was lowered through unification, keeping that node as representative, then we need to move it to an outer pool. *) add_to_pool ~level:ty.level ty else begin (* Generalize all remaining nodes *) Transient_expr.set_level ty generic_level; if structure then match ty.desc with Tconstr (_, _, abbrev) -> (* In structure mode, we drop abbreviations, as the goal of this mode is to reduce sharing *) abbrev := Mnil | _ -> () end end pool; result let with_local_level_generalize_structure f = with_local_level_gen ~begin_def ~structure:true f let with_local_level_generalize ?before_generalize f = with_local_level_gen ~begin_def ~structure:false ?before_generalize f let with_local_level_generalize_if cond ?before_generalize f = if cond then with_local_level_generalize ?before_generalize f else f () let with_local_level_generalize_structure_if cond f = if cond then with_local_level_generalize_structure f else f () let with_local_level_generalize_structure_if_principal f = if !Clflags.principal then with_local_level_generalize_structure f else f () let with_local_level_generalize_for_class f = with_local_level_gen ~begin_def:begin_class_def ~structure:false f let with_local_level ?post f = begin_def (); let result = wrap_end_def f in Option.iter (fun g -> g result) post; result let with_local_level_if cond f ~post = if cond then with_local_level f ~post else f () let with_local_level_iter f ~post = begin_def (); let (result, l) = wrap_end_def f in List.iter post l; result let with_local_level_iter_if cond f ~post = if cond then with_local_level_iter f ~post else fst (f ()) let with_local_level_if_principal f ~post = with_local_level_if !Clflags.principal f ~post let with_local_level_iter_if_principal f ~post = with_local_level_iter_if !Clflags.principal f ~post let with_level ~level f = begin_def (); init_def level; wrap_end_def f let with_level_if cond ~level f = if cond then with_level ~level f else f () let with_local_level_for_class ?post f = begin_class_def (); let result = wrap_end_def f in Option.iter (fun g -> g result) post; result let with_raised_nongen_level f = raise_nongen_level (); wrap_end_def f let reset_global_level () = global_level := !current_level let increase_global_level () = let gl = !global_level in global_level := !current_level; gl let restore_global_level gl = global_level := gl (**** Some type creators ****) (* Re-export generic type creators *) let newty desc = newty2 ~level:!current_level desc let new_scoped_ty scope desc = newty3 ~level:!current_level ~scope desc let newvar ?name () = newty2 ~level:!current_level (Tvar name) let newvar2 ?name level = newty2 ~level:level (Tvar name) let new_global_var ?name () = newty2 ~level:!global_level (Tvar name) let newstub ~scope = newty3 ~level:!current_level ~scope (Tvar None) let newobj fields = newty (Tobject (fields, ref None)) let newconstr path tyl = newty (Tconstr (path, tyl, ref Mnil)) let none = newty (Ttuple []) (* Clearly ill-formed type *) (**** information for [Typecore.unify_pat_*] ****) module Pattern_env : sig type t = private { mutable env : Env.t; equations_scope : int; allow_recursive_equations : bool; } val make: Env.t -> equations_scope:int -> allow_recursive_equations:bool -> t val copy: ?equations_scope:int -> t -> t val set_env: t -> Env.t -> unit end = struct type t = { mutable env : Env.t; equations_scope : int; allow_recursive_equations : bool; } let make env ~equations_scope ~allow_recursive_equations = { env; equations_scope; allow_recursive_equations; } let copy ?equations_scope penv = let equations_scope = match equations_scope with None -> penv.equations_scope | Some s -> s in { penv with equations_scope } let set_env penv env = penv.env <- env end (**** unification mode ****) type unification_environment = | Expression of { env : Env.t; in_subst : bool; } (* normal unification mode *) | Pattern of { penv : Pattern_env.t; equated_types : TypePairs.t; assume_injective : bool; unify_eq_set : TypePairs.t; } (* GADT constraint unification mode: only used for type indices of GADT constructors during pattern matching. This allows adding local constraints. *) let get_env = function | Expression {env} -> env | Pattern {penv} -> penv.env let set_env uenv env = match uenv with | Expression _ -> invalid_arg "Ctype.set_env" | Pattern {penv} -> Pattern_env.set_env penv env let in_pattern_mode = function | Expression _ -> false | Pattern _ -> true let get_equations_scope = function | Expression _ -> invalid_arg "Ctype.get_equations_scope" | Pattern r -> r.penv.equations_scope let order_type_pair t1 t2 = if get_id t1 <= get_id t2 then (t1, t2) else (t2, t1) let add_type_equality uenv t1 t2 = match uenv with | Expression _ -> invalid_arg "Ctype.add_type_equality" | Pattern r -> TypePairs.add r.unify_eq_set (order_type_pair t1 t2) let unify_eq uenv t1 t2 = eq_type t1 t2 || match uenv with | Expression _ -> false | Pattern r -> TypePairs.mem r.unify_eq_set (order_type_pair t1 t2) (* unification during type constructor expansion: This mode disables the propagation of the level and scope of the row variable to the whole type during the unification. (see unify_{row, fields} and PR #11771) *) let in_subst_mode = function | Expression {in_subst} -> in_subst | Pattern _ -> false (* Can only be called when generate_equations is true *) let record_equation uenv t1 t2 = match uenv with | Expression _ -> invalid_arg "Ctype.record_equation" | Pattern { equated_types } -> TypePairs.add equated_types (t1, t2) let can_assume_injective = function | Expression _ -> false | Pattern { assume_injective } -> assume_injective let in_counterexample uenv = match uenv with | Expression _ -> false | Pattern { penv } -> penv.allow_recursive_equations let allow_recursive_equations uenv = !Clflags.recursive_types || in_counterexample uenv (* Though without_* functions can be in a direct style, CPS clarifies the structure of the code better. *) let without_assume_injective uenv f = match uenv with | Expression _ as uenv -> f uenv | Pattern r -> f (Pattern { r with assume_injective = false }) (*** Checks for type definitions ***) let rec in_current_module = function | Path.Pident _ -> true | Path.Pdot _ | Path.Papply _ -> false | Path.Pextra_ty (p, _) -> in_current_module p let in_pervasives p = in_current_module p && try ignore (Env.find_type p Env.initial); true with Not_found -> false let is_datatype decl= match decl.type_kind with Type_record _ | Type_variant _ | Type_open -> true | Type_abstract _ -> false (**********************************************) (* Miscellaneous operations on object types *) (**********************************************) (* Note: We need to maintain some invariants: * cty_self must be a Tobject * ... *) (**** Object field manipulation. ****) let object_fields ty = match get_desc ty with Tobject (fields, _) -> fields | _ -> assert false let flatten_fields ty = let rec flatten l ty = match get_desc ty with Tfield(s, k, ty1, ty2) -> flatten ((s, k, ty1)::l) ty2 | _ -> (l, ty) in let (l, r) = flatten [] ty in (List.sort (fun (n, _, _) (n', _, _) -> compare n n') l, r) let build_fields level = List.fold_right (fun (s, k, ty1) ty2 -> newty2 ~level (Tfield(s, k, ty1, ty2))) let associate_fields fields1 fields2 = let rec associate p s s' = function (l, []) -> (List.rev p, (List.rev s) @ l, List.rev s') | ([], l') -> (List.rev p, List.rev s, (List.rev s') @ l') | ((n, k, t)::r, (n', k', t')::r') when n = n' -> associate ((n, k, t, k', t')::p) s s' (r, r') | ((n, k, t)::r, ((n', _k', _t')::_ as l')) when n < n' -> associate p ((n, k, t)::s) s' (r, l') | (((_n, _k, _t)::_ as l), (n', k', t')::r') (* when n > n' *) -> associate p s ((n', k', t')::s') (l, r') in associate [] [] [] (fields1, fields2) (**** Check whether an object is open ****) (* +++ The abbreviation should eventually be expanded *) let rec object_row ty = match get_desc ty with Tobject (t, _) -> object_row t | Tfield(_, _, _, t) -> object_row t | _ -> ty let opened_object ty = match get_desc (object_row ty) with | Tvar _ | Tunivar _ | Tconstr _ -> true | _ -> false let concrete_object ty = match get_desc (object_row ty) with | Tvar _ -> false | _ -> true (**** Row variable of an object type ****) let rec fields_row_variable ty = match get_desc ty with | Tfield (_, _, _, ty) -> fields_row_variable ty | Tvar _ -> ty | _ -> assert false (**** Object name manipulation ****) (* +++ Bientot obsolete *) let set_object_name id params ty = match get_desc ty with | Tobject (fi, nm) -> let rv = fields_row_variable fi in set_name nm (Some (Path.Pident id, rv::params)) | Tconstr (_, _, _) -> () | _ -> fatal_error "Ctype.set_object_name" let remove_object_name ty = match get_desc ty with Tobject (_, nm) -> set_name nm None | Tconstr (_, _, _) -> () | _ -> fatal_error "Ctype.remove_object_name" (*******************************************) (* Miscellaneous operations on row types *) (*******************************************) let sort_row_fields = List.sort (fun (p,_) (q,_) -> compare p q) let rec merge_rf r1 r2 pairs fi1 fi2 = match fi1, fi2 with (l1,f1 as p1)::fi1', (l2,f2 as p2)::fi2' -> if l1 = l2 then merge_rf r1 r2 ((l1,f1,f2)::pairs) fi1' fi2' else if l1 < l2 then merge_rf (p1::r1) r2 pairs fi1' fi2 else merge_rf r1 (p2::r2) pairs fi1 fi2' | [], _ -> (List.rev r1, List.rev_append r2 fi2, pairs) | _, [] -> (List.rev_append r1 fi1, List.rev r2, pairs) let merge_row_fields fi1 fi2 = match fi1, fi2 with [], _ | _, [] -> (fi1, fi2, []) | [p1], _ when not (List.mem_assoc (fst p1) fi2) -> (fi1, fi2, []) | _, [p2] when not (List.mem_assoc (fst p2) fi1) -> (fi1, fi2, []) | _ -> merge_rf [] [] [] (sort_row_fields fi1) (sort_row_fields fi2) let rec filter_row_fields erase = function [] -> [] | (_l,f as p)::fi -> let fi = filter_row_fields erase fi in match row_field_repr f with Rabsent -> fi | Reither(_,_,false) when erase -> link_row_field_ext ~inside:f rf_absent; fi | _ -> p :: fi (**************************************) (* Check genericity of type schemes *) (**************************************) type variable_kind = Row_variable | Type_variable exception Non_closed of type_expr * variable_kind (* [free_vars] walks over the variables of the input type expression. It is used for several different things in the type-checker, with the following bells and whistles: - If [env] is Some typing environment, types in the environment are expanded to check whether the apparently-free variable would vanish during expansion. - We do not count "virtual" free variables -- free variables stored in the abbreviation of an object type that has been expanded (we store the abbreviations for use when displaying the type). [free_vars] accumulates its answer in a monoid-like structure, with an initial element [zero] and a combining function [add_one], passing [add_one] information about whether the variable is a normal type variable or a row variable. *) let free_vars ~init ~add_one ?env mark ty = let rec fv ~kind acc ty = if not (try_mark_node mark ty) then acc else match get_desc ty, env with | Tvar _, _ -> add_one ty kind acc | Tconstr (path, tl, _), Some env -> let acc = match Env.find_type_expansion path env with | exception Not_found -> acc | (_, body, _) -> if get_level body = generic_level then acc else add_one ty kind acc in List.fold_left (fv ~kind:Type_variable) acc tl | Tobject (ty, _), _ -> (* ignoring the second parameter of [Tobject] amounts to not counting "virtual free variables". *) fv ~kind:Row_variable acc ty | Tfield (_, _, ty1, ty2), _ -> let acc = fv ~kind:Type_variable acc ty1 in fv ~kind:Row_variable acc ty2 | Tvariant row, _ -> let acc = fold_row (fv ~kind:Type_variable) acc row in if static_row row then acc else fv ~kind:Row_variable acc (row_more row) | _ -> fold_type_expr (fv ~kind) acc ty in fv ~kind:Type_variable init ty let free_variables ?env ty = let add_one ty _kind acc = ty :: acc in with_type_mark (fun mark -> free_vars ~init:[] ~add_one ?env mark ty) let closed_type ?env mark ty = let add_one ty kind _acc = raise (Non_closed (ty, kind)) in free_vars ~init:() ~add_one ?env mark ty let closed_type_expr ?env ty = with_type_mark (fun mark -> try closed_type ?env mark ty; true with Non_closed _ -> false) let closed_parameterized_type params ty = with_type_mark begin fun mark -> List.iter (mark_type mark) params; try closed_type mark ty; true with Non_closed _ -> false end let closed_type_decl decl = with_type_mark begin fun mark -> try List.iter (mark_type mark) decl.type_params; begin match decl.type_kind with Type_abstract _ -> () | Type_variant (v, _rep) -> List.iter (fun {cd_args; cd_res; _} -> match cd_res with | Some _ -> () | None -> match cd_args with | Cstr_tuple l -> List.iter (closed_type mark) l | Cstr_record l -> List.iter (fun l -> closed_type mark l.ld_type) l ) v | Type_record(r, _rep) -> List.iter (fun l -> closed_type mark l.ld_type) r | Type_open -> () end; begin match decl.type_manifest with None -> () | Some ty -> closed_type mark ty end; None with Non_closed (ty, _) -> Some ty end let closed_extension_constructor ext = with_type_mark begin fun mark -> try List.iter (mark_type mark) ext.ext_type_params; begin match ext.ext_ret_type with | Some _ -> () | None -> iter_type_expr_cstr_args (closed_type mark) ext.ext_args end; None with Non_closed (ty, _) -> Some ty end type closed_class_failure = { free_variable: type_expr * variable_kind; meth: string; meth_ty: type_expr; } exception CCFailure of closed_class_failure let closed_class params sign = with_type_mark begin fun mark -> List.iter (mark_type mark) params; ignore (try_mark_node mark sign.csig_self_row); try Meths.iter (fun lab (priv, _, ty) -> if priv = Mpublic then begin try closed_type mark ty with Non_closed (ty0, variable_kind) -> raise (CCFailure { free_variable = (ty0, variable_kind); meth = lab; meth_ty = ty; }) end) sign.csig_meths; None with CCFailure reason -> Some reason end (**********************) (* Type duplication *) (**********************) (* Duplicate a type, preserving only type variables *) let duplicate_type ty = Subst.type_expr Subst.identity ty (* Same, for class types *) let duplicate_class_type ty = Subst.class_type Subst.identity ty (*****************************) (* Type level manipulation *) (*****************************) (* Build a copy of a type in which nodes reachable through a path composed only of Tarrow, Tpoly, Ttuple, Tpackage and Tconstr, and whose level was no lower than [!current_level], are at [generic_level]. This is different from [with_local_level_gen], which generalizes in place, and only nodes with a level higher than [!current_level]. This is used for typing classes, to indicate which types have been inferred in the first pass, and can be considered as "known" during the second pass. *) let rec copy_spine copy_scope ty = match get_desc ty with | Tsubst (ty, _) -> ty | Tvar _ | Tfield _ | Tnil | Tvariant _ | Tobject _ | Tlink _ | Tunivar _ -> ty | (Tarrow _ | Tpoly _ | Ttuple _ | Tpackage _ | Tconstr _) as desc -> let level = get_level ty in if level < !current_level || level = generic_level then ty else let t = newgenstub ~scope:(get_scope ty) in For_copy.redirect_desc copy_scope ty (Tsubst (t, None)); let copy_rec = copy_spine copy_scope in let desc' = match desc with | Tarrow (lbl, ty1, ty2, _) -> Tarrow (lbl, copy_rec ty1, copy_rec ty2, commu_ok) | Tpoly (ty', tvl) -> Tpoly (copy_rec ty', tvl) | Ttuple tyl -> Ttuple (List.map copy_rec tyl) | Tpackage (path, fl) -> let fl = List.map (fun (n, ty) -> n, copy_rec ty) fl in Tpackage (path, fl) | Tconstr (path, tyl, _) -> Tconstr (path, List.map copy_rec tyl, ref Mnil) | _ -> assert false in Transient_expr.set_stub_desc t desc'; t let copy_spine ty = For_copy.with_scope (fun copy_scope -> copy_spine copy_scope ty) let forward_try_expand_safe = (* Forward declaration *) ref (fun _env _ty -> assert false) (* Lower the levels of a type (assume [level] is not [generic_level]). *) let rec normalize_package_path env p = let t = try (Env.find_modtype p env).mtd_type with Not_found -> None in match t with | Some (Mty_ident p) -> normalize_package_path env p | Some (Mty_signature _ | Mty_functor _ | Mty_alias _ | Mty_for_hole) | None -> match p with Path.Pdot (p1, s) -> (* For module aliases *) let p1' = Env.normalize_module_path None env p1 in if Path.same p1 p1' then p else normalize_package_path env (Path.Pdot (p1', s)) | _ -> p let rec check_scope_escape mark env level ty = let orig_level = get_level ty in if try_mark_node mark ty then begin if level < get_scope ty then raise_scope_escape_exn ty; begin match get_desc ty with | Tconstr (p, _, _) when level < Path.scope p -> begin match !forward_try_expand_safe env ty with | ty' -> check_scope_escape mark env level ty' | exception Cannot_expand -> raise_escape_exn (Constructor p) end | Tpackage (p, fl) when level < Path.scope p -> let p' = normalize_package_path env p in if Path.same p p' then raise_escape_exn (Module_type p); check_scope_escape mark env level (newty2 ~level:orig_level (Tpackage (p', fl))) | _ -> iter_type_expr (check_scope_escape mark env level) ty end; end let check_scope_escape env level ty = with_type_mark begin fun mark -> try check_scope_escape mark env level ty with Escape e -> raise (Escape { e with context = Some ty }) end let rec update_scope scope ty = if get_scope ty < scope then begin if get_level ty < scope then raise_scope_escape_exn ty; set_scope ty scope; (* Only recurse in principal mode as this is not necessary for soundness *) if !Clflags.principal then iter_type_expr (update_scope scope) ty end let update_scope_for tr_exn scope ty = try update_scope scope ty with Escape e -> raise_for tr_exn (Escape e) (* Note: the level of a type constructor must be greater than its binding time. That way, a type constructor cannot escape the scope of its definition, as would be the case in let x = ref [] module M = struct type t let _ = (x : t list ref) end (without this constraint, the type system would actually be unsound.) *) let rec update_level env level expand ty = let ty_level = get_level ty in if ty_level > level then begin if level < get_scope ty then raise_scope_escape_exn ty; let set_level () = set_level ty level; if ty_level = generic_level then add_to_pool ~level (Transient_expr.repr ty) in match get_desc ty with Tconstr(p, _tl, _abbrev) when level < Path.scope p -> (* Try first to replace an abbreviation by its expansion. *) begin try let ty' = !forward_try_expand_safe env ty in link_type ty ty'; update_level env level expand ty' with Cannot_expand -> raise_escape_exn (Constructor p) end | Tconstr(p, (_ :: _ as tl), _) -> let variance = try (Env.find_type p env).type_variance with Not_found -> List.map (fun _ -> Variance.unknown) tl in let needs_expand = expand || List.exists2 (fun var ty -> var = Variance.null && get_level ty > level) variance tl in begin try if not needs_expand then raise Cannot_expand; let ty' = !forward_try_expand_safe env ty in link_type ty ty'; update_level env level expand ty' with Cannot_expand -> set_level (); iter_type_expr (update_level env level expand) ty end | Tpackage (p, fl) when level < Path.scope p -> let p' = normalize_package_path env p in if Path.same p p' then raise_escape_exn (Module_type p); set_type_desc ty (Tpackage (p', fl)); update_level env level expand ty | Tobject (_, ({contents=Some(p, _tl)} as nm)) when level < Path.scope p -> set_name nm None; update_level env level expand ty | Tvariant row -> begin match row_name row with | Some (p, _tl) when level < Path.scope p -> set_type_desc ty (Tvariant (set_row_name row None)) | _ -> () end; set_level (); iter_type_expr (update_level env level expand) ty | Tfield(lab, _, ty1, _) when lab = dummy_method && level < get_scope ty1 -> raise_escape_exn Self | _ -> set_level (); (* XXX what about abbreviations in Tconstr ? *) iter_type_expr (update_level env level expand) ty end (* First try without expanding, then expand everything, to avoid combinatorial blow-up *) let update_level env level ty = if get_level ty > level then begin let snap = snapshot () in try update_level env level false ty with Escape _ -> backtrack snap; update_level env level true ty end let update_level_for tr_exn env level ty = try update_level env level ty with Escape e -> raise_for tr_exn (Escape e) (* Lower level of type variables inside contravariant branches *) let rec lower_contravariant env var_level visited contra ty = let must_visit = get_level ty > var_level && match Hashtbl.find visited (get_id ty) with | done_contra -> contra && not done_contra | exception Not_found -> true in if must_visit then begin Hashtbl.add visited (get_id ty) contra; let lower_rec = lower_contravariant env var_level visited in match get_desc ty with Tvar _ -> if contra then set_level ty var_level | Tconstr (_, [], _) -> () | Tconstr (path, tyl, _abbrev) -> let variance, maybe_expand = try let typ = Env.find_type path env in typ.type_variance, type_kind_is_abstract typ with Not_found -> (* See testsuite/tests/typing-missing-cmi-2 for an example *) List.map (fun _ -> Variance.unknown) tyl, false in if List.for_all ((=) Variance.null) variance then () else let not_expanded () = List.iter2 (fun v t -> if v = Variance.null then () else if Variance.(mem May_weak v) then lower_rec true t else lower_rec contra t) variance tyl in if maybe_expand then (* we expand cautiously to avoid missing cmis *) match !forward_try_expand_safe env ty with | ty -> lower_rec contra ty | exception Cannot_expand -> not_expanded () else not_expanded () | Tpackage (_, fl) -> List.iter (fun (_n, ty) -> lower_rec true ty) fl | Tarrow (_, t1, t2, _) -> lower_rec true t1; lower_rec contra t2 | _ -> iter_type_expr (lower_rec contra) ty end let lower_variables_only env level ty = simple_abbrevs := Mnil; lower_contravariant env level (Hashtbl.create 7) true ty let lower_contravariant env ty = simple_abbrevs := Mnil; lower_contravariant env !nongen_level (Hashtbl.create 7) false ty let rec generalize_class_type gen = function Cty_constr (_, params, cty) -> List.iter gen params; generalize_class_type gen cty | Cty_signature csig -> gen csig.csig_self; gen csig.csig_self_row; Vars.iter (fun _ (_, _, ty) -> gen ty) csig.csig_vars; Meths.iter (fun _ (_, _, ty) -> gen ty) csig.csig_meths | Cty_arrow (_, ty, cty) -> gen ty; generalize_class_type gen cty (* Only generalize the type ty0 in ty *) let limited_generalize ty0 ~inside:ty = let graph = TypeHash.create 17 in let roots = ref [] in let rec inverse pty ty = match TypeHash.find_opt graph ty with | Some parents -> parents := pty @ !parents | None -> let level = get_level ty in if level > !current_level then begin TypeHash.add graph ty (ref pty); (* XXX: why generic_level needs to be a root *) if (level = generic_level) || eq_type ty ty0 then roots := ty :: !roots; iter_type_expr (inverse [ty]) ty end in let rec generalize_parents ~is_root ty = if is_root || get_level ty <> generic_level then begin set_level ty generic_level; List.iter (generalize_parents ~is_root:false) !(TypeHash.find graph ty); (* Special case for rows: must generalize the row variable *) match get_desc ty with Tvariant row -> let more = row_more row in let lv = get_level more in if (TypeHash.mem graph more || lv > !current_level) && lv <> generic_level then set_level more generic_level | _ -> () end in inverse [] ty; List.iter (generalize_parents ~is_root:true) !roots; TypeHash.iter (fun ty _ -> if get_level ty <> generic_level then set_level ty !current_level) graph let limited_generalize_class_type rv ~inside:cty = generalize_class_type (fun inside -> limited_generalize rv ~inside) cty (* Compute statically the free univars of all nodes in a type *) (* This avoids doing it repeatedly during instantiation *) type inv_type_expr = { inv_type : type_expr; mutable inv_parents : inv_type_expr list } let rec inv_type hash pty ty = try let inv = TypeHash.find hash ty in inv.inv_parents <- pty @ inv.inv_parents with Not_found -> let inv = { inv_type = ty; inv_parents = pty } in TypeHash.add hash ty inv; iter_type_expr (inv_type hash [inv]) ty let compute_univars ty = let inverted = TypeHash.create 17 in inv_type inverted [] ty; let node_univars = TypeHash.create 17 in let rec add_univar univ inv = match get_desc inv.inv_type with Tpoly (_ty, tl) when List.memq (get_id univ) (List.map get_id tl) -> () | _ -> try let univs = TypeHash.find node_univars inv.inv_type in if not (TypeSet.mem univ !univs) then begin univs := TypeSet.add univ !univs; List.iter (add_univar univ) inv.inv_parents end with Not_found -> TypeHash.add node_univars inv.inv_type (ref(TypeSet.singleton univ)); List.iter (add_univar univ) inv.inv_parents in TypeHash.iter (fun ty inv -> if is_Tunivar ty then add_univar ty inv) inverted; fun ty -> try !(TypeHash.find node_univars ty) with Not_found -> TypeSet.empty let fully_generic ty = with_type_mark begin fun mark -> let rec aux ty = if try_mark_node mark ty then if get_level ty = generic_level then iter_type_expr aux ty else raise Exit in try aux ty; true with Exit -> false end (*******************) (* Instantiation *) (*******************) let rec find_repr p1 = function Mnil -> None | Mcons (Public, p2, ty, _, _) when Path.same p1 p2 -> Some ty | Mcons (_, _, _, _, rem) -> find_repr p1 rem | Mlink {contents = rem} -> find_repr p1 rem (* Generic nodes are duplicated, while non-generic nodes are left as-is. During instantiation, the result of copying a generic node is "cached" in-place by temporarily mutating the node description by a stub [Tsubst (newvar ())] using [For_copy.redirect_desc]. The scope of this mutation is determined by the [copy_scope] parameter, and the [For_copy.with_scope] helper is in charge of creating a new scope and performing the necessary book-keeping -- in particular reverting the in-place updates after the instantiation is done. *) let abbreviations = ref (ref Mnil) (* Abbreviation memorized. *) (* partial: we may not wish to copy the non generic types before we call type_pat *) let rec copy ?partial ?keep_names copy_scope ty = let copy = copy ?partial ?keep_names copy_scope in match get_desc ty with Tsubst (ty, _) -> ty | desc -> let level = get_level ty in if level <> generic_level && partial = None then ty else (* We only forget types that are non generic and do not contain free univars *) let forget = if level = generic_level then generic_level else match partial with None -> assert false | Some (free_univars, keep) -> if TypeSet.is_empty (free_univars ty) then if keep then level else !current_level else generic_level in if forget <> generic_level then newty2 ~level:forget (Tvar None) else let t = newstub ~scope:(get_scope ty) in For_copy.redirect_desc copy_scope ty (Tsubst (t, None)); let desc' = match desc with | Tconstr (p, tl, _) -> let abbrevs = proper_abbrevs tl !abbreviations in begin match find_repr p !abbrevs with Some ty when not (eq_type ty t) -> Tlink ty | _ -> (* One must allocate a new reference, so that abbrevia- tions belonging to different branches of a type are independent. Moreover, a reference containing a [Mcons] must be shared, so that the memorized expansion of an abbrevi- ation can be released by changing the content of just one reference. *) Tconstr (p, List.map copy tl, ref (match !(!abbreviations) with Mcons _ -> Mlink !abbreviations | abbrev -> abbrev)) end | Tvariant row -> let more = row_more row in let mored = get_desc more in (* We must substitute in a subtle way *) (* Tsubst takes a tuple containing the row var and the variant *) begin match mored with Tsubst (_, Some ty2) -> (* This variant type has been already copied *) (* Change the stub to avoid Tlink in the new type *) For_copy.redirect_desc copy_scope ty (Tsubst (ty2, None)); Tlink ty2 | _ -> (* If the row variable is not generic, we must keep it *) let keep = get_level more <> generic_level && partial = None in let more' = match mored with Tsubst (ty, None) -> ty (* TODO: is this case possible? possibly an interaction with (copy more) below? *) | Tconstr _ | Tnil -> copy more | Tvar _ | Tunivar _ -> if keep then more else newty mored | _ -> assert false in let row = match get_desc more' with (* PR#6163 *) Tconstr (x,_,_) when not (is_fixed row) -> let Row {fields; more; closed; name} = row_repr row in create_row ~fields ~more ~closed ~name ~fixed:(Some (Reified x)) | _ -> row in (* Open row if partial for pattern and contains Reither *) let more', row = match partial with Some (free_univars, false) -> let not_reither (_, f) = match row_field_repr f with Reither _ -> false | _ -> true in let fields = row_fields row in if row_closed row && not (is_fixed row) && TypeSet.is_empty (free_univars ty) && not (List.for_all not_reither fields) then let more' = newvar () in (more', create_row ~fields:(List.filter not_reither fields) ~more:more' ~closed:false ~fixed:None ~name:None) else (more', row) | _ -> (more', row) in (* Register new type first for recursion *) For_copy.redirect_desc copy_scope more (Tsubst(more', Some t)); (* Return a new copy *) Tvariant (copy_row copy true row keep more') end | Tobject (ty1, _) when partial <> None -> Tobject (copy ty1, ref None) | _ -> copy_type_desc ?keep_names copy desc in Transient_expr.set_stub_desc t desc'; t (**** Variants of instantiations ****) let instance ?partial sch = let partial = match partial with None -> None | Some keep -> Some (compute_univars sch, keep) in For_copy.with_scope (fun copy_scope -> copy ?partial copy_scope sch) let generic_instance sch = with_level ~level:generic_level (fun () -> instance sch) let instance_list schl = For_copy.with_scope (fun copy_scope -> List.map (fun t -> copy copy_scope t) schl) (* Create unique names to new type constructors. Used for existential types and local constraints. *) let get_new_abstract_name env s = let name index = if index = 0 && s <> "" && s.[String.length s - 1] <> '$' then s else Printf.sprintf "%s%d" s index in let check index = match Env.find_type_by_name (Longident.Lident (name index)) env with | _ -> false | exception Not_found -> true in let index = Misc.find_first_mono check in name index let new_local_type ?(loc = Location.none) ?manifest_and_scope origin = let manifest, expansion_scope = match manifest_and_scope with None -> None, Btype.lowest_level | Some (ty, scope) -> Some ty, scope in { type_params = []; type_arity = 0; type_kind = Type_abstract origin; type_private = Public; type_manifest = manifest; type_variance = []; type_separability = []; type_is_newtype = true; type_expansion_scope = expansion_scope; type_loc = loc; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); } let existential_name name_counter ty = let name = match get_desc ty with | Tvar (Some name) -> name | _ -> let name = Misc.letter_of_int !name_counter in incr name_counter; name in "$" ^ name type existential_treatment = | Keep_existentials_flexible | Make_existentials_abstract of Pattern_env.t let instance_constructor existential_treatment cstr = For_copy.with_scope (fun copy_scope -> let name_counter = ref 0 in let copy_existential = match existential_treatment with | Keep_existentials_flexible -> copy copy_scope | Make_existentials_abstract penv -> fun existential -> let env = penv.env in let fresh_constr_scope = penv.equations_scope in let decl = new_local_type (Existential cstr.cstr_name) in let name = existential_name name_counter existential in let (id, new_env) = Env.enter_type (get_new_abstract_name env name) decl env ~scope:fresh_constr_scope in Pattern_env.set_env penv new_env; let to_unify = newty (Tconstr (Path.Pident id,[],ref Mnil)) in let tv = copy copy_scope existential in assert (is_Tvar tv); link_type tv to_unify; tv in let ty_ex = List.map copy_existential cstr.cstr_existentials in let ty_res = copy copy_scope cstr.cstr_res in let ty_args = List.map (copy copy_scope) cstr.cstr_args in (ty_args, ty_res, ty_ex) ) let instance_parameterized_type ?keep_names sch_args sch = For_copy.with_scope (fun copy_scope -> let ty_args = List.map (fun t -> copy ?keep_names copy_scope t) sch_args in let ty = copy copy_scope sch in (ty_args, ty) ) let map_kind f = function | Type_abstract r -> Type_abstract r | Type_open -> Type_open | Type_variant (cl, rep) -> Type_variant ( List.map (fun c -> {c with cd_args = map_type_expr_cstr_args f c.cd_args; cd_res = Option.map f c.cd_res }) cl, rep) | Type_record (fl, rr) -> Type_record ( List.map (fun l -> {l with ld_type = f l.ld_type} ) fl, rr) let instance_declaration decl = For_copy.with_scope (fun copy_scope -> {decl with type_params = List.map (copy copy_scope) decl.type_params; type_manifest = Option.map (copy copy_scope) decl.type_manifest; type_kind = map_kind (copy copy_scope) decl.type_kind; } ) let generic_instance_declaration decl = with_level ~level:generic_level (fun () -> instance_declaration decl) let instance_class params cty = let rec copy_class_type copy_scope = function | Cty_constr (path, tyl, cty) -> let tyl' = List.map (copy copy_scope) tyl in let cty' = copy_class_type copy_scope cty in Cty_constr (path, tyl', cty') | Cty_signature sign -> Cty_signature {csig_self = copy copy_scope sign.csig_self; csig_self_row = copy copy_scope sign.csig_self_row; csig_vars = Vars.map (function (m, v, ty) -> (m, v, copy copy_scope ty)) sign.csig_vars; csig_meths = Meths.map (function (p, v, ty) -> (p, v, copy copy_scope ty)) sign.csig_meths} | Cty_arrow (l, ty, cty) -> Cty_arrow (l, copy copy_scope ty, copy_class_type copy_scope cty) in For_copy.with_scope (fun copy_scope -> let params' = List.map (copy copy_scope) params in let cty' = copy_class_type copy_scope cty in (params', cty') ) (**** Instantiation for types with free universal variables ****) (* [copy_sep] is used to instantiate first-class polymorphic types. * It first makes a separate copy of the type as a graph, omitting nodes that have no free univars. * In this first pass, [visited] is used as a mapping for previously visited nodes, and must already contain all the free univars in [ty]. * The remaining (univar-closed) parts of the type are then instantiated with [copy] using a common [copy_scope]. The reason to work in two passes lies in recursive types such as: [let h (x : < m : 'a. < n : 'a; p : 'b > > as 'b) = x#m] The type of [x#m] should be: [ < n : 'c; p : < m : 'a. < n : 'a; p : 'b > > as 'b > ] I.e., the universal type variable ['a] is both instantiated as a fresh type variable ['c] when outside of its binder, and kept as universal when under its binder. Assumption: in the first call to [copy_sep], all the free univars should be bound by the same [Tpoly] node. This guarantees that they are only bound when under this [Tpoly] node, which has no free univars, and as such is not part of the separate copy. In turn, this allows the separate copy to keep the sharing of the original type without breaking its binding structure. *) let copy_sep ~copy_scope ~fixed ~(visited : type_expr TypeHash.t) sch = let free = compute_univars sch in let delayed_copies = ref [] in let add_delayed_copy t ty = delayed_copies := (fun () -> Transient_expr.set_stub_desc t (Tlink (copy copy_scope ty))) :: !delayed_copies in let rec copy_rec ~ (ty : type_expr) = let univars = free ty in if is_Tvar ty || may_share && TypeSet.is_empty univars then if get_level ty <> generic_level then ty else let t = newstub ~scope:(get_scope ty) in add_delayed_copy t ty; t else try TypeHash.find visited ty with Not_found -> begin let t = newstub ~scope:(get_scope ty) in TypeHash.add visited ty t; let desc' = match get_desc ty with | Tvariant row -> let more = row_more row in (* We shall really check the level on the row variable *) let keep = is_Tvar more && get_level more <> generic_level in (* In that case we should keep the original, but we still call copy to correct the levels *) if keep then (add_delayed_copy t ty; Tvar None) else let more' = copy_rec ~may_share:false more in let fixed' = fixed && (is_Tvar more || is_Tunivar more) in let row = copy_row (copy_rec ~may_share:true) fixed' row keep more' in Tvariant row | Tfield (p, k, ty1, ty2) -> (* the kind is kept shared, see Btype.copy_type_desc *) Tfield (p, field_kind_internal_repr k, copy_rec ~may_share:true ty1, copy_rec ~may_share:false ty2) | desc -> copy_type_desc (copy_rec ~may_share:true) desc in Transient_expr.set_stub_desc t desc'; t end in let ty = copy_rec ~may_share:true sch in List.iter (fun force -> force ()) !delayed_copies; ty let instance_poly' copy_scope ~keep_names ~fixed univars sch = (* In order to compute univars below, [sch] should not contain [Tsubst] *) let copy_var ty = match get_desc ty with Tunivar name -> if keep_names then newty (Tvar name) else newvar () | _ -> assert false in let vars = List.map copy_var univars in let visited = TypeHash.create 17 in List.iter2 (TypeHash.add visited) univars vars; let ty = copy_sep ~copy_scope ~fixed ~visited sch in vars, ty let instance_poly ?(keep_names=false) ~fixed univars sch = For_copy.with_scope (fun copy_scope -> instance_poly' copy_scope ~keep_names ~fixed univars sch ) let instance_label ~fixed lbl = For_copy.with_scope (fun copy_scope -> let vars, ty_arg = match get_desc lbl.lbl_arg with Tpoly (ty, tl) -> instance_poly' copy_scope ~keep_names:false ~fixed tl ty | _ -> [], copy copy_scope lbl.lbl_arg in (* call [copy] after [instance_poly] to avoid introducing [Tsubst] *) let ty_res = copy copy_scope lbl.lbl_res in (vars, ty_arg, ty_res) ) (**** Instantiation with parameter substitution ****) (* NB: since this is [unify_var], it raises [Unify], not [Unify_trace] *) let unify_var' = (* Forward declaration *) ref (fun _env _ty1 _ty2 -> assert false) let subst env level priv abbrev oty params args body = if List.length params <> List.length args then raise Cannot_subst; with_level ~level begin fun () -> let body0 = newvar () in (* Stub *) let undo_abbrev = match oty with | None -> fun () -> () (* No abbreviation added *) | Some ty -> match get_desc ty with Tconstr (path, tl, _) -> let abbrev = proper_abbrevs tl abbrev in memorize_abbrev abbrev priv path ty body0; fun () -> forget_abbrev abbrev path | _ -> assert false in abbreviations := abbrev; let (params', body') = instance_parameterized_type params body in abbreviations := ref Mnil; let uenv = Expression {env; in_subst = true} in try !unify_var' uenv body0 body'; List.iter2 (!unify_var' uenv) params' args; body' with Unify _ -> undo_abbrev (); raise Cannot_subst end (* Default to generic level. Usually, only the shape of the type matters, not whether it is generic or not. [generic_level] might be somewhat slower, but it ensures invariants on types are enforced (decreasing levels), and we don't care about efficiency here. *) let apply ?(use_current_level = false) env params body args = simple_abbrevs := Mnil; let level = if use_current_level then !current_level else generic_level in try subst env level Public (ref Mnil) None params args body with Cannot_subst -> raise Cannot_apply (****************************) (* Abbreviation expansion *) (****************************) (* If the environment has changed, memorized expansions might not be correct anymore, and so we flush the cache. The test used checks whether any of types, modules, or local constraints have been changed. *) let previous_env = ref Env.empty (*let string_of_kind = function Public -> "public" | Private -> "private"*) let check_abbrev_env env = if not (Env.same_type_declarations env !previous_env) then begin (* prerr_endline "cleanup expansion cache"; *) cleanup_abbrev (); simple_abbrevs := Mnil; previous_env := env end (* Expand an abbreviation. The expansion is memorized. *) (* Assume the level is greater than the path binding time of the expanded abbreviation. *) (* An abbreviation expansion will fail in either of these cases: 1. The type constructor does not correspond to a manifest type. 2. The type constructor is defined in an external file, and this file is not in the path (missing -I options). 3. The type constructor is not in the "local" environment. This can happens when a non-generic type variable has been instantiated afterwards to the not yet defined type constructor. (Actually, this cannot happen at the moment due to the strong constraints between type levels and constructor binding time.) 4. The expansion requires the expansion of another abbreviation, and this other expansion fails. *) let expand_abbrev_gen kind find_type_expansion env ty = let path, args, abbrev = match get_desc ty with | Tconstr (path,args,abbrev) -> path, args, abbrev | _ -> assert false in check_abbrev_env env; let level = get_level ty in let scope = get_scope ty in let lookup_abbrev = proper_abbrevs args abbrev in let expansion = (* first look for an existing expansion *) match find_expans kind path !lookup_abbrev with | None -> None | Some ty' -> try (* prerr_endline ("found a "^string_of_kind kind^" expansion for "^Path.name path);*) if level <> generic_level then update_level env level ty'; update_scope scope ty'; Some ty' with Escape _ -> (* in case of Escape, discard the stale expansion and re-expand *) forget_abbrev lookup_abbrev path; None in begin match expansion with | Some ty' -> ty' | None -> (* attempt to (re-)expand *) match find_type_expansion path env with | exception Not_found -> (* another way to expand is to normalize the path itself *) let path' = Env.normalize_type_path None env path in if Path.same path path' then raise Cannot_expand else newty2 ~level (Tconstr (path', args, abbrev)) | (params, body, lv) -> (* prerr_endline ("add a "^string_of_kind kind^" expansion for "^Path.name path);*) let ty' = try subst env level kind abbrev (Some ty) params args body with Cannot_subst -> raise_escape_exn Constraint in (* For gadts, remember type as non exportable *) (* The ambiguous level registered for ty' should be the highest *) (* if !trace_gadt_instances then begin *) let scope = Int.max lv (get_scope ty) in update_scope scope ty; update_scope scope ty'; ty' end (* Expand respecting privacy *) let expand_abbrev env ty = expand_abbrev_gen Public Env.find_type_expansion env ty (* Expand once the head of a type *) let expand_head_once env ty = try expand_abbrev env ty with Cannot_expand | Escape _ -> assert false (* Check whether a type can be expanded *) let safe_abbrev env ty = let snap = Btype.snapshot () in try ignore (expand_abbrev env ty); true with Cannot_expand -> Btype.backtrack snap; false | Escape _ -> Btype.backtrack snap; cleanup_abbrev (); false (* Expand the head of a type once. Raise Cannot_expand if the type cannot be expanded. May raise Escape, if a recursion was hidden in the type. *) let try_expand_once env ty = match get_desc ty with Tconstr _ -> expand_abbrev env ty | _ -> raise Cannot_expand (* This one only raises Cannot_expand *) let try_expand_safe env ty = let snap = Btype.snapshot () in try try_expand_once env ty with Escape _ -> Btype.backtrack snap; cleanup_abbrev (); raise Cannot_expand (* Fully expand the head of a type. *) let rec try_expand_head (try_once : Env.t -> type_expr -> type_expr) env ty = let ty' = try_once env ty in (* let () = Format.eprintf "BEFORE TRY_EXPAND_HEAD REC\n" in *) if ty == ty' then ty' else try try_expand_head try_once env ty' with Cannot_expand -> ty' (* Unsafe full expansion, may raise [Unify [Escape _]]. *) let expand_head_unif env ty = try try_expand_head try_expand_once env ty with | Cannot_expand -> ty | Escape e -> raise_for Unify (Escape e) (* Safe version of expand_head, never fails *) let expand_head env ty = try try_expand_head try_expand_safe env ty with Cannot_expand -> ty let _ = forward_try_expand_safe := try_expand_safe (* Expand until we find a non-abstract type declaration, use try_expand_safe to avoid raising "Unify _" when called on recursive types *) type typedecl_extraction_result = | Typedecl of Path.t * Path.t * type_declaration | Has_no_typedecl | May_have_typedecl let rec extract_concrete_typedecl env ty = match get_desc ty with Tconstr (p, _, _) -> begin match Env.find_type p env with | exception Not_found -> May_have_typedecl | decl -> if not (type_kind_is_abstract decl) then Typedecl(p, p, decl) else begin match try_expand_safe env ty with | exception Cannot_expand -> May_have_typedecl | ty -> match extract_concrete_typedecl env ty with | Typedecl(_, p', decl) -> Typedecl(p, p', decl) | Has_no_typedecl -> Has_no_typedecl | May_have_typedecl -> May_have_typedecl end end | Tpoly(ty, _) -> extract_concrete_typedecl env ty | Tarrow _ | Ttuple _ | Tobject _ | Tfield _ | Tnil | Tvariant _ | Tpackage _ -> Has_no_typedecl | Tvar _ | Tunivar _ -> May_have_typedecl | Tlink _ | Tsubst _ -> assert false (* Implementing function [expand_head_opt], the compiler's own version of [expand_head] used for type-based optimisations. [expand_head_opt] uses [Env.find_type_expansion_opt] to access the manifest type information of private abstract data types which is normally hidden to the type-checker out of the implementation module of the private abbreviation. *) let expand_abbrev_opt env ty = expand_abbrev_gen Private Env.find_type_expansion_opt env ty let safe_abbrev_opt env ty = let snap = Btype.snapshot () in try ignore (expand_abbrev_opt env ty); true with Cannot_expand | Escape _ -> Btype.backtrack snap; false let try_expand_once_opt env ty = match get_desc ty with Tconstr _ -> expand_abbrev_opt env ty | _ -> raise Cannot_expand let try_expand_safe_opt env ty = let snap = Btype.snapshot () in try try_expand_once_opt env ty with Escape _ -> Btype.backtrack snap; raise Cannot_expand let expand_head_opt env ty = try try_expand_head try_expand_safe_opt env ty with Cannot_expand -> ty (* Recursively expand the head of a type. Also expand #-types. Error printing relies on [full_expand] returning exactly its input (i.e., a physically equal type) when nothing changes. *) let full_expand ~may_forget_scope env ty = let ty = if may_forget_scope then try expand_head_unif env ty with Unify_trace _ -> (* #10277: forget scopes when printing trace *) with_level ~level:(get_level ty) begin fun () -> (* The same as [expand_head], except in the failing case we return the *original* type, not [duplicate_type ty].*) try try_expand_head try_expand_safe env (duplicate_type ty) with | Cannot_expand -> ty end else expand_head env ty in match get_desc ty with Tobject (fi, {contents = Some (_, v::_)}) when is_Tvar v -> newty2 ~level:(get_level ty) (Tobject (fi, ref None)) | _ -> ty (* Check whether the abbreviation expands to a well-defined type. During the typing of a class, abbreviations for correspondings types expand to non-generic types. *) let generic_abbrev env path = try let (_, body, _) = Env.find_type_expansion path env in get_level body = generic_level with Not_found -> false let generic_private_abbrev env path = try match Env.find_type path env with {type_kind = Type_abstract _; type_private = Private; type_manifest = Some body} -> get_level body = generic_level | _ -> false with Not_found -> false let is_contractive env p = try let decl = Env.find_type p env in in_pervasives p && decl.type_manifest = None || is_datatype decl with Not_found -> false (*****************) (* Occur check *) (*****************) exception Occur let rec occur_rec env allow_recursive visited ty0 ty = if eq_type ty ty0 then raise Occur; match get_desc ty with Tconstr(p, _tl, _abbrev) -> if allow_recursive && is_contractive env p then () else begin try if TypeSet.mem ty visited then raise Occur; let visited = TypeSet.add ty visited in iter_type_expr (occur_rec env allow_recursive visited ty0) ty with Occur -> try let ty' = try_expand_head try_expand_safe env ty in (* This call used to be inlined, but there seems no reason for it. Message was referring to change in rev. 1.58 of the CVS repo. *) occur_rec env allow_recursive visited ty0 ty' with Cannot_expand -> raise Occur end | Tobject _ | Tvariant _ -> () | _ -> if allow_recursive || TypeSet.mem ty visited then () else begin let visited = TypeSet.add ty visited in iter_type_expr (occur_rec env allow_recursive visited ty0) ty end let type_changed = ref false (* trace possible changes to the studied type *) let merge r b = if b then r := true let occur uenv ty0 ty = let env = get_env uenv in let allow_recursive = allow_recursive_equations uenv in let old = !type_changed in try while type_changed := false; if not (eq_type ty0 ty) then occur_rec env allow_recursive TypeSet.empty ty0 ty; !type_changed do () (* prerr_endline "changed" *) done; merge type_changed old with exn -> merge type_changed old; raise exn let occur_for tr_exn uenv t1 t2 = try occur uenv t1 t2 with Occur -> raise_for tr_exn (Rec_occur(t1, t2)) let occur_in env ty0 t = try occur (Expression {env; in_subst = false}) ty0 t; false with Occur -> true (* Check that a local constraint is well-founded *) (* PR#6405: not needed since we allow recursion and work on normalized types *) (* PR#6992: we actually need it for contractiveness *) (* This is a simplified version of occur, only for the rectypes case *) let rec local_non_recursive_abbrev ~allow_rec strict visited env p ty = (*Format.eprintf "@[Check %s =@ %a@]@." (Path.name p) !Btype.print_raw ty;*) if not (List.memq (get_id ty) visited) then begin match get_desc ty with Tconstr(p', args, _abbrev) -> if Path.same p p' then raise Occur; if allow_rec && not strict && is_contractive env p' then () else let visited = get_id ty :: visited in begin try (* try expanding, since [p] could be hidden *) local_non_recursive_abbrev ~allow_rec strict visited env p (try_expand_head try_expand_safe_opt env ty) with Cannot_expand -> let params = try (Env.find_type p' env).type_params with Not_found -> args in List.iter2 (fun tv ty -> let strict = strict || not (is_Tvar tv) in local_non_recursive_abbrev ~allow_rec strict visited env p ty) params args end | Tobject _ | Tvariant _ when not strict -> () | _ -> if strict || not allow_rec then (* PR#7374 *) let visited = get_id ty :: visited in iter_type_expr (local_non_recursive_abbrev ~allow_rec true visited env p) ty end let local_non_recursive_abbrev uenv p ty = let env = get_env uenv in let allow_rec = allow_recursive_equations uenv in try (* PR#7397: need to check trace_gadt_instances *) wrap_trace_gadt_instances env (local_non_recursive_abbrev ~allow_rec false [] env p) ty; true with Occur -> false (*****************************) (* Polymorphic Unification *) (*****************************) (* Polymorphic unification is hard in the presence of recursive types. A correctness argument for the approach below can be made by reference to "Numbering matters: first-order canonical forms for second-order recursive types" (ICFP'04) by Gauthier & Pottier. That work describes putting numbers on nodes; we do not do that here, but instead make a decision about whether to abort or continue based on the comparison of the numbers if we calculated them. A different approach would actually store the relevant numbers in the [Tpoly] nodes. (The algorithm here actually pre-dates that paper, which was developed independently. But reading and understanding the paper will help guide intuition for reading this algorithm nonetheless.) *) (* Since we cannot duplicate universal variables, unification must be done at meta-level, using bindings in univar_pairs *) let rec unify_univar t1 t2 = function (cl1, cl2) :: rem -> let find_univ t cl = List.find_map (fun (t', r) -> if eq_type t t' then Some r else None ) cl in begin match find_univ t1 cl1, find_univ t2 cl2 with Some {contents=Some t'2}, Some _ when eq_type t2 t'2 -> () | Some({contents=None} as r1), Some({contents=None} as r2) -> set_univar r1 t2; set_univar r2 t1 | None, None -> unify_univar t1 t2 rem | _ -> raise Cannot_unify_universal_variables end | [] -> raise Out_of_scope_universal_variable (* The same as [unify_univar], but raises the appropriate exception instead of [Cannot_unify_universal_variables] *) let unify_univar_for (type a) (tr_exn : a trace_exn) t1 t2 univar_pairs = try unify_univar t1 t2 univar_pairs with | Cannot_unify_universal_variables -> raise_unexplained_for tr_exn | Out_of_scope_universal_variable -> (* Allow unscoped univars when checking for equality, since one might want to compare arbitrary subparts of types, ignoring scopes; see Typedecl_variance (#13514) for instance *) match tr_exn with | Equality -> raise_unexplained_for tr_exn | _ -> fatal_error "Ctype.unify_univar_for: univar not in scope" (* Test the occurrence of free univars in a type *) (* That's way too expensive. Must do some kind of caching *) (* If [inj_only=true], only check injective positions *) let occur_univar ?(inj_only=false) env ty = let visited = ref TypeMap.empty in with_type_mark begin fun mark -> let rec occur_rec bound ty = if not_marked_node mark ty then if TypeSet.is_empty bound then (ignore (try_mark_node mark ty); occur_desc bound ty) else try let bound' = TypeMap.find ty !visited in if not (TypeSet.subset bound' bound) then begin visited := TypeMap.add ty (TypeSet.inter bound bound') !visited; occur_desc bound ty end with Not_found -> visited := TypeMap.add ty bound !visited; occur_desc bound ty and occur_desc bound ty = match get_desc ty with Tunivar _ -> if not (TypeSet.mem ty bound) then raise_escape_exn (Univ ty) | Tpoly (ty, tyl) -> let bound = List.fold_right TypeSet.add tyl bound in occur_rec bound ty | Tconstr (_, [], _) -> () | Tconstr (p, tl, _) -> begin try let td = Env.find_type p env in List.iter2 (fun t v -> (* The null variance only occurs in type abbreviations and corresponds to type variables that do not occur in the definition (expansion would erase them completely). The type-checker consistently ignores type expressions in this position. Physical expansion, as done in `occur`, would be costly here, since we need to check inside object and variant types too. *) if Variance.(if inj_only then mem Inj v else not (eq v null)) then occur_rec bound t) tl td.type_variance with Not_found -> if not inj_only then List.iter (occur_rec bound) tl end | _ -> iter_type_expr (occur_rec bound) ty in occur_rec TypeSet.empty ty end let has_free_univars env ty = try occur_univar ~inj_only:false env ty; false with Escape _ -> true let has_injective_univars env ty = try occur_univar ~inj_only:true env ty; false with Escape _ -> true let occur_univar_for tr_exn env ty = try occur_univar env ty with Escape e -> raise_for tr_exn (Escape e) (* Grouping univars by families according to their binders *) let add_univars = List.fold_left (fun s (t,_) -> TypeSet.add t s) let get_univar_family univar_pairs univars = if univars = [] then TypeSet.empty else let insert s = function cl1, (_::_ as cl2) -> if List.exists (fun (t1,_) -> TypeSet.mem t1 s) cl1 then add_univars s cl2 else s | _ -> s in let s = List.fold_right TypeSet.add univars TypeSet.empty in List.fold_left insert s univar_pairs (* Whether a family of univars escapes from a type *) let univars_escape env univar_pairs vl ty = let family = get_univar_family univar_pairs vl in with_type_mark begin fun mark -> let rec occur t = if try_mark_node mark t then begin match get_desc t with Tpoly (t, tl) -> if List.exists (fun t -> TypeSet.mem t family) tl then () else occur t | Tunivar _ -> if TypeSet.mem t family then raise_escape_exn (Univ t) | Tconstr (_, [], _) -> () | Tconstr (p, tl, _) -> begin try let td = Env.find_type p env in List.iter2 (* see occur_univar *) (fun t v -> if not Variance.(eq v null) then occur t) tl td.type_variance with Not_found -> List.iter occur tl end | _ -> iter_type_expr occur t end in occur ty end let univar_pairs = ref [] let with_univar_pairs pairs f = let old = !univar_pairs in univar_pairs := pairs; Misc.try_finally f ~always:(fun () -> univar_pairs := old) (* Wrapper checking that no variable escapes and updating univar_pairs *) let enter_poly env t1 tl1 t2 tl2 f = let old_univars = !univar_pairs in let known_univars = List.fold_left (fun s (cl,_) -> add_univars s cl) TypeSet.empty old_univars in if List.exists (fun t -> TypeSet.mem t known_univars) tl1 then univars_escape env old_univars tl1 (newty(Tpoly(t2,tl2))); if List.exists (fun t -> TypeSet.mem t known_univars) tl2 then univars_escape env old_univars tl2 (newty(Tpoly(t1,tl1))); let cl1 = List.map (fun t -> t, ref None) tl1 and cl2 = List.map (fun t -> t, ref None) tl2 in with_univar_pairs ((cl1,cl2) :: (cl2,cl1) :: old_univars) (fun () -> f t1 t2) let enter_poly_for tr_exn env t1 tl1 t2 tl2 f = try enter_poly env t1 tl1 t2 tl2 f with Escape e -> raise_for tr_exn (Escape e) (**** Instantiate a generic type into a poly type ***) let polyfy env ty vars = let subst_univar copy_scope ty = match get_desc ty with | Tvar name when get_level ty = generic_level -> let t = newty (Tunivar name) in For_copy.redirect_desc copy_scope ty (Tsubst (t, None)); Some t | _ -> None in (* need to expand twice? cf. Ctype.unify2 *) let vars = List.map (expand_head env) vars in let vars = List.map (expand_head env) vars in For_copy.with_scope (fun copy_scope -> let vars' = List.filter_map (subst_univar copy_scope) vars in let ty = copy copy_scope ty in let ty = newty2 ~level:(get_level ty) (Tpoly(ty, vars')) in let complete = List.length vars = List.length vars' in ty, complete ) (* assumption: [ty] is fully generalized. *) let reify_univars env ty = let vars = free_variables ty in let ty, _ = polyfy env ty vars in ty (*****************) (* Unification *) (*****************) let rec has_cached_expansion p abbrev = match abbrev with Mnil -> false | Mcons(_, p', _, _, rem) -> Path.same p p' || has_cached_expansion p rem | Mlink rem -> has_cached_expansion p !rem (**** Transform error trace ****) (* +++ Move it to some other place ? *) (* That's hard to do because it relies on the expansion machinery in Ctype, but still might be nice. *) let expand_type env ty = { ty = ty; expanded = full_expand ~may_forget_scope:true env ty } let expand_any_trace map env trace = map (expand_type env) trace let expand_trace env trace = expand_any_trace Errortrace.map env trace let expand_subtype_trace env trace = expand_any_trace Subtype.map env trace let expand_to_unification_error env trace = unification_error ~trace:(expand_trace env trace) let expand_to_equality_error env trace subst = equality_error ~trace:(expand_trace env trace) ~subst let expand_to_moregen_error env trace = moregen_error ~trace:(expand_trace env trace) (* [expand_trace] and the [expand_to_*_error] functions take care of most of the expansion in this file, but we occasionally need to build [Errortrace.error]s in other ways/elsewhere, so we expose some machinery for doing so *) (* Equivalent to [expand_trace env [Diff {got; expected}]] for a single element *) let expanded_diff env ~got ~expected = Diff (map_diff (expand_type env) {got; expected}) (* Diff while transforming a [type_expr] into an [expanded_type] without expanding *) let unexpanded_diff ~got ~expected = Diff (map_diff trivial_expansion {got; expected}) (**** Unification ****) (* Return whether [t0] occurs in [ty]. Objects are also traversed. *) let deep_occur t0 ty = with_type_mark begin fun mark -> let rec occur_rec ty = if get_level ty >= get_level t0 && try_mark_node mark ty then begin if eq_type ty t0 then raise Occur; iter_type_expr occur_rec ty end in try occur_rec ty; false with Occur -> true end (* A local constraint can be added only if the rhs of the constraint does not contain any Tvars. They need to be removed using this function. This function is called only in [Pattern] mode. *) let reify uenv t = let fresh_constr_scope = get_equations_scope uenv in let create_fresh_constr lev name = let name = match name with Some s -> "$'"^s | _ -> "$" in let decl = new_local_type Definition in let env = get_env uenv in let new_name = (* unique names are needed only for error messages *) if in_counterexample uenv then name else get_new_abstract_name env name in let (id, new_env) = Env.enter_type new_name decl env ~scope:fresh_constr_scope in let path = Path.Pident id in let t = newty2 ~level:lev (Tconstr (path,[],ref Mnil)) in set_env uenv new_env; path, t in let visited = ref TypeSet.empty in let rec iterator ty = if TypeSet.mem ty !visited then () else begin visited := TypeSet.add ty !visited; match get_desc ty with Tvar o -> let level = get_level ty in let path, t = create_fresh_constr level o in link_type ty t; if level < fresh_constr_scope then raise_for Unify (Escape (escape (Constructor path))) | Tvariant r -> if not (static_row r) then begin if is_fixed r then iterator (row_more r) else let m = row_more r in match get_desc m with Tvar o -> let level = get_level m in let path, t = create_fresh_constr level o in let row = let fixed = Some (Reified path) in create_row ~fields:[] ~more:t ~fixed ~name:(row_name r) ~closed:(row_closed r) in link_type m (newty2 ~level (Tvariant row)); if level < fresh_constr_scope then raise_for Unify (Escape (escape (Constructor path))) | _ -> assert false end; iter_row iterator r | _ -> iter_type_expr iterator ty end in iterator t let find_expansion_scope env path = match Env.find_type path env with | { type_manifest = None ; _ } | exception Not_found -> generic_level | decl -> decl.type_expansion_scope let non_aliasable p decl = (* in_pervasives p || (subsumed by in_current_module) *) in_current_module p && not decl.type_is_newtype let is_instantiable env p = try let decl = Env.find_type p env in type_kind_is_abstract decl && decl.type_private = Public && decl.type_arity = 0 && decl.type_manifest = None && not (non_aliasable p decl) with Not_found -> false let compatible_paths p1 p2 = let open Predef in Path.same p1 p2 || Path.same p1 path_bytes && Path.same p2 path_string || Path.same p1 path_string && Path.same p2 path_bytes (* Two labels are considered compatible under certain conditions. - they are the same - in classic mode, only optional labels are relavant - in pattern mode, we act as if we were in classic mode. If not, interactions with GADTs from files compiled in classic mode would be unsound. *) let compatible_labels ~in_pattern_mode l1 l2 = l1 = l2 || (!Clflags.classic || in_pattern_mode) && not (is_optional l1 || is_optional l2) let eq_labels error_mode ~in_pattern_mode l1 l2 = if not (compatible_labels ~in_pattern_mode l1 l2) then raise_for error_mode (Function_label_mismatch {got=l1; expected=l2}) (* Check for datatypes carefully; see PR#6348 *) let rec expands_to_datatype env ty = match get_desc ty with Tconstr (p, _, _) -> begin try is_datatype (Env.find_type p env) || expands_to_datatype env (try_expand_safe env ty) with Not_found | Cannot_expand -> false end | _ -> false (* [mcomp] tests if two types are "compatible" -- i.e., if there could exist a witness of their equality. This is distinct from [eqtype], which checks if two types *are* exactly the same. [mcomp] is used to decide whether GADT cases are unreachable. The existence of a witness is necessarily an incomplete property, i.e. there exists types for which we cannot tell if an equality witness could exist or not. Typically, this is the case for abstract types, which could be equal to anything, depending on their actual definition. As a result [mcomp] overapproximates compatibilty, i.e. when it says that two types are incompatible, we are sure that there exists no equality witness, but if it does not say so, there is no guarantee that such a witness could exist. *) (* [mcomp type_pairs subst env t1 t2] should not raise an exception if it is possible that t1 and t2 are actually equal, assuming the types in type_pairs are equal and that the mapping subst holds. Assumes that both t1 and t2 do not contain any tvars and that both their objects and variants are closed *) let rec mcomp type_pairs env t1 t2 = if eq_type t1 t2 then () else match (get_desc t1, get_desc t2) with | (Tvar _, _) | (_, Tvar _) -> () | (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 -> () | _ -> let t1' = expand_head_opt env t1 in let t2' = expand_head_opt env t2 in (* Expansion may have changed the representative of the types... *) if eq_type t1' t2' then () else if not (TypePairs.mem type_pairs (t1', t2')) then begin TypePairs.add type_pairs (t1', t2'); match (get_desc t1', get_desc t2') with | (Tvar _, _) | (_, Tvar _) -> () | (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) when compatible_labels ~in_pattern_mode:true l1 l2 -> mcomp type_pairs env t1 t2; mcomp type_pairs env u1 u2; | (Ttuple tl1, Ttuple tl2) -> mcomp_list type_pairs env tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) -> mcomp_type_decl type_pairs env p1 p2 tl1 tl2 | (Tconstr (_, [], _), _) when has_injective_univars env t2' -> raise_unexplained_for Unify | (_, Tconstr (_, [], _)) when has_injective_univars env t1' -> raise_unexplained_for Unify | (Tconstr (p, _, _), _) | (_, Tconstr (p, _, _)) -> begin try let decl = Env.find_type p env in if non_aliasable p decl || is_datatype decl then raise Incompatible with Not_found -> () end (* | (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) when n1 = n2 -> mcomp_list type_pairs env tl1 tl2 *) | (Tpackage _, Tpackage _) -> () | (Tvariant row1, Tvariant row2) -> mcomp_row type_pairs env row1 row2 | (Tobject (fi1, _), Tobject (fi2, _)) -> mcomp_fields type_pairs env fi1 fi2 | (Tfield _, Tfield _) -> (* Actually unused *) mcomp_fields type_pairs env t1' t2' | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> mcomp type_pairs env t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> (try enter_poly env t1 tl1 t2 tl2 (mcomp type_pairs env) with Escape _ -> raise Incompatible) | (Tunivar _, Tunivar _) -> begin try unify_univar t1' t2' !univar_pairs with | Cannot_unify_universal_variables -> raise Incompatible | Out_of_scope_universal_variable -> () end | (_, _) -> raise Incompatible end and mcomp_list type_pairs env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise Incompatible; List.iter2 (mcomp type_pairs env) tl1 tl2 and mcomp_fields type_pairs env ty1 ty2 = if not (concrete_object ty1 && concrete_object ty2) then assert false; let (fields2, rest2) = flatten_fields ty2 in let (fields1, rest1) = flatten_fields ty1 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in let has_present = List.exists (fun (_, k, _) -> field_kind_repr k = Fpublic) in mcomp type_pairs env rest1 rest2; if has_present miss1 && get_desc (object_row ty2) = Tnil || has_present miss2 && get_desc (object_row ty1) = Tnil then raise Incompatible; List.iter (function (_n, k1, t1, k2, t2) -> mcomp_kind k1 k2; mcomp type_pairs env t1 t2) pairs and mcomp_kind k1 k2 = let k1 = field_kind_repr k1 in let k2 = field_kind_repr k2 in match k1, k2 with (Fpublic, Fabsent) | (Fabsent, Fpublic) -> raise Incompatible | _ -> () and mcomp_row type_pairs env row1 row2 = let r1, r2, pairs = merge_row_fields (row_fields row1) (row_fields row2) in let cannot_erase (_,f) = match row_field_repr f with Rpresent _ -> true | Rabsent | Reither _ -> false in if row_closed row1 && List.exists cannot_erase r2 || row_closed row2 && List.exists cannot_erase r1 then raise Incompatible; List.iter (fun (_,f1,f2) -> match row_field_repr f1, row_field_repr f2 with | Rpresent None, (Rpresent (Some _) | Reither (_, _::_, _) | Rabsent) | Rpresent (Some _), (Rpresent None | Reither (true, _, _) | Rabsent) | (Reither (_, _::_, _) | Rabsent), Rpresent None | (Reither (true, _, _) | Rabsent), Rpresent (Some _) -> raise Incompatible | Rpresent(Some t1), Rpresent(Some t2) -> mcomp type_pairs env t1 t2 | Rpresent(Some t1), Reither(false, tl2, _) -> List.iter (mcomp type_pairs env t1) tl2 | Reither(false, tl1, _), Rpresent(Some t2) -> List.iter (mcomp type_pairs env t2) tl1 | _ -> ()) pairs and mcomp_type_decl type_pairs env p1 p2 tl1 tl2 = try let decl = Env.find_type p1 env in let decl' = Env.find_type p2 env in if compatible_paths p1 p2 then begin let inj = try List.map Variance.(mem Inj) (Env.find_type p1 env).type_variance with Not_found -> List.map (fun _ -> false) tl1 in List.iter2 (fun i (t1,t2) -> if i then mcomp type_pairs env t1 t2) inj (List.combine tl1 tl2) end else if non_aliasable p1 decl && non_aliasable p2 decl' then raise Incompatible else match decl.type_kind, decl'.type_kind with | Type_record (lst,r), Type_record (lst',r') when r = r' -> mcomp_list type_pairs env tl1 tl2; mcomp_record_description type_pairs env lst lst' | Type_variant (v1,r), Type_variant (v2,r') when r = r' -> mcomp_list type_pairs env tl1 tl2; mcomp_variant_description type_pairs env v1 v2 | Type_open, Type_open -> mcomp_list type_pairs env tl1 tl2 | Type_abstract _, Type_abstract _ -> () | Type_abstract _, _ when not (non_aliasable p1 decl)-> () | _, Type_abstract _ when not (non_aliasable p2 decl') -> () | _ -> raise Incompatible with Not_found -> () and mcomp_type_option type_pairs env t t' = match t, t' with None, None -> () | Some t, Some t' -> mcomp type_pairs env t t' | _ -> raise Incompatible and mcomp_variant_description type_pairs env xs ys = let rec iter = fun x y -> match x, y with | c1 :: xs, c2 :: ys -> mcomp_type_option type_pairs env c1.cd_res c2.cd_res; begin match c1.cd_args, c2.cd_args with | Cstr_tuple l1, Cstr_tuple l2 -> mcomp_list type_pairs env l1 l2 | Cstr_record l1, Cstr_record l2 -> mcomp_record_description type_pairs env l1 l2 | _ -> raise Incompatible end; if Ident.name c1.cd_id = Ident.name c2.cd_id then iter xs ys else raise Incompatible | [],[] -> () | _ -> raise Incompatible in iter xs ys and mcomp_record_description type_pairs env = let rec iter x y = match x, y with | l1 :: xs, l2 :: ys -> mcomp type_pairs env l1.ld_type l2.ld_type; if Ident.name l1.ld_id = Ident.name l2.ld_id && l1.ld_mutable = l2.ld_mutable then iter xs ys else raise Incompatible | [], [] -> () | _ -> raise Incompatible in iter let mcomp env t1 t2 = mcomp (TypePairs.create 4) env t1 t2 let mcomp_for tr_exn env t1 t2 = try mcomp env t1 t2 with Incompatible -> raise_unexplained_for tr_exn (* Real unification *) let find_lowest_level ty = let lowest = ref generic_level in with_type_mark begin fun mark -> let rec find ty = if try_mark_node mark ty then begin let level = get_level ty in if level < !lowest then lowest := level; iter_type_expr find ty end in find ty end; !lowest (* This function can be called only in [Pattern] mode. *) let add_gadt_equation uenv source destination = (* Format.eprintf "@[add_gadt_equation %s %a@]@." (Path.name source) !Btype.print_raw destination; *) let env = get_env uenv in if has_free_univars env destination then occur_univar ~inj_only:true env destination else if local_non_recursive_abbrev uenv source destination then begin let destination = duplicate_type destination in let expansion_scope = Int.max (Path.scope source) (get_equations_scope uenv) in let type_origin = match Env.find_type source env with | decl -> type_origin decl | exception Not_found -> assert false in let decl = new_local_type ~manifest_and_scope:(destination, expansion_scope) type_origin in set_env uenv (Env.add_local_constraint source decl env); cleanup_abbrev () end let eq_package_path env p1 p2 = Path.same p1 p2 || Path.same (normalize_package_path env p1) (normalize_package_path env p2) let nondep_type' = ref (fun _ _ _ -> assert false) let package_subtype = ref (fun _ _ _ _ _ -> assert false) exception Nondep_cannot_erase of Ident.t let rec concat_longident lid1 = let open Longident in function Lident s -> Ldot (lid1, s) | Ldot (lid2, s) -> Ldot (concat_longident lid1 lid2, s) | Lapply (lid2, lid) -> Lapply (concat_longident lid1 lid2, lid) let nondep_instance env level id ty = let ty = !nondep_type' env [id] ty in if level = generic_level then duplicate_type ty else with_level ~level (fun () -> instance ty) (* Find the type paths nl1 in the module type mty2, and add them to the list (nl2, tl2). raise Not_found if impossible *) let complete_type_list ?(allow_absent=false) env fl1 lv2 mty2 fl2 = (* This is morally WRONG: we're adding a (dummy) module without a scope in the environment. However no operation which cares about levels/scopes is going to happen while this module exists. The only operations that happen are: - Env.find_type_by_name - nondep_instance None of which check the scope. It'd be nice if we avoided creating such temporary dummy modules and broken environments though. *) let id2 = Ident.create_local "Pkg" in let env' = Env.add_module id2 Mp_present mty2 env in let rec complete fl1 fl2 = match fl1, fl2 with [], _ -> fl2 | (n, _) :: nl, (n2, _ as nt2) :: ntl' when n >= n2 -> nt2 :: complete (if n = n2 then nl else fl1) ntl' | (n, _) :: nl, _ -> let lid = concat_longident (Longident.Lident "Pkg") n in match Env.find_type_by_name lid env' with | (_, {type_arity = 0; type_kind = Type_abstract _; type_private = Public; type_manifest = Some t2}) -> begin match nondep_instance env' lv2 id2 t2 with | t -> (n, t) :: complete nl fl2 | exception Nondep_cannot_erase _ -> if allow_absent then complete nl fl2 else raise Exit end | (_, {type_arity = 0; type_kind = Type_abstract _; type_private = Public; type_manifest = None}) when allow_absent -> complete nl fl2 | _ -> raise Exit | exception Not_found when allow_absent-> complete nl fl2 in match complete fl1 fl2 with | res -> res | exception Exit -> raise Not_found (* raise Not_found rather than Unify if the module types are incompatible *) let unify_package env unify_list lv1 p1 fl1 lv2 p2 fl2 = let ntl2 = complete_type_list env fl1 lv2 (Mty_ident p2) fl2 and ntl1 = complete_type_list env fl2 lv1 (Mty_ident p1) fl1 in unify_list (List.map snd ntl1) (List.map snd ntl2); if eq_package_path env p1 p2 then Ok () else Result.bind (!package_subtype env p1 fl1 p2 fl2) (fun () -> !package_subtype env p2 fl2 p1 fl1) (* force unification in Reither when one side has a non-conjunctive type *) (* Code smell: this could also be put in unification_environment. Only modified by expand_head_rigid, but the corresponding unification environment is built in subst. *) let rigid_variants = ref false let unify1_var uenv t1 t2 = assert (is_Tvar t1); occur_for Unify uenv t1 t2; let env = get_env uenv in match occur_univar_for Unify env t2 with | () -> begin try update_level env (get_level t1) t2; update_scope (get_scope t1) t2; with Escape e -> raise_for Unify (Escape e) end; link_type t1 t2; true | exception Unify_trace _ when in_pattern_mode uenv -> false (* Called from unify3 *) let unify3_var uenv t1' t2 t2' = occur_for Unify uenv t1' t2; match occur_univar_for Unify (get_env uenv) t2 with | () -> link_type t1' t2 | exception Unify_trace _ when in_pattern_mode uenv -> reify uenv t1'; reify uenv t2'; occur_univar ~inj_only:true (get_env uenv) t2'; record_equation uenv t1' t2' (* 1. When unifying two non-abbreviated types, one type is made a link to the other. When unifying an abbreviated type with a non-abbreviated type, the non-abbreviated type is made a link to the other one. When unifying to abbreviated types, these two types are kept distincts, but they are made to (temporally) expand to the same type. 2. Abbreviations with at least one parameter are systematically expanded. The overhead does not seem too high, and that way abbreviations where some parameters does not appear in the expansion, such as ['a t = int], are correctly handled. In particular, for this example, unifying ['a t] with ['b t] keeps ['a] and ['b] distincts. (Is it really important ?) 3. Unifying an abbreviation ['a t = 'a] with ['a] should not yield ['a t as 'a]. Indeed, the type variable would otherwise be lost. This problem occurs for abbreviations expanding to a type variable, but also to many other constrained abbreviations (for instance, [(< x : 'a > -> unit) t = <x : 'a>]). The solution is that, if an abbreviation is unified with some subpart of its parameters, then the parameter actually does not get abbreviated. It would be possible to check whether some information is indeed lost, but it probably does not worth it. *) let rec unify uenv t1 t2 = (* First step: special cases (optimizations) *) if unify_eq uenv t1 t2 then () else let reset_tracing = check_trace_gadt_instances (get_env uenv) in try type_changed := true; begin match (get_desc t1, get_desc t2) with (Tvar _, Tconstr _) when deep_occur t1 t2 -> unify2 uenv t1 t2 | (Tconstr _, Tvar _) when deep_occur t2 t1 -> unify2 uenv t1 t2 | (Tvar _, _) -> if unify1_var uenv t1 t2 then () else unify2 uenv t1 t2 | (_, Tvar _) -> if unify1_var uenv t2 t1 then () else unify2 uenv t1 t2 | (Tunivar _, Tunivar _) -> unify_univar_for Unify t1 t2 !univar_pairs; update_level_for Unify (get_env uenv) (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2 | (Tconstr (p1, [], a1), Tconstr (p2, [], a2)) when Path.same p1 p2 (* This optimization assumes that t1 does not expand to t2 (and conversely), so we fall back to the general case when any of the types has a cached expansion. *) && not (has_cached_expansion p1 !a1 || has_cached_expansion p2 !a2) -> update_level_for Unify (get_env uenv) (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2 | (Tconstr _, Tconstr _) when Env.has_local_constraints (get_env uenv) -> unify2_rec uenv t1 t1 t2 t2 | _ -> unify2 uenv t1 t2 end; reset_trace_gadt_instances reset_tracing; with Unify_trace trace -> reset_trace_gadt_instances reset_tracing; raise_trace_for Unify (Diff {got = t1; expected = t2} :: trace) and unify2 uenv t1 t2 = unify2_expand uenv t1 t1 t2 t2 and unify2_rec uenv t10 t1 t20 t2 = if unify_eq uenv t1 t2 then () else try match (get_desc t1, get_desc t2) with | (Tconstr (p1, tl1, a1), Tconstr (p2, tl2, a2)) -> if Path.same p1 p2 && tl1 = [] && tl2 = [] && not (has_cached_expansion p1 !a1 || has_cached_expansion p2 !a2) then begin update_level_for Unify (get_env uenv) (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2 end else let env = get_env uenv in if find_expansion_scope env p1 > find_expansion_scope env p2 then unify2_rec uenv t10 t1 t20 (try_expand_safe env t2) else unify2_rec uenv t10 (try_expand_safe env t1) t20 t2 | _ -> raise Cannot_expand with Cannot_expand -> unify2_expand uenv t10 t1 t20 t2 and unify2_expand uenv t1 t1' t2 t2' = (* Second step: expansion of abbreviations *) (* Expansion may change the representative of the types. *) let env = get_env uenv in ignore (expand_head_unif env t1'); ignore (expand_head_unif env t2'); let t1' = expand_head_unif env t1' in let t2' = expand_head_unif env t2' in let lv = Int.min (get_level t1') (get_level t2') in let scope = Int.max (get_scope t1') (get_scope t2') in update_level_for Unify env lv t2; update_level_for Unify env lv t1; update_scope_for Unify scope t2; update_scope_for Unify scope t1; if unify_eq uenv t1' t2' then () else let t1, t2 = if !Clflags.principal && (find_lowest_level t1' < lv || find_lowest_level t2' < lv) then (* Expand abbreviations hiding a lower level *) (* Should also do it for parameterized types, after unification... *) (match get_desc t1 with Tconstr (_, [], _) -> t1' | _ -> t1), (match get_desc t2 with Tconstr (_, [], _) -> t2' | _ -> t2) else (t1, t2) in if unify_eq uenv t1 t1' || not (unify_eq uenv t2 t2') then unify3 uenv t1 t1' t2 t2' else try unify3 uenv t2 t2' t1 t1' with Unify_trace trace -> raise_trace_for Unify (swap_trace trace) and unify3 uenv t1 t1' t2 t2' = (* Third step: truly unification *) (* Assumes either [t1 == t1'] or [t2 != t2'] *) let tt1' = Transient_expr.repr t1' in let d1 = tt1'.desc and d2 = get_desc t2' in let create_recursion = (not (eq_type t2 t2')) && (deep_occur t1' t2) in begin match (d1, d2) with (* handle vars and univars specially *) (Tunivar _, Tunivar _) -> unify_univar_for Unify t1' t2' !univar_pairs; link_type t1' t2' | (Tvar _, _) -> unify3_var uenv t1' t2 t2' | (_, Tvar _) -> unify3_var uenv t2' t1 t1' | (Tfield _, Tfield _) -> (* special case for GADTs *) unify_fields uenv t1' t2' | _ -> if in_pattern_mode uenv then add_type_equality uenv t1' t2' else begin occur_for Unify uenv t1' t2; link_type t1' t2 end; try begin match (d1, d2) with (Tarrow (l1, t1, u1, c1), Tarrow (l2, t2, u2, c2)) -> eq_labels Unify ~in_pattern_mode:(in_pattern_mode uenv) l1 l2; unify uenv t1 t2; unify uenv u1 u2; begin match is_commu_ok c1, is_commu_ok c2 with | false, true -> set_commu_ok c1 | true, false -> set_commu_ok c2 | false, false -> link_commu ~inside:c1 c2 | true, true -> () end | (Ttuple tl1, Ttuple tl2) -> unify_list uenv tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 -> if not (in_pattern_mode uenv) then unify_list uenv tl1 tl2 else if can_assume_injective uenv then without_assume_injective uenv (fun uenv -> unify_list uenv tl1 tl2) else if in_current_module p1 (* || in_pervasives p1 *) || List.exists (expands_to_datatype (get_env uenv)) [t1'; t1; t2] then unify_list uenv tl1 tl2 else let inj = try List.map Variance.(mem Inj) (Env.find_type p1 (get_env uenv)).type_variance with Not_found -> List.map (fun _ -> false) tl1 in List.iter2 (fun i (t1, t2) -> if i then unify uenv t1 t2 else begin reify uenv t1; reify uenv t2 end) inj (List.combine tl1 tl2) | (Tconstr (path,[],_), Tconstr (path',[],_)) when in_pattern_mode uenv && let env = get_env uenv in is_instantiable env path && is_instantiable env path' -> let source, destination = if Path.scope path > Path.scope path' then path , t2' else path', t1' in record_equation uenv t1' t2'; add_gadt_equation uenv source destination | (Tconstr (path,[],_), _) when in_pattern_mode uenv && is_instantiable (get_env uenv) path -> reify uenv t2'; record_equation uenv t1' t2'; add_gadt_equation uenv path t2' | (_, Tconstr (path,[],_)) when in_pattern_mode uenv && is_instantiable (get_env uenv) path -> reify uenv t1'; record_equation uenv t1' t2'; add_gadt_equation uenv path t1' | (Tconstr (_,_,_), _) | (_, Tconstr (_,_,_)) when in_pattern_mode uenv -> reify uenv t1'; reify uenv t2'; mcomp_for Unify (get_env uenv) t1' t2'; record_equation uenv t1' t2' | (Tobject (fi1, nm1), Tobject (fi2, _)) -> unify_fields uenv fi1 fi2; (* Type [t2'] may have been instantiated by [unify_fields] *) (* XXX One should do some kind of unification... *) begin match get_desc t2' with Tobject (_, {contents = Some (_, va::_)}) when (match get_desc va with Tvar _|Tunivar _|Tnil -> true | _ -> false) -> () | Tobject (_, nm2) -> set_name nm2 !nm1 | _ -> () end | (Tvariant row1, Tvariant row2) -> if not (in_pattern_mode uenv) then unify_row uenv row1 row2 else begin let snap = snapshot () in try unify_row uenv row1 row2 with Unify_trace _ -> backtrack snap; reify uenv t1'; reify uenv t2'; mcomp_for Unify (get_env uenv) t1' t2'; record_equation uenv t1' t2' end | (Tfield(f,kind,_,rem), Tnil) | (Tnil, Tfield(f,kind,_,rem)) -> begin match field_kind_repr kind with Fprivate when f <> dummy_method -> link_kind ~inside:kind field_absent; if d2 = Tnil then unify uenv rem t2' else unify uenv (newgenty Tnil) rem | _ -> if f = dummy_method then raise_for Unify (Obj Self_cannot_be_closed) else if d1 = Tnil then raise_for Unify (Obj (Missing_field(First, f))) else raise_for Unify (Obj (Missing_field(Second, f))) end | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> unify uenv t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> enter_poly_for Unify (get_env uenv) t1 tl1 t2 tl2 (unify uenv) | (Tpackage (p1, fl1), Tpackage (p2, fl2)) -> begin match unify_package (get_env uenv) (unify_list uenv) (get_level t1) p1 fl1 (get_level t2) p2 fl2 with | Ok () -> () | Error fm_err -> if not (in_pattern_mode uenv) then raise_for Unify (Errortrace.First_class_module fm_err); List.iter (fun (_n, ty) -> reify uenv ty) (fl1 @ fl2); | exception Not_found -> if not (in_pattern_mode uenv) then raise_unexplained_for Unify; List.iter (fun (_n, ty) -> reify uenv ty) (fl1 @ fl2); (* if !generate_equations then List.iter2 (mcomp !env) tl1 tl2 *) end | (Tnil, Tconstr _ ) -> raise_for Unify (Obj (Abstract_row Second)) | (Tconstr _, Tnil ) -> raise_for Unify (Obj (Abstract_row First)) | (_, _) -> raise_unexplained_for Unify end; (* XXX Commentaires + changer "create_recursion" ||| Comments + change "create_recursion" *) if create_recursion then match get_desc t2 with Tconstr (p, tl, abbrev) -> forget_abbrev abbrev p; let t2'' = expand_head_unif (get_env uenv) t2 in if not (closed_parameterized_type tl t2'') then link_type t2 t2' | _ -> () (* t2 has already been expanded by update_level *) with Unify_trace trace -> Transient_expr.set_desc tt1' d1; raise_trace_for Unify trace end and unify_list env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise_unexplained_for Unify; List.iter2 (unify env) tl1 tl2 (* Build a fresh row variable for unification *) and make_rowvar level use1 rest1 use2 rest2 = let set_name ty name = match get_desc ty with Tvar None -> set_type_desc ty (Tvar name) | _ -> () in let name = match get_desc rest1, get_desc rest2 with Tvar (Some _ as name1), Tvar (Some _ as name2) -> if get_level rest1 <= get_level rest2 then name1 else name2 | Tvar (Some _ as name), _ -> if use2 then set_name rest2 name; name | _, Tvar (Some _ as name) -> if use1 then set_name rest2 name; name | _ -> None in if use1 then rest1 else if use2 then rest2 else newty2 ~level (Tvar name) and unify_fields uenv ty1 ty2 = (* Optimization *) let (fields1, rest1) = flatten_fields ty1 and (fields2, rest2) = flatten_fields ty2 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in let l1 = get_level ty1 and l2 = get_level ty2 in let va = make_rowvar (Int.min l1 l2) (miss2=[]) rest1 (miss1=[]) rest2 in let tr1 = Transient_expr.repr rest1 and tr2 = Transient_expr.repr rest2 in let d1 = tr1.desc and d2 = tr2.desc in try unify uenv (build_fields l1 miss1 va) rest2; unify uenv rest1 (build_fields l2 miss2 va); List.iter (fun (name, k1, t1, k2, t2) -> unify_kind k1 k2; try if !trace_gadt_instances && not (in_subst_mode uenv) then begin (* in_subst_mode: see PR#11771 *) update_level_for Unify (get_env uenv) (get_level va) t1; update_scope_for Unify (get_scope va) t1 end; unify uenv t1 t2 with Unify_trace trace -> raise_trace_for Unify (incompatible_fields ~name ~got:t1 ~expected:t2 :: trace) ) pairs with exn -> Transient_expr.set_desc tr1 d1; Transient_expr.set_desc tr2 d2; raise exn and unify_kind k1 k2 = match field_kind_repr k1, field_kind_repr k2 with (Fprivate, (Fprivate | Fpublic)) -> link_kind ~inside:k1 k2 | (Fpublic, Fprivate) -> link_kind ~inside:k2 k1 | (Fpublic, Fpublic) -> () | _ -> assert false and unify_row uenv row1 row2 = let Row {fields = row1_fields; more = rm1; closed = row1_closed; name = row1_name} = row_repr row1 in let Row {fields = row2_fields; more = rm2; closed = row2_closed; name = row2_name} = row_repr row2 in if unify_eq uenv rm1 rm2 then () else let r1, r2, pairs = merge_row_fields row1_fields row2_fields in if r1 <> [] && r2 <> [] then begin let ht = Hashtbl.create (List.length r1) in List.iter (fun (l,_) -> Hashtbl.add ht (hash_variant l) l) r1; List.iter (fun (l,_) -> try raise (Tags(l, Hashtbl.find ht (hash_variant l))) with Not_found -> ()) r2 end; let fixed1 = fixed_explanation row1 and fixed2 = fixed_explanation row2 in let more = match fixed1, fixed2 with | Some _, Some _ -> if get_level rm2 < get_level rm1 then rm2 else rm1 | Some _, None -> rm1 | None, Some _ -> rm2 | None, None -> newty2 ~level:(Int.min (get_level rm1) (get_level rm2)) (Tvar None) in let fixed = merge_fixed_explanation fixed1 fixed2 and closed = row1_closed || row2_closed in let keep switch = List.for_all (fun (_,f1,f2) -> let f1, f2 = switch f1 f2 in row_field_repr f1 = Rabsent || row_field_repr f2 <> Rabsent) pairs in let empty fields = List.for_all (fun (_,f) -> row_field_repr f = Rabsent) fields in (* Check whether we are going to build an empty type *) if closed && (empty r1 || row2_closed) && (empty r2 || row1_closed) && List.for_all (fun (_,f1,f2) -> row_field_repr f1 = Rabsent || row_field_repr f2 = Rabsent) pairs then raise_for Unify (Variant No_intersection); let name = if row1_name <> None && (row1_closed || empty r2) && (not row2_closed || keep (fun f1 f2 -> f1, f2) && empty r1) then row1_name else if row2_name <> None && (row2_closed || empty r1) && (not row1_closed || keep (fun f1 f2 -> f2, f1) && empty r2) then row2_name else None in let set_more pos row rest = let rest = if closed then filter_row_fields (row_closed row) rest else rest in begin match fixed_explanation row with | None -> if rest <> [] && row_closed row then raise_for Unify (Variant (No_tags(pos,rest))) | Some fixed -> if closed && not (row_closed row) then raise_for Unify (Variant (Fixed_row(pos,Cannot_be_closed,fixed))) else if rest <> [] then let case = Cannot_add_tags (List.map fst rest) in raise_for Unify (Variant (Fixed_row(pos,case,fixed))) end; (* The following test is not principal... should rather use Tnil *) let rm = row_more row in (*if !trace_gadt_instances && rm.desc = Tnil then () else*) if !trace_gadt_instances && not (in_subst_mode uenv) then (* in_subst_mode: see PR#11771 *) update_level_for Unify (get_env uenv) (get_level rm) (newgenty (Tvariant row)); if has_fixed_explanation row then if eq_type more rm then () else if is_Tvar rm then link_type rm more else unify uenv rm more else let ty = newgenty (Tvariant (create_row ~fields:rest ~more ~closed ~fixed ~name)) in update_level_for Unify (get_env uenv) (get_level rm) ty; update_scope_for Unify (get_scope rm) ty; link_type rm ty in let tm1 = Transient_expr.repr rm1 and tm2 = Transient_expr.repr rm2 in let md1 = tm1.desc and md2 = tm2.desc in begin try set_more Second row2 r1; set_more First row1 r2; List.iter (fun (l,f1,f2) -> try unify_row_field uenv fixed1 fixed2 rm1 rm2 l f1 f2 with Unify_trace trace -> raise_trace_for Unify (Variant (Incompatible_types_for l) :: trace) ) pairs; if static_row row1 then begin let rm = row_more row1 in if is_Tvar rm then link_type rm (newty2 ~level:(get_level rm) Tnil) end with exn -> Transient_expr.set_desc tm1 md1; Transient_expr.set_desc tm2 md2; raise exn end and unify_row_field uenv fixed1 fixed2 rm1 rm2 l f1 f2 = let if_not_fixed (pos,fixed) f = match fixed with | None -> f () | Some fix -> let tr = [Variant(Fixed_row(pos,Cannot_add_tags [l],fix))] in raise_trace_for Unify tr in let first = First, fixed1 and second = Second, fixed2 in let either_fixed = match fixed1, fixed2 with | None, None -> false | _ -> true in if f1 == f2 then () else match row_field_repr f1, row_field_repr f2 with Rpresent(Some t1), Rpresent(Some t2) -> unify uenv t1 t2 | Rpresent None, Rpresent None -> () | Reither(c1, tl1, m1), Reither(c2, tl2, m2) -> if eq_row_field_ext f1 f2 then () else let no_arg = c1 || c2 and matched = m1 || m2 in if either_fixed && not no_arg && List.length tl1 = List.length tl2 then begin (* PR#7496 *) let f = rf_either [] ~no_arg ~matched in link_row_field_ext ~inside:f1 f; link_row_field_ext ~inside:f2 f; List.iter2 (unify uenv) tl1 tl2 end else let redo = (m1 || m2 || either_fixed || !rigid_variants && (List.length tl1 = 1 || List.length tl2 = 1)) && begin match tl1 @ tl2 with [] -> false | t1 :: tl -> if no_arg then raise_unexplained_for Unify; Types.changed_row_field_exts [f1;f2] (fun () -> List.iter (unify uenv t1) tl ) end in if redo then unify_row_field uenv fixed1 fixed2 rm1 rm2 l f1 f2 else let remq tl = List.filter (fun ty -> not (List.exists (eq_type ty) tl)) in let tl1' = remq tl2 tl1 and tl2' = remq tl1 tl2 in (* PR#6744 *) let env = get_env uenv in let (tlu1,tl1') = List.partition (has_free_univars env) tl1' and (tlu2,tl2') = List.partition (has_free_univars env) tl2' in begin match tlu1, tlu2 with [], [] -> () | (tu1::tlu1), _ :: _ -> (* Attempt to merge all the types containing univars *) List.iter (unify uenv tu1) (tlu1@tlu2) | (tu::_, []) | ([], tu::_) -> occur_univar_for Unify env tu end; (* Is this handling of levels really principal? *) let update_levels rm = let env = get_env uenv in List.iter (fun ty -> update_level_for Unify env (get_level rm) ty; update_scope_for Unify (get_scope rm) ty) in update_levels rm2 tl1'; update_levels rm1 tl2'; let f1' = rf_either tl2' ~no_arg ~matched in let f2' = rf_either tl1' ~use_ext_of:f1' ~no_arg ~matched in link_row_field_ext ~inside:f1 f1'; link_row_field_ext ~inside:f2 f2'; | Reither(_, _, false), Rabsent -> if_not_fixed first (fun () -> link_row_field_ext ~inside:f1 f2) | Rabsent, Reither(_, _, false) -> if_not_fixed second (fun () -> link_row_field_ext ~inside:f2 f1) | Rabsent, Rabsent -> () | Reither(false, tl, _), Rpresent(Some t2) -> if_not_fixed first (fun () -> let s = snapshot () in link_row_field_ext ~inside:f1 f2; update_level_for Unify (get_env uenv) (get_level rm1) t2; update_scope_for Unify (get_scope rm1) t2; (try List.iter (fun t1 -> unify uenv t1 t2) tl with exn -> undo_first_change_after s; raise exn) ) | Rpresent(Some t1), Reither(false, tl, _) -> if_not_fixed second (fun () -> let s = snapshot () in link_row_field_ext ~inside:f2 f1; update_level_for Unify (get_env uenv) (get_level rm2) t1; update_scope_for Unify (get_scope rm2) t1; (try List.iter (unify uenv t1) tl with exn -> undo_first_change_after s; raise exn) ) | Reither(true, [], _), Rpresent None -> if_not_fixed first (fun () -> link_row_field_ext ~inside:f1 f2) | Rpresent None, Reither(true, [], _) -> if_not_fixed second (fun () -> link_row_field_ext ~inside:f2 f1) | Rabsent, (Rpresent _ | Reither(_,_,true)) -> raise_trace_for Unify [Variant(No_tags(First, [l,f1]))] | (Rpresent _ | Reither (_,_,true)), Rabsent -> raise_trace_for Unify [Variant(No_tags(Second, [l,f2]))] | (Rpresent (Some _) | Reither(false,_,_)), (Rpresent None | Reither(true,_,_)) | (Rpresent None | Reither(true,_,_)), (Rpresent (Some _) | Reither(false,_,_)) -> (* constructor arity mismatch: 0 <> 1 *) raise_unexplained_for Unify | Reither(true, _ :: _, _ ), Rpresent _ | Rpresent _ , Reither(true, _ :: _, _ ) -> (* inconsistent conjunction on a non-absent field *) raise_unexplained_for Unify let unify uenv ty1 ty2 = let snap = Btype.snapshot () in try unify uenv ty1 ty2 with Unify_trace trace -> undo_compress snap; raise (Unify (expand_to_unification_error (get_env uenv) trace)) let unify_gadt (penv : Pattern_env.t) ty1 ty2 = let equated_types = TypePairs.create 0 in let do_unify_gadt () = let uenv = Pattern { penv; equated_types; assume_injective = true; unify_eq_set = TypePairs.create 11; } in unify uenv ty1 ty2; equated_types in let no_leak = penv.allow_recursive_equations || closed_type_expr ty2 in if no_leak then with_univar_pairs [] do_unify_gadt else let snap = Btype.snapshot () in try (* If there are free variables, first try normal unification *) let uenv = Expression {env = penv.env; in_subst = false} in with_univar_pairs [] (fun () -> unify uenv ty1 ty2); equated_types with Unify _ -> (* If it fails, retry in pattern mode *) Btype.backtrack snap; with_univar_pairs [] do_unify_gadt let unify_var uenv t1 t2 = if eq_type t1 t2 then () else match get_desc t1, get_desc t2 with Tvar _, Tconstr _ when deep_occur t1 t2 -> unify uenv t1 t2 | Tvar _, _ -> let env = get_env uenv in let reset_tracing = check_trace_gadt_instances env in begin try occur_for Unify uenv t1 t2; update_level_for Unify env (get_level t1) t2; update_scope_for Unify (get_scope t1) t2; link_type t1 t2; reset_trace_gadt_instances reset_tracing; with Unify_trace trace -> reset_trace_gadt_instances reset_tracing; raise (Unify (expand_to_unification_error env (Diff { got = t1; expected = t2 } :: trace))) end | _ -> unify uenv t1 t2 let _ = unify_var' := unify_var (* the final versions of unification functions *) let unify_var env ty1 ty2 = unify_var (Expression {env; in_subst = false}) ty1 ty2 let unify_pairs env ty1 ty2 pairs = with_univar_pairs pairs (fun () -> unify (Expression {env; in_subst = false}) ty1 ty2) let unify env ty1 ty2 = unify_pairs env ty1 ty2 [] (* Lower the level of a type to the current level *) let enforce_current_level env ty = unify_var env (newvar ()) ty (**** Special cases of unification ****) let expand_head_trace env t = let reset_tracing = check_trace_gadt_instances env in let t = expand_head_unif env t in reset_trace_gadt_instances reset_tracing; t (* Unify [t] and [l:'a -> 'b]. Return ['a] and ['b]. In [-nolabels] mode, label mismatch is accepted when (1) the requested label is "" (2) the original label is not optional *) type filter_arrow_failure = | Unification_error of unification_error | Label_mismatch of { got : arg_label ; expected : arg_label ; expected_type : type_expr } | Not_a_function exception Filter_arrow_failed of filter_arrow_failure let filter_arrow env t l = let function_type level = let t1 = newvar2 level and t2 = newvar2 level in let t' = newty2 ~level (Tarrow (l, t1, t2, commu_ok)) in t', t1, t2 in let t = try expand_head_trace env t with Unify_trace trace -> let t', _, _ = function_type (get_level t) in raise (Filter_arrow_failed (Unification_error (expand_to_unification_error env (Diff { got = t'; expected = t } :: trace)))) in match get_desc t with | Tvar _ -> let t', t1, t2 = function_type (get_level t) in link_type t t'; (t1, t2) | Tarrow(l', t1, t2, _) -> if l = l' || !Clflags.classic && l = Nolabel && not (is_optional l') then (t1, t2) else raise (Filter_arrow_failed (Label_mismatch { got = l; expected = l'; expected_type = t })) | _ -> raise (Filter_arrow_failed Not_a_function) type filter_method_failure = | Unification_error of unification_error | Not_a_method | Not_an_object of type_expr exception Filter_method_failed of filter_method_failure (* Used by [filter_method]. *) let rec filter_method_field env name ty = let method_type ~level = let ty1 = newvar2 level and ty2 = newvar2 level in let ty' = newty2 ~level (Tfield (name, field_public, ty1, ty2)) in ty', ty1 in let ty = try expand_head_trace env ty with Unify_trace trace -> let level = get_level ty in let ty', _ = method_type ~level in raise (Filter_method_failed (Unification_error (expand_to_unification_error env (Diff { got = ty; expected = ty' } :: trace)))) in match get_desc ty with | Tvar _ -> let level = get_level ty in let ty', ty1 = method_type ~level in link_type ty ty'; ty1 | Tfield(n, kind, ty1, ty2) -> if n = name then begin unify_kind kind field_public; ty1 end else filter_method_field env name ty2 | _ -> raise (Filter_method_failed Not_a_method) (* Unify [ty] and [< name : 'a; .. >]. Return ['a]. *) let filter_method env name ty = let object_type ~level ~scope = let ty1 = newvar2 level in let ty' = newty3 ~level ~scope (Tobject (ty1, ref None)) in let ty_meth = filter_method_field env name ty1 in (ty', ty_meth) in let ty = try expand_head_trace env ty with Unify_trace trace -> let level = get_level ty in let scope = get_scope ty in let ty', _ = object_type ~level ~scope in raise (Filter_method_failed (Unification_error (expand_to_unification_error env (Diff { got = ty; expected = ty' } :: trace)))) in match get_desc ty with | Tvar _ -> let level = get_level ty in let scope = get_scope ty in let ty', ty_meth = object_type ~level ~scope in link_type ty ty'; ty_meth | Tobject(f, _) -> filter_method_field env name f | _ -> raise (Filter_method_failed (Not_an_object ty)) exception Filter_method_row_failed let rec filter_method_row env name priv ty = let ty = expand_head env ty in match get_desc ty with | Tvar _ -> let level = get_level ty in let field = newvar2 level in let row = newvar2 level in let kind, priv = match priv with | Private -> let kind = field_private () in kind, Mprivate kind | Public -> field_public, Mpublic in let ty' = newty2 ~level (Tfield (name, kind, field, row)) in link_type ty ty'; priv, field, row | Tfield(n, kind, ty1, ty2) -> if n = name then begin let priv = match priv with | Public -> unify_kind kind field_public; Mpublic | Private -> Mprivate kind in priv, ty1, ty2 end else begin let level = get_level ty in let priv, field, row = filter_method_row env name priv ty2 in let row = newty2 ~level (Tfield (n, kind, ty1, row)) in priv, field, row end | Tnil -> if name = Btype.dummy_method then raise Filter_method_row_failed else begin match priv with | Public -> raise Filter_method_row_failed | Private -> let level = get_level ty in let kind = field_absent in Mprivate kind, newvar2 level, ty end | _ -> raise Filter_method_row_failed (* Operations on class signatures *) let new_class_signature () = let row = newvar () in let self = newobj row in { csig_self = self; csig_self_row = row; csig_vars = Vars.empty; csig_meths = Meths.empty; } let add_dummy_method env ~scope sign = let _, ty, row = filter_method_row env dummy_method Private sign.csig_self_row in unify env ty (new_scoped_ty scope (Ttuple [])); sign.csig_self_row <- row type add_method_failure = | Unexpected_method | Type_mismatch of Errortrace.unification_error exception Add_method_failed of add_method_failure let add_method env label priv virt ty sign = let meths = sign.csig_meths in let priv, virt = match Meths.find label meths with | (priv', virt', ty') -> begin let priv = match priv' with | Mpublic -> Mpublic | Mprivate k -> match priv with | Public -> begin match field_kind_repr k with | Fpublic -> () | Fprivate -> link_kind ~inside:k field_public | Fabsent -> assert false end; Mpublic | Private -> priv' in let virt = match virt' with | Concrete -> Concrete | Virtual -> virt in match unify env ty ty' with | () -> priv, virt | exception Unify trace -> raise (Add_method_failed (Type_mismatch trace)) end | exception Not_found -> begin let priv, ty', row = match filter_method_row env label priv sign.csig_self_row with | priv, ty', row -> priv, ty', row | exception Filter_method_row_failed -> raise (Add_method_failed Unexpected_method) in match unify env ty ty' with | () -> sign.csig_self_row <- row; priv, virt | exception Unify trace -> raise (Add_method_failed (Type_mismatch trace)) end in let meths = Meths.add label (priv, virt, ty) meths in sign.csig_meths <- meths type add_instance_variable_failure = | Mutability_mismatch of mutable_flag | Type_mismatch of Errortrace.unification_error exception Add_instance_variable_failed of add_instance_variable_failure let check_mutability mut mut' = match mut, mut' with | Mutable, Mutable -> () | Immutable, Immutable -> () | Mutable, Immutable | Immutable, Mutable -> raise (Add_instance_variable_failed (Mutability_mismatch mut)) let add_instance_variable ~strict env label mut virt ty sign = let vars = sign.csig_vars in let virt = match Vars.find label vars with | (mut', virt', ty') -> let virt = match virt' with | Concrete -> Concrete | Virtual -> virt in if strict then begin check_mutability mut mut'; match unify env ty ty' with | () -> () | exception Unify trace -> raise (Add_instance_variable_failed (Type_mismatch trace)) end; virt | exception Not_found -> virt in let vars = Vars.add label (mut, virt, ty) vars in sign.csig_vars <- vars type inherit_class_signature_failure = | Self_type_mismatch of Errortrace.unification_error | Method of label * add_method_failure | Instance_variable of label * add_instance_variable_failure exception Inherit_class_signature_failed of inherit_class_signature_failure let unify_self_types env sign1 sign2 = let self_type1 = sign1.csig_self in let self_type2 = sign2.csig_self in match unify env self_type1 self_type2 with | () -> () | exception Unify err -> begin match err.trace with | Errortrace.Diff _ :: Errortrace.Incompatible_fields {name; _} :: rem -> let err = Errortrace.unification_error ~trace:rem in let failure = Method (name, Type_mismatch err) in raise (Inherit_class_signature_failed failure) | _ -> raise (Inherit_class_signature_failed (Self_type_mismatch err)) end (* Unify components of sign2 into sign1 *) let inherit_class_signature ~strict env sign1 sign2 = unify_self_types env sign1 sign2; Meths.iter (fun label (priv, virt, ty) -> let priv = match priv with | Mpublic -> Public | Mprivate kind -> assert (field_kind_repr kind = Fabsent); Private in match add_method env label priv virt ty sign1 with | () -> () | exception Add_method_failed failure -> let failure = Method(label, failure) in raise (Inherit_class_signature_failed failure)) sign2.csig_meths; Vars.iter (fun label (mut, virt, ty) -> match add_instance_variable ~strict env label mut virt ty sign1 with | () -> () | exception Add_instance_variable_failed failure -> let failure = Instance_variable(label, failure) in raise (Inherit_class_signature_failed failure)) sign2.csig_vars let update_class_signature env sign = let self = expand_head env sign.Types.csig_self in let fields, row = flatten_fields (object_fields self) in let meths, implicitly_public, implicitly_declared = List.fold_left (fun (meths, implicitly_public, implicitly_declared) (lab, k, ty) -> if lab = dummy_method then meths, implicitly_public, implicitly_declared else begin match Meths.find lab meths with | priv, virt, ty' -> let meths, implicitly_public = match priv, field_kind_repr k with | Mpublic, _ -> meths, implicitly_public | Mprivate _, Fpublic -> let meths = Meths.add lab (Mpublic, virt, ty') meths in let implicitly_public = lab :: implicitly_public in meths, implicitly_public | Mprivate _, _ -> meths, implicitly_public in meths, implicitly_public, implicitly_declared | exception Not_found -> let meths, implicitly_declared = match field_kind_repr k with | Fpublic -> let meths = Meths.add lab (Mpublic, Virtual, ty) meths in let implicitly_declared = lab :: implicitly_declared in meths, implicitly_declared | Fprivate -> let meths = Meths.add lab (Mprivate k, Virtual, ty) meths in let implicitly_declared = lab :: implicitly_declared in meths, implicitly_declared | Fabsent -> meths, implicitly_declared in meths, implicitly_public, implicitly_declared end) (sign.csig_meths, [], []) fields in sign.csig_meths <- meths; sign.csig_self_row <- row; implicitly_public, implicitly_declared let hide_private_methods env sign = let self = expand_head env sign.Types.csig_self in let fields, _ = flatten_fields (object_fields self) in List.iter (fun (_, k, _) -> match field_kind_repr k with | Fprivate -> link_kind ~inside:k field_absent | _ -> ()) fields let close_class_signature env sign = let rec close env ty = let ty = expand_head env ty in match get_desc ty with | Tvar _ -> let level = get_level ty in link_type ty (newty2 ~level Tnil); true | Tfield(lab, _, _, _) when lab = dummy_method -> false | Tfield(_, _, _, ty') -> close env ty' | Tnil -> true | _ -> assert false in let self = expand_head env sign.csig_self in close env (object_fields self) let generalize_class_signature_spine sign = (* Generalize the spine of methods *) sign.csig_meths <- Meths.map (fun (priv, virt, ty) -> priv, virt, copy_spine ty) sign.csig_meths (***********************************) (* Matching between type schemes *) (***********************************) (* Level of the subject, should be just below generic_level *) let subject_level = generic_level - 1 (* Update the level of [ty]. First check that the levels of generic variables from the subject are not lowered. *) let moregen_occur env level ty = with_type_mark begin fun mark -> let rec occur ty = let lv = get_level ty in if lv <= level then () else if is_Tvar ty && lv >= subject_level then raise Occur else if try_mark_node mark ty then iter_type_expr occur ty in try occur ty with Occur -> raise_unexplained_for Moregen end; (* also check for free univars *) occur_univar_for Moregen env ty; update_level_for Moregen env level ty let may_instantiate inst_nongen t1 = let level = get_level t1 in if inst_nongen then level <> subject_level else level = generic_level let rec moregen inst_nongen type_pairs env t1 t2 = if eq_type t1 t2 then () else try match (get_desc t1, get_desc t2) with (Tvar _, _) when may_instantiate inst_nongen t1 -> moregen_occur env (get_level t1) t2; update_scope_for Moregen (get_scope t1) t2; occur_for Moregen (Expression {env; in_subst = false}) t1 t2; link_type t1 t2 | (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 -> () | _ -> let t1' = expand_head env t1 in let t2' = expand_head env t2 in (* Expansion may have changed the representative of the types... *) if eq_type t1' t2' then () else if not (TypePairs.mem type_pairs (t1', t2')) then begin TypePairs.add type_pairs (t1', t2'); match (get_desc t1', get_desc t2') with (Tvar _, _) when may_instantiate inst_nongen t1' -> moregen_occur env (get_level t1') t2; update_scope_for Moregen (get_scope t1') t2; link_type t1' t2 | (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) -> eq_labels Moregen ~in_pattern_mode:false l1 l2; moregen inst_nongen type_pairs env t1 t2; moregen inst_nongen type_pairs env u1 u2 | (Ttuple tl1, Ttuple tl2) -> moregen_list inst_nongen type_pairs env tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 -> moregen_list inst_nongen type_pairs env tl1 tl2 | (Tpackage (p1, fl1), Tpackage (p2, fl2)) -> begin match unify_package env (moregen_list inst_nongen type_pairs env) (get_level t1') p1 fl1 (get_level t2') p2 fl2 with | Ok () -> () | Error fme -> raise_for Moregen (First_class_module fme) | exception Not_found -> raise_unexplained_for Moregen end | (Tnil, Tconstr _ ) -> raise_for Moregen (Obj (Abstract_row Second)) | (Tconstr _, Tnil ) -> raise_for Moregen (Obj (Abstract_row First)) | (Tvariant row1, Tvariant row2) -> moregen_row inst_nongen type_pairs env row1 row2 | (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) -> moregen_fields inst_nongen type_pairs env fi1 fi2 | (Tfield _, Tfield _) -> (* Actually unused *) moregen_fields inst_nongen type_pairs env t1' t2' | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> moregen inst_nongen type_pairs env t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> enter_poly_for Moregen env t1 tl1 t2 tl2 (moregen inst_nongen type_pairs env) | (Tunivar _, Tunivar _) -> unify_univar_for Moregen t1' t2' !univar_pairs | (_, _) -> raise_unexplained_for Moregen end with Moregen_trace trace -> raise_trace_for Moregen (Diff {got = t1; expected = t2} :: trace) and moregen_list inst_nongen type_pairs env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise_unexplained_for Moregen; List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2 and moregen_fields inst_nongen type_pairs env ty1 ty2 = let (fields1, rest1) = flatten_fields ty1 and (fields2, rest2) = flatten_fields ty2 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in begin match miss1 with | (n, _, _) :: _ -> raise_for Moregen (Obj (Missing_field (Second, n))) | [] -> () end; moregen inst_nongen type_pairs env rest1 (build_fields (get_level ty2) miss2 rest2); List.iter (fun (name, k1, t1, k2, t2) -> (* The below call should never throw [Public_method_to_private_method] *) moregen_kind k1 k2; try moregen inst_nongen type_pairs env t1 t2 with Moregen_trace trace -> raise_trace_for Moregen (incompatible_fields ~name ~got:t1 ~expected:t2 :: trace) ) pairs and moregen_kind k1 k2 = match field_kind_repr k1, field_kind_repr k2 with (Fprivate, (Fprivate | Fpublic)) -> link_kind ~inside:k1 k2 | (Fpublic, Fpublic) -> () | (Fpublic, Fprivate) -> raise Public_method_to_private_method | (Fabsent, _) | (_, Fabsent) -> assert false and moregen_row inst_nongen type_pairs env row1 row2 = let Row {fields = row1_fields; more = rm1; closed = row1_closed} = row_repr row1 in let Row {fields = row2_fields; more = rm2; closed = row2_closed; fixed = row2_fixed} = row_repr row2 in if eq_type rm1 rm2 then () else let may_inst = is_Tvar rm1 && may_instantiate inst_nongen rm1 || get_desc rm1 = Tnil in let r1, r2, pairs = merge_row_fields row1_fields row2_fields in let r1, r2 = if row2_closed then filter_row_fields may_inst r1, filter_row_fields false r2 else r1, r2 in begin if r1 <> [] then raise_for Moregen (Variant (No_tags (Second, r1))) end; if row1_closed then begin match row2_closed, r2 with | false, _ -> raise_for Moregen (Variant (Openness Second)) | _, _ :: _ -> raise_for Moregen (Variant (No_tags (First, r2))) | _, [] -> () end; let md1 = get_desc rm1 (* This lets us undo a following [link_type] *) in begin match md1, get_desc rm2 with Tunivar _, Tunivar _ -> unify_univar_for Moregen rm1 rm2 !univar_pairs | Tunivar _, _ | _, Tunivar _ -> raise_unexplained_for Moregen | _ when static_row row1 -> () | _ when may_inst -> let ext = newgenty (Tvariant (create_row ~fields:r2 ~more:rm2 ~name:None ~fixed:row2_fixed ~closed:row2_closed)) in moregen_occur env (get_level rm1) ext; update_scope_for Moregen (get_scope rm1) ext; (* This [link_type] has to be undone if the rest of the function fails *) link_type rm1 ext | Tconstr _, Tconstr _ -> moregen inst_nongen type_pairs env rm1 rm2 | _ -> raise_unexplained_for Moregen end; try List.iter (fun (l,f1,f2) -> if f1 == f2 then () else match row_field_repr f1, row_field_repr f2 with (* Both matching [Rpresent]s *) | Rpresent(Some t1), Rpresent(Some t2) -> begin try moregen inst_nongen type_pairs env t1 t2 with Moregen_trace trace -> raise_trace_for Moregen (Variant (Incompatible_types_for l) :: trace) end | Rpresent None, Rpresent None -> () (* Both [Reither] *) | Reither(c1, tl1, _), Reither(c2, tl2, m2) -> begin try if not (eq_row_field_ext f1 f2) then begin if c1 && not c2 then raise_unexplained_for Moregen; let f2' = rf_either [] ~use_ext_of:f2 ~no_arg:c2 ~matched:m2 in link_row_field_ext ~inside:f1 f2'; if List.length tl1 = List.length tl2 then List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2 else match tl2 with | t2 :: _ -> List.iter (fun t1 -> moregen inst_nongen type_pairs env t1 t2) tl1 | [] -> if tl1 <> [] then raise_unexplained_for Moregen end with Moregen_trace trace -> raise_trace_for Moregen (Variant (Incompatible_types_for l) :: trace) end (* Generalizing [Reither] *) | Reither(false, tl1, _), Rpresent(Some t2) when may_inst -> begin try link_row_field_ext ~inside:f1 f2; List.iter (fun t1 -> moregen inst_nongen type_pairs env t1 t2) tl1 with Moregen_trace trace -> raise_trace_for Moregen (Variant (Incompatible_types_for l) :: trace) end | Reither(true, [], _), Rpresent None when may_inst -> link_row_field_ext ~inside:f1 f2 | Reither(_, _, _), Rabsent when may_inst -> link_row_field_ext ~inside:f1 f2 (* Both [Rabsent]s *) | Rabsent, Rabsent -> () (* Mismatched constructor arguments *) | Rpresent (Some _), Rpresent None | Rpresent None, Rpresent (Some _) -> raise_for Moregen (Variant (Incompatible_types_for l)) (* Mismatched presence *) | Reither _, Rpresent _ -> raise_for Moregen (Variant (Presence_not_guaranteed_for (First, l))) | Rpresent _, Reither _ -> raise_for Moregen (Variant (Presence_not_guaranteed_for (Second, l))) (* Missing tags *) | Rabsent, (Rpresent _ | Reither _) -> raise_for Moregen (Variant (No_tags (First, [l, f2]))) | (Rpresent _ | Reither _), Rabsent -> raise_for Moregen (Variant (No_tags (Second, [l, f1])))) pairs with exn -> (* Undo [link_type] if we failed *) set_type_desc rm1 md1; raise exn (* Must empty univar_pairs first *) let moregen inst_nongen type_pairs env patt subj = with_univar_pairs [] (fun () -> moregen inst_nongen type_pairs env patt subj) (* Non-generic variable can be instantiated only if [inst_nongen] is true. So, [inst_nongen] should be set to false if the subject might contain non-generic variables (and we do not want them to be instantiated). Usually, the subject is given by the user, and the pattern is unimportant. So, no need to propagate abbreviations. *) let moregeneral env inst_nongen pat_sch subj_sch = (* Moregen splits the generic level into two finer levels: [generic_level] and [subject_level = generic_level - 1]. In order to properly detect and print weak variables when printing errors, we need to merge those levels back together. We do that by starting at level [subject_level - 1], using [with_local_level_generalize] to first set the current level to [subject_level], and then generalize nodes at [subject_level] on exit. Strictly speaking, we could avoid generalizing when there is no error, as nodes at level [subject_level] are never unified with nodes of the original types, but that would be rather ad hoc. *) with_level ~level:(subject_level - 1) begin fun () -> match with_local_level_generalize begin fun () -> assert (!current_level = subject_level); (* Generic variables are first duplicated with [instance]. So, their levels are lowered to [subject_level]. The subject is then copied with [duplicate_type]. That way, its levels won't be changed. *) let subj_inst = instance subj_sch in let subj = duplicate_type subj_inst in (* Duplicate generic variables *) let patt = generic_instance pat_sch in try Ok (moregen inst_nongen (TypePairs.create 13) env patt subj) with Moregen_trace trace -> Error trace end with | Ok () -> () | Error trace -> raise (Moregen (expand_to_moregen_error env trace)) end let is_moregeneral env inst_nongen pat_sch subj_sch = match moregeneral env inst_nongen pat_sch subj_sch with | () -> true | exception Moregen _ -> false (* Alternative approach: "rigidify" a type scheme, and check validity after unification *) (* Simpler, no? *) let rec rigidify_rec mark vars ty = if try_mark_node mark ty then begin match get_desc ty with | Tvar _ -> if not (TypeSet.mem ty !vars) then vars := TypeSet.add ty !vars | Tvariant row -> let Row {more; name; closed} = row_repr row in if is_Tvar more && not (has_fixed_explanation row) then begin let more' = newty2 ~level:(get_level more) (get_desc more) in let row' = create_row ~fixed:(Some Rigid) ~fields:[] ~more:more' ~name ~closed in link_type more (newty2 ~level:(get_level ty) (Tvariant row')) end; iter_row (rigidify_rec mark vars) row; (* only consider the row variable if the variant is not static *) if not (static_row row) then rigidify_rec mark vars (row_more row) | _ -> iter_type_expr (rigidify_rec mark vars) ty end let rigidify ty = let vars = ref TypeSet.empty in with_type_mark (fun mark -> rigidify_rec mark vars ty); TypeSet.elements !vars let all_distinct_vars env vars = let tys = ref TypeSet.empty in List.for_all (fun ty -> let ty = expand_head env ty in if TypeSet.mem ty !tys then false else (tys := TypeSet.add ty !tys; is_Tvar ty)) vars let matches ~expand_error_trace env ty ty' = let snap = snapshot () in let vars = rigidify ty in cleanup_abbrev (); match unify env ty ty' with | () -> if not (all_distinct_vars env vars) then begin backtrack snap; let diff = if expand_error_trace then expanded_diff env ~got:ty ~expected:ty' else unexpanded_diff ~got:ty ~expected:ty' in raise (Matches_failure (env, unification_error ~trace:[diff])) end; backtrack snap | exception Unify err -> backtrack snap; raise (Matches_failure (env, err)) let does_match env ty ty' = match matches ~expand_error_trace:false env ty ty' with | () -> true | exception Matches_failure (_, _) -> false (*********************************************) (* Equivalence between parameterized types *) (*********************************************) let expand_head_rigid env ty = let old = !rigid_variants in rigid_variants := true; let ty' = expand_head env ty in rigid_variants := old; ty' let eqtype_subst type_pairs subst t1 t2 = if List.exists (fun (t,t') -> let found1 = eq_type t1 t in let found2 = eq_type t2 t' in if found1 && found2 then true else if found1 || found2 then raise_unexplained_for Equality else false) !subst then () else begin subst := (t1, t2) :: !subst; TypePairs.add type_pairs (t1, t2) end let rec eqtype rename type_pairs subst env t1 t2 = let check_phys_eq t1 t2 = not rename && eq_type t1 t2 in (* Checking for physical equality of type representatives when [rename] is true would be incorrect: imagine comparing ['a * 'a] with ['b * 'a]. The first ['a] and ['b] would be identified in [eqtype_subst], and then the second ['a] and ['a] would be [eq_type]. So we do not call [eq_type] here. On the other hand, when [rename] is false we need to check for physical equality, as that's the only way variables can be identified. *) if check_phys_eq t1 t2 then () else try match (get_desc t1, get_desc t2) with (Tvar _, Tvar _) when rename -> eqtype_subst type_pairs subst t1 t2 | (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 -> () | _ -> let t1' = expand_head_rigid env t1 in let t2' = expand_head_rigid env t2 in (* Expansion may have changed the representative of the types... *) if check_phys_eq t1' t2' then () else if not (TypePairs.mem type_pairs (t1', t2')) then begin TypePairs.add type_pairs (t1', t2'); match (get_desc t1', get_desc t2') with (Tvar _, Tvar _) when rename -> eqtype_subst type_pairs subst t1' t2' | (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) -> eq_labels Equality ~in_pattern_mode:false l1 l2; eqtype rename type_pairs subst env t1 t2; eqtype rename type_pairs subst env u1 u2 | (Ttuple tl1, Ttuple tl2) -> eqtype_list rename type_pairs subst env tl1 tl2 | (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 -> eqtype_list_same_length rename type_pairs subst env tl1 tl2 | (Tpackage (p1, fl1), Tpackage (p2, fl2)) -> begin match unify_package env (eqtype_list rename type_pairs subst env) (get_level t1') p1 fl1 (get_level t2') p2 fl2 with | Ok () -> () | Error fme -> raise_for Equality (First_class_module fme) | exception Not_found -> raise_unexplained_for Equality end | (Tnil, Tconstr _ ) -> raise_for Equality (Obj (Abstract_row Second)) | (Tconstr _, Tnil ) -> raise_for Equality (Obj (Abstract_row First)) | (Tvariant row1, Tvariant row2) -> eqtype_row rename type_pairs subst env row1 row2 | (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) -> eqtype_fields rename type_pairs subst env fi1 fi2 | (Tfield _, Tfield _) -> (* Actually unused *) eqtype_fields rename type_pairs subst env t1' t2' | (Tnil, Tnil) -> () | (Tpoly (t1, []), Tpoly (t2, [])) -> eqtype rename type_pairs subst env t1 t2 | (Tpoly (t1, tl1), Tpoly (t2, tl2)) -> enter_poly_for Equality env t1 tl1 t2 tl2 (eqtype rename type_pairs subst env) | (Tunivar _, Tunivar _) -> unify_univar_for Equality t1' t2' !univar_pairs | (_, _) -> raise_unexplained_for Equality end with Equality_trace trace -> raise_trace_for Equality (Diff {got = t1; expected = t2} :: trace) and eqtype_list_same_length rename type_pairs subst env tl1 tl2 = List.iter2 (eqtype rename type_pairs subst env) tl1 tl2 and eqtype_list rename type_pairs subst env tl1 tl2 = if List.length tl1 <> List.length tl2 then raise_unexplained_for Equality; eqtype_list_same_length rename type_pairs subst env tl1 tl2 and eqtype_fields rename type_pairs subst env ty1 ty2 = let (fields1, rest1) = flatten_fields ty1 in let (fields2, rest2) = flatten_fields ty2 in (* First check if same row => already equal *) let same_row = (* [not rename]: see comment at top of [eqtype] *) (not rename && eq_type rest1 rest2) || TypePairs.mem type_pairs (rest1,rest2) in if same_row then () else (* Try expansion, needed when called from Includecore.type_manifest *) match get_desc (expand_head_rigid env rest2) with Tobject(ty2,_) -> eqtype_fields rename type_pairs subst env ty1 ty2 | _ -> let (pairs, miss1, miss2) = associate_fields fields1 fields2 in eqtype rename type_pairs subst env rest1 rest2; match miss1, miss2 with | ((n, _, _)::_, _) -> raise_for Equality (Obj (Missing_field (Second, n))) | (_, (n, _, _)::_) -> raise_for Equality (Obj (Missing_field (First, n))) | [], [] -> List.iter (function (name, k1, t1, k2, t2) -> eqtype_kind k1 k2; try eqtype rename type_pairs subst env t1 t2; with Equality_trace trace -> raise_trace_for Equality (incompatible_fields ~name ~got:t1 ~expected:t2 :: trace)) pairs and eqtype_kind k1 k2 = let k1 = field_kind_repr k1 in let k2 = field_kind_repr k2 in match k1, k2 with | (Fprivate, Fprivate) | (Fpublic, Fpublic) -> () | _ -> raise_unexplained_for Unify (* It's probably not possible to hit this case with real OCaml code *) and eqtype_row rename type_pairs subst env row1 row2 = (* Try expansion, needed when called from Includecore.type_manifest *) match get_desc (expand_head_rigid env (row_more row2)) with Tvariant row2 -> eqtype_row rename type_pairs subst env row1 row2 | _ -> let r1, r2, pairs = merge_row_fields (row_fields row1) (row_fields row2) in if row_closed row1 <> row_closed row2 then begin raise_for Equality (Variant (Openness (if row_closed row2 then First else Second))) end; if not (row_closed row1) then begin match r1, r2 with | _::_, _ -> raise_for Equality (Variant (No_tags (Second, r1))) | _, _::_ -> raise_for Equality (Variant (No_tags (First, r2))) | _, _ -> () end; begin match filter_row_fields false r1 with | [] -> (); | _ :: _ as r1 -> raise_for Equality (Variant (No_tags (Second, r1))) end; begin match filter_row_fields false r2 with | [] -> () | _ :: _ as r2 -> raise_for Equality (Variant (No_tags (First, r2))) end; if not (static_row row1) then eqtype rename type_pairs subst env (row_more row1) (row_more row2); List.iter (fun (l,f1,f2) -> if f1 == f2 then () else match row_field_repr f1, row_field_repr f2 with (* Both matching [Rpresent]s *) | Rpresent(Some t1), Rpresent(Some t2) -> begin try eqtype rename type_pairs subst env t1 t2 with Equality_trace trace -> raise_trace_for Equality (Variant (Incompatible_types_for l) :: trace) end | Rpresent None, Rpresent None -> () (* Both matching [Reither]s *) | Reither(c1, [], _), Reither(c2, [], _) when c1 = c2 -> () | Reither(c1, t1::tl1, _), Reither(c2, t2::tl2, _) when c1 = c2 -> begin try eqtype rename type_pairs subst env t1 t2; if List.length tl1 = List.length tl2 then (* if same length allow different types (meaning?) *) List.iter2 (eqtype rename type_pairs subst env) tl1 tl2 else begin (* otherwise everything must be equal *) List.iter (eqtype rename type_pairs subst env t1) tl2; List.iter (fun t1 -> eqtype rename type_pairs subst env t1 t2) tl1 end with Equality_trace trace -> raise_trace_for Equality (Variant (Incompatible_types_for l) :: trace) end (* Both [Rabsent]s *) | Rabsent, Rabsent -> () (* Mismatched constructor arguments *) | Rpresent (Some _), Rpresent None | Rpresent None, Rpresent (Some _) | Reither _, Reither _ -> raise_for Equality (Variant (Incompatible_types_for l)) (* Mismatched presence *) | Reither _, Rpresent _ -> raise_for Equality (Variant (Presence_not_guaranteed_for (First, l))) | Rpresent _, Reither _ -> raise_for Equality (Variant (Presence_not_guaranteed_for (Second, l))) (* Missing tags *) | Rabsent, (Rpresent _ | Reither _) -> raise_for Equality (Variant (No_tags (First, [l, f2]))) | (Rpresent _ | Reither _), Rabsent -> raise_for Equality (Variant (No_tags (Second, [l, f1])))) pairs (* Must empty univar_pairs first *) let eqtype_list_same_length rename type_pairs subst env tl1 tl2 = with_univar_pairs [] (fun () -> let snap = Btype.snapshot () in Misc.try_finally ~always:(fun () -> backtrack snap) (fun () -> eqtype_list_same_length rename type_pairs subst env tl1 tl2)) let eqtype rename type_pairs subst env t1 t2 = eqtype_list_same_length rename type_pairs subst env [t1] [t2] (* Two modes: with or without renaming of variables *) let equal env rename tyl1 tyl2 = if List.length tyl1 <> List.length tyl2 then raise_unexplained_for Equality; if List.for_all2 eq_type tyl1 tyl2 then () else let subst = ref [] in try eqtype_list_same_length rename (TypePairs.create 11) subst env tyl1 tyl2 with Equality_trace trace -> raise (Equality (expand_to_equality_error env trace !subst)) let is_equal env rename tyl1 tyl2 = match equal env rename tyl1 tyl2 with | () -> true | exception Equality _ -> false let rec equal_private env params1 ty1 params2 ty2 = match equal env true (params1 @ [ty1]) (params2 @ [ty2]) with | () -> () | exception (Equality _ as err) -> match try_expand_safe_opt env (expand_head env ty1) with | ty1' -> equal_private env params1 ty1' params2 ty2 | exception Cannot_expand -> raise err (*************************) (* Class type matching *) (*************************) type class_match_failure = CM_Virtual_class | CM_Parameter_arity_mismatch of int * int | CM_Type_parameter_mismatch of int * Env.t * equality_error | CM_Class_type_mismatch of Env.t * class_type * class_type | CM_Parameter_mismatch of int * Env.t * moregen_error | CM_Val_type_mismatch of string * Env.t * comparison_error | CM_Meth_type_mismatch of string * Env.t * comparison_error | CM_Non_mutable_value of string | CM_Non_concrete_value of string | CM_Missing_value of string | CM_Missing_method of string | CM_Hide_public of string | CM_Hide_virtual of string * string | CM_Public_method of string | CM_Private_method of string | CM_Virtual_method of string exception Failure of class_match_failure list let match_class_sig_shape ~strict sign1 sign2 = let errors = Meths.fold (fun lab (priv, vr, _) err -> match Meths.find lab sign1.csig_meths with | exception Not_found -> CM_Missing_method lab::err | (priv', vr', _) -> match priv', priv with | Mpublic, Mprivate _ -> CM_Public_method lab::err | Mprivate _, Mpublic when strict -> CM_Private_method lab::err | _, _ -> match vr', vr with | Virtual, Concrete -> CM_Virtual_method lab::err | _, _ -> err) sign2.csig_meths [] in let errors = Meths.fold (fun lab (priv, vr, _) err -> if Meths.mem lab sign2.csig_meths then err else begin let err = match priv with | Mpublic -> CM_Hide_public lab :: err | Mprivate _ -> err in match vr with | Virtual -> CM_Hide_virtual ("method", lab) :: err | Concrete -> err end) sign1.csig_meths errors in let errors = Vars.fold (fun lab (mut, vr, _) err -> match Vars.find lab sign1.csig_vars with | exception Not_found -> CM_Missing_value lab::err | (mut', vr', _) -> match mut', mut with | Immutable, Mutable -> CM_Non_mutable_value lab::err | _, _ -> match vr', vr with | Virtual, Concrete -> CM_Non_concrete_value lab::err | _, _ -> err) sign2.csig_vars errors in Vars.fold (fun lab (_,vr,_) err -> if vr = Virtual && not (Vars.mem lab sign2.csig_vars) then CM_Hide_virtual ("instance variable", lab) :: err else err) sign1.csig_vars errors (* [arrow_index] is the number of [Cty_arrow] constructors we've seen so far. *) let rec moregen_clty ~arrow_index trace type_pairs env cty1 cty2 = try match cty1, cty2 with | Cty_constr (_, _, cty1), _ -> moregen_clty ~arrow_index true type_pairs env cty1 cty2 | _, Cty_constr (_, _, cty2) -> moregen_clty ~arrow_index true type_pairs env cty1 cty2 | Cty_arrow (l1, ty1, cty1'), Cty_arrow (l2, ty2, cty2') when l1 = l2 -> let arrow_index = arrow_index + 1 in begin try moregen true type_pairs env ty1 ty2 with Moregen_trace trace -> raise (Failure [ CM_Parameter_mismatch (arrow_index, env, expand_to_moregen_error env trace)]) end; moregen_clty ~arrow_index false type_pairs env cty1' cty2' | Cty_signature sign1, Cty_signature sign2 -> Meths.iter (fun lab (_, _, ty) -> match Meths.find lab sign1.csig_meths with | exception Not_found -> (* This function is only called after checking that all methods in sign2 are present in sign1. *) assert false | (_, _, ty') -> match moregen true type_pairs env ty' ty with | () -> () | exception Moregen_trace trace -> raise (Failure [ CM_Meth_type_mismatch (lab, env, Moregen_error (expand_to_moregen_error env trace))])) sign2.csig_meths; Vars.iter (fun lab (_, _, ty) -> match Vars.find lab sign1.csig_vars with | exception Not_found -> (* This function is only called after checking that all instance variables in sign2 are present in sign1. *) assert false | (_, _, ty') -> match moregen true type_pairs env ty' ty with | () -> () | exception Moregen_trace trace -> raise (Failure [ CM_Val_type_mismatch (lab, env, Moregen_error (expand_to_moregen_error env trace))])) sign2.csig_vars | _ -> raise (Failure []) with Failure error when trace || error = [] -> raise (Failure (CM_Class_type_mismatch (env, cty1, cty2)::error)) let moregen_clty trace type_pairs env cty1 cty2 = moregen_clty ~arrow_index:0 trace type_pairs env cty1 cty2 let match_class_types ?(trace=true) env pat_sch subj_sch = let sign1 = signature_of_class_type pat_sch in let sign2 = signature_of_class_type subj_sch in let errors = match_class_sig_shape ~strict:false sign1 sign2 in match errors with | [] -> (* Moregen splits the generic level into two finer levels: [generic_level] and [subject_level = generic_level - 1]. In order to properly detect and print weak variables when printing errors, we need to merge those levels back together. We do that by starting at level [subject_level - 1], using [with_local_level_generalize] to first set the current level to [subject_level], and then generalize nodes at [subject_level] on exit. Strictly speaking, we could avoid generalizing when there is no error, as nodes at level [subject_level] are never unified with nodes of the original types, but that would be rather ad hoc. *) with_level ~level:(subject_level - 1) begin fun () -> with_local_level_generalize begin fun () -> assert (!current_level = subject_level); (* Generic variables are first duplicated with [instance]. So, their levels are lowered to [subject_level]. The subject is then copied with [duplicate_type]. That way, its levels won't be changed. *) let (_, subj_inst) = instance_class [] subj_sch in let subj = duplicate_class_type subj_inst in (* Duplicate generic variables *) let (_, patt) = with_level ~level:generic_level (fun () -> instance_class [] pat_sch) in let type_pairs = TypePairs.create 53 in let sign1 = signature_of_class_type patt in let sign2 = signature_of_class_type subj in let self1 = sign1.csig_self in let self2 = sign2.csig_self in let row1 = sign1.csig_self_row in let row2 = sign2.csig_self_row in TypePairs.add type_pairs (self1, self2); (* Always succeeds *) moregen true type_pairs env row1 row2; (* May fail *) try moregen_clty trace type_pairs env patt subj; [] with Failure res -> res end end | errors -> CM_Class_type_mismatch (env, pat_sch, subj_sch) :: errors let equal_clsig trace type_pairs subst env sign1 sign2 = try Meths.iter (fun lab (_, _, ty) -> match Meths.find lab sign1.csig_meths with | exception Not_found -> (* This function is only called after checking that all methods in sign2 are present in sign1. *) assert false | (_, _, ty') -> match eqtype true type_pairs subst env ty' ty with | () -> () | exception Equality_trace trace -> raise (Failure [ CM_Meth_type_mismatch (lab, env, Equality_error (expand_to_equality_error env trace !subst))])) sign2.csig_meths; Vars.iter (fun lab (_, _, ty) -> match Vars.find lab sign1.csig_vars with | exception Not_found -> (* This function is only called after checking that all instance variables in sign2 are present in sign1. *) assert false | (_, _, ty') -> match eqtype true type_pairs subst env ty' ty with | () -> () | exception Equality_trace trace -> raise (Failure [ CM_Val_type_mismatch (lab, env, Equality_error (expand_to_equality_error env trace !subst))])) sign2.csig_vars with Failure error when trace -> raise (Failure (CM_Class_type_mismatch (env, Cty_signature sign1, Cty_signature sign2)::error)) let match_class_declarations env patt_params patt_type subj_params subj_type = let sign1 = signature_of_class_type patt_type in let sign2 = signature_of_class_type subj_type in let errors = match_class_sig_shape ~strict:true sign1 sign2 in match errors with | [] -> begin try let subst = ref [] in let type_pairs = TypePairs.create 53 in let self1 = sign1.csig_self in let self2 = sign2.csig_self in let row1 = sign1.csig_self_row in let row2 = sign2.csig_self_row in TypePairs.add type_pairs (self1, self2); (* Always succeeds *) eqtype true type_pairs subst env row1 row2; let lp = List.length patt_params in let ls = List.length subj_params in if lp <> ls then raise (Failure [CM_Parameter_arity_mismatch (lp, ls)]); Std.List.iteri2 ~f:(fun n p s -> try eqtype true type_pairs subst env p s with Equality_trace trace -> raise (Failure [CM_Type_parameter_mismatch (n+1, env, expand_to_equality_error env trace !subst)])) patt_params subj_params; (* old code: equal_clty false type_pairs subst env patt_type subj_type; *) equal_clsig false type_pairs subst env sign1 sign2; (* Use moregeneral for class parameters, need to recheck everything to keeps relationships (PR#4824) *) let clty_params = List.fold_right (fun ty cty -> Cty_arrow (Labelled "*",ty,cty)) in match_class_types ~trace:false env (clty_params patt_params patt_type) (clty_params subj_params subj_type) with Failure r -> r end | error -> error (***************) (* Subtyping *) (***************) (**** Build a subtype of a given type. ****) (* build_subtype: [visited] traces traversed object and variant types [loops] is a mapping from variables to variables, to reproduce positive loops in a class type [posi] true if the current variance is positive [level] number of expansions/enlargement allowed on this branch *) let warn = ref false (* whether double coercion might do better *) let pred_expand n = if n mod 2 = 0 && n > 0 then pred n else n let pred_enlarge n = if n mod 2 = 1 then pred n else n type change = Unchanged | Equiv | Changed let max_change c1 c2 = match c1, c2 with | _, Changed | Changed, _ -> Changed | Equiv, _ | _, Equiv -> Equiv | _ -> Unchanged let collect l = List.fold_left (fun c1 (_, c2) -> max_change c1 c2) Unchanged l let rec filter_visited = function [] -> [] | {desc=Tobject _|Tvariant _} :: _ as l -> l | _ :: l -> filter_visited l let memq_warn t visited = if List.memq t visited then (warn := true; true) else false let find_cltype_for_path env p = let cl_abbr = Env.find_hash_type p env in match cl_abbr.type_manifest with Some ty -> begin match get_desc ty with Tobject(_,{contents=Some(p',_)}) when Path.same p p' -> cl_abbr, ty | _ -> raise Not_found end | None -> assert false let has_constr_row' env t = has_constr_row (expand_abbrev env t) let rec build_subtype env (visited : transient_expr list) (loops : (int * type_expr) list) posi level t = match get_desc t with Tvar _ -> if posi then try let t' = List.assq (get_id t) loops in warn := true; (t', Equiv) with Not_found -> (t, Unchanged) else (t, Unchanged) | Tarrow(l, t1, t2, _) -> let tt = Transient_expr.repr t in if memq_warn tt visited then (t, Unchanged) else let visited = tt :: visited in let (t1', c1) = build_subtype env visited loops (not posi) level t1 in let (t2', c2) = build_subtype env visited loops posi level t2 in let c = max_change c1 c2 in if c > Unchanged then (newty (Tarrow(l, t1', t2', commu_ok)), c) else (t, Unchanged) | Ttuple tlist -> let tt = Transient_expr.repr t in if memq_warn tt visited then (t, Unchanged) else let visited = tt :: visited in let tlist' = List.map (build_subtype env visited loops posi level) tlist in let c = collect tlist' in if c > Unchanged then (newty (Ttuple (List.map fst tlist')), c) else (t, Unchanged) | Tconstr(p, tl, abbrev) when level > 0 && generic_abbrev env p && safe_abbrev env t && not (has_constr_row' env t) -> let t' = expand_abbrev env t in let level' = pred_expand level in begin try match get_desc t' with Tobject _ when posi && not (opened_object t') -> let cl_abbr, body = find_cltype_for_path env p in let ty = try subst env !current_level Public abbrev None cl_abbr.type_params tl body with Cannot_subst -> assert false in let ty1, tl1 = match get_desc ty with Tobject(ty1,{contents=Some(p',tl1)}) when Path.same p p' -> ty1, tl1 | _ -> raise Not_found in (* Fix PR#4505: do not set ty to Tvar when it appears in tl1, as this occurrence might break the occur check. XXX not clear whether this correct anyway... *) if List.exists (deep_occur ty) tl1 then raise Not_found; set_type_desc ty (Tvar None); let t'' = newvar () in let loops = (get_id ty, t'') :: loops in (* May discard [visited] as level is going down *) let (ty1', c) = build_subtype env [Transient_expr.repr t'] loops posi (pred_enlarge level') ty1 in assert (is_Tvar t''); let nm = if c > Equiv || deep_occur ty ty1' then None else Some(p,tl1) in set_type_desc t'' (Tobject (ty1', ref nm)); (try unify_var env ty t with Unify _ -> assert false); ( t'', Changed) | _ -> raise Not_found with Not_found -> let (t'',c) = build_subtype env visited loops posi level' t' in if c > Unchanged then (t'',c) else (t, Unchanged) end | Tconstr(p, tl, _abbrev) -> (* Must check recursion on constructors, since we do not always expand them *) let tt = Transient_expr.repr t in if memq_warn tt visited then (t, Unchanged) else let visited = tt :: visited in begin try let decl = Env.find_type p env in if level = 0 && generic_abbrev env p && safe_abbrev env t && not (has_constr_row' env t) then warn := true; let tl' = List.map2 (fun v t -> let (co,cn) = Variance.get_upper v in if cn then if co then (t, Unchanged) else build_subtype env visited loops (not posi) level t else if co then build_subtype env visited loops posi level t else (newvar(), Changed)) decl.type_variance tl in let c = collect tl' in if c > Unchanged then (newconstr p (List.map fst tl'), c) else (t, Unchanged) with Not_found -> (t, Unchanged) end | Tvariant row -> let tt = Transient_expr.repr t in if memq_warn tt visited || not (static_row row) then (t, Unchanged) else let level' = pred_enlarge level in let visited = tt :: if level' < level then [] else filter_visited visited in let fields = filter_row_fields false (row_fields row) in let fields = List.map (fun (l,f as orig) -> match row_field_repr f with Rpresent None -> if posi then (l, rf_either_of None), Unchanged else orig, Unchanged | Rpresent(Some t) -> let (t', c) = build_subtype env visited loops posi level' t in let f = if posi && level > 0 then rf_either_of (Some t') else rf_present (Some t') in (l, f), c | _ -> assert false) fields in let c = collect fields in let row = create_row ~fields:(List.map fst fields) ~more:(newvar ()) ~closed:posi ~fixed:None ~name:(if c > Unchanged then None else row_name row) in (newty (Tvariant row), Changed) | Tobject (t1, _) -> let tt = Transient_expr.repr t in if memq_warn tt visited || opened_object t1 then (t, Unchanged) else let level' = pred_enlarge level in let visited = tt :: if level' < level then [] else filter_visited visited in let (t1', c) = build_subtype env visited loops posi level' t1 in if c > Unchanged then (newty (Tobject (t1', ref None)), c) else (t, Unchanged) | Tfield(s, _, t1, t2) (* Always present *) -> let (t1', c1) = build_subtype env visited loops posi level t1 in let (t2', c2) = build_subtype env visited loops posi level t2 in let c = max_change c1 c2 in if c > Unchanged then (newty (Tfield(s, field_public, t1', t2')), c) else (t, Unchanged) | Tnil -> if posi then let v = newvar () in (v, Changed) else begin warn := true; (t, Unchanged) end | Tsubst _ | Tlink _ -> assert false | Tpoly(t1, tl) -> let (t1', c) = build_subtype env visited loops posi level t1 in if c > Unchanged then (newty (Tpoly(t1', tl)), c) else (t, Unchanged) | Tunivar _ | Tpackage _ -> (t, Unchanged) let enlarge_type env ty = warn := false; (* [level = 4] allows 2 expansions involving objects/variants *) let (ty', _) = build_subtype env [] [] true 4 ty in (ty', !warn) (**** Check whether a type is a subtype of another type. ****) (* During the traversal, a trace of visited types is maintained. It is printed in case of error. Constraints (pairs of types that must be equals) are accumulated rather than being enforced straight. Indeed, the result would otherwise depend on the order in which these constraints are enforced. A function enforcing these constraints is returned. That way, type variables can be bound to their actual values before this function is called (see Typecore). Only well-defined abbreviations are expanded (hence the tests [generic_abbrev ...]). *) let subtypes = TypePairs.create 17 let subtype_error ~env ~trace ~unification_trace = raise (Subtype (Subtype.error ~trace:(expand_subtype_trace env (List.rev trace)) ~unification_trace)) let rec subtype_rec env trace t1 t2 cstrs = if eq_type t1 t2 then cstrs else if TypePairs.mem subtypes (t1, t2) then cstrs else begin TypePairs.add subtypes (t1, t2); match (get_desc t1, get_desc t2) with (Tvar _, _) | (_, Tvar _) -> (trace, t1, t2, !univar_pairs)::cstrs | (Tarrow(l1, t1, u1, _), Tarrow(l2, t2, u2, _)) when compatible_labels ~in_pattern_mode:false l1 l2 -> let cstrs = subtype_rec env (Subtype.Diff {got = t2; expected = t1} :: trace) t2 t1 cstrs in subtype_rec env (Subtype.Diff {got = u1; expected = u2} :: trace) u1 u2 cstrs | (Ttuple tl1, Ttuple tl2) -> subtype_list env trace tl1 tl2 cstrs | (Tconstr(p1, [], _), Tconstr(p2, [], _)) when Path.same p1 p2 -> cstrs | (Tconstr(p1, _tl1, _abbrev1), _) when generic_abbrev env p1 && safe_abbrev env t1 -> subtype_rec env trace (expand_abbrev env t1) t2 cstrs | (_, Tconstr(p2, _tl2, _abbrev2)) when generic_abbrev env p2 && safe_abbrev env t2 -> subtype_rec env trace t1 (expand_abbrev env t2) cstrs | (Tconstr(p1, tl1, _), Tconstr(p2, tl2, _)) when Path.same p1 p2 -> begin try let decl = Env.find_type p1 env in List.fold_left2 (fun cstrs v (t1, t2) -> let (co, cn) = Variance.get_upper v in if co then if cn then (trace, newty2 ~level:(get_level t1) (Ttuple[t1]), newty2 ~level:(get_level t2) (Ttuple[t2]), !univar_pairs) :: cstrs else subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs else if cn then subtype_rec env (Subtype.Diff {got = t2; expected = t1} :: trace) t2 t1 cstrs else cstrs) cstrs decl.type_variance (List.combine tl1 tl2) with Not_found -> (trace, t1, t2, !univar_pairs)::cstrs end | (Tconstr(p1, _, _), _) when generic_private_abbrev env p1 && safe_abbrev_opt env t1 -> subtype_rec env trace (expand_abbrev_opt env t1) t2 cstrs (* | (_, Tconstr(p2, _, _)) when generic_private_abbrev false env p2 -> subtype_rec env trace t1 (expand_abbrev_opt env t2) cstrs *) | (Tobject (f1, _), Tobject (f2, _)) when is_Tvar (object_row f1) && is_Tvar (object_row f2) -> (* Same row variable implies same object. *) (trace, t1, t2, !univar_pairs)::cstrs | (Tobject (f1, _), Tobject (f2, _)) -> subtype_fields env trace f1 f2 cstrs | (Tvariant row1, Tvariant row2) -> begin try subtype_row env trace row1 row2 cstrs with Exit -> (trace, t1, t2, !univar_pairs)::cstrs end | (Tpoly (u1, []), Tpoly (u2, [])) -> subtype_rec env trace u1 u2 cstrs | (Tpoly (u1, tl1), Tpoly (u2, [])) -> let _, u1' = instance_poly ~fixed:false tl1 u1 in subtype_rec env trace u1' u2 cstrs | (Tpoly (u1, tl1), Tpoly (u2,tl2)) -> begin try enter_poly env u1 tl1 u2 tl2 (fun t1 t2 -> subtype_rec env trace t1 t2 cstrs) with Escape _ -> (trace, t1, t2, !univar_pairs)::cstrs end | (Tpackage (p1, fl1), Tpackage (p2, fl2)) -> begin try let ntl1 = complete_type_list env fl2 (get_level t1) (Mty_ident p1) fl1 and ntl2 = complete_type_list env fl1 (get_level t2) (Mty_ident p2) fl2 ~allow_absent:true in let cstrs' = List.map (fun (n2,t2) -> (trace, List.assoc n2 ntl1, t2, !univar_pairs)) ntl2 in if eq_package_path env p1 p2 then cstrs' @ cstrs else begin (* need to check module subtyping *) let snap = Btype.snapshot () in match List.iter (fun (_, t1, t2, _) -> unify env t1 t2) cstrs' with | () when Result.is_ok (!package_subtype env p1 fl1 p2 fl2) -> Btype.backtrack snap; cstrs' @ cstrs | () | exception Unify _ -> Btype.backtrack snap; raise Not_found end with Not_found -> (trace, t1, t2, !univar_pairs)::cstrs end | (_, _) -> (trace, t1, t2, !univar_pairs)::cstrs end and subtype_list env trace tl1 tl2 cstrs = if List.length tl1 <> List.length tl2 then subtype_error ~env ~trace ~unification_trace:[]; List.fold_left2 (fun cstrs t1 t2 -> subtype_rec env (Subtype.Diff { got = t1; expected = t2 } :: trace) t1 t2 cstrs) cstrs tl1 tl2 and subtype_fields env trace ty1 ty2 cstrs = (* Assume that either rest1 or rest2 is not Tvar *) let (fields1, rest1) = flatten_fields ty1 in let (fields2, rest2) = flatten_fields ty2 in let (pairs, miss1, miss2) = associate_fields fields1 fields2 in let cstrs = if get_desc rest2 = Tnil then cstrs else if miss1 = [] then subtype_rec env (Subtype.Diff {got = rest1; expected = rest2} :: trace) rest1 rest2 cstrs else (trace, build_fields (get_level ty1) miss1 rest1, rest2, !univar_pairs) :: cstrs in let cstrs = if miss2 = [] then cstrs else (trace, rest1, build_fields (get_level ty2) miss2 (newvar ()), !univar_pairs) :: cstrs in List.fold_left (fun cstrs (_, _k1, t1, _k2, t2) -> (* These fields are always present *) subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs) cstrs pairs and subtype_row env trace row1 row2 cstrs = let Row {fields = row1_fields; more = more1; closed = row1_closed} = row_repr row1 in let Row {fields = row2_fields; more = more2; closed = row2_closed} = row_repr row2 in let r1, r2, pairs = merge_row_fields row1_fields row2_fields in let r1 = if row2_closed then filter_row_fields false r1 else r1 in let r2 = if row1_closed then filter_row_fields false r2 else r2 in match get_desc more1, get_desc more2 with Tconstr(p1,_,_), Tconstr(p2,_,_) when Path.same p1 p2 -> subtype_rec env (Subtype.Diff {got = more1; expected = more2} :: trace) more1 more2 cstrs | (Tvar _|Tconstr _|Tnil), (Tvar _|Tconstr _|Tnil) when row1_closed && r1 = [] -> List.fold_left (fun cstrs (_,f1,f2) -> match row_field_repr f1, row_field_repr f2 with (Rpresent None|Reither(true,_,_)), Rpresent None -> cstrs | Rpresent(Some t1), Rpresent(Some t2) -> subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs | Reither(false, t1::_, _), Rpresent(Some t2) -> subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs | Rabsent, _ -> cstrs | _ -> raise Exit) cstrs pairs | Tunivar _, Tunivar _ when row1_closed = row2_closed && r1 = [] && r2 = [] -> let cstrs = subtype_rec env (Subtype.Diff {got = more1; expected = more2} :: trace) more1 more2 cstrs in List.fold_left (fun cstrs (_,f1,f2) -> match row_field_repr f1, row_field_repr f2 with Rpresent None, Rpresent None | Reither(true,[],_), Reither(true,[],_) | Rabsent, Rabsent -> cstrs | Rpresent(Some t1), Rpresent(Some t2) | Reither(false,[t1],_), Reither(false,[t2],_) -> subtype_rec env (Subtype.Diff {got = t1; expected = t2} :: trace) t1 t2 cstrs | _ -> raise Exit) cstrs pairs | _ -> raise Exit let subtype env ty1 ty2 = TypePairs.clear subtypes; with_univar_pairs [] (fun () -> (* Build constraint set. *) let cstrs = subtype_rec env [Subtype.Diff {got = ty1; expected = ty2}] ty1 ty2 [] in TypePairs.clear subtypes; (* Enforce constraints. *) function () -> List.iter (function (trace0, t1, t2, pairs) -> try unify_pairs env t1 t2 pairs with Unify {trace} -> subtype_error ~env ~trace:trace0 ~unification_trace:(List.tl trace)) (List.rev cstrs)) (*******************) (* Miscellaneous *) (*******************) (* Utility for printing. The resulting type is not used in computation. *) let rec unalias_object ty = let level = get_level ty in match get_desc ty with Tfield (s, k, t1, t2) -> newty2 ~level (Tfield (s, k, t1, unalias_object t2)) | Tvar _ | Tnil as desc -> newty2 ~level desc | Tunivar _ -> ty | Tconstr _ -> newvar2 level | _ -> assert false let unalias ty = let level = get_level ty in match get_desc ty with Tvar _ | Tunivar _ -> ty | Tvariant row -> let Row {fields; more; name; fixed; closed} = row_repr row in newty2 ~level (Tvariant (create_row ~fields ~name ~fixed ~closed ~more: (newty2 ~level:(get_level more) (get_desc more)))) | Tobject (ty, nm) -> newty2 ~level (Tobject (unalias_object ty, nm)) | desc -> newty2 ~level desc (* Return the arity (as for curried functions) of the given type. *) let rec arity ty = match get_desc ty with Tarrow(_, _t1, t2, _) -> 1 + arity t2 | _ -> 0 (* Check for non-generalizable type variables *) let add_nongen_vars_in_schema = let rec loop env ((visited, weak_set) as acc) ty = if TypeSet.mem ty visited then acc else begin let visited = TypeSet.add ty visited in match get_desc ty with | Tvar _ when get_level ty <> generic_level -> visited, TypeSet.add ty weak_set | Tconstr _ -> let (_, unexpanded_candidate) as unexpanded_candidate' = fold_type_expr (loop env) (visited, weak_set) ty in (* Using `==` is okay because `loop` will return the original set when it does not change it. Similarly, `TypeSet.add` will return the original set if the element is already present. *) if unexpanded_candidate == weak_set then (visited, weak_set) else begin match loop env (visited, weak_set) (try_expand_head try_expand_safe env ty) with | exception Cannot_expand -> unexpanded_candidate' | expanded_result -> expanded_result end | Tfield(_, kind, t1, t2) -> let visited, weak_set = match field_kind_repr kind with | Fpublic -> loop env (visited, weak_set) t1 | _ -> visited, weak_set in loop env (visited, weak_set) t2 | Tvariant row -> let visited, weak_set = fold_row (loop env) (visited, weak_set) row in if not (static_row row) then loop env (visited, weak_set) (row_more row) else (visited, weak_set) | _ -> fold_type_expr (loop env) (visited, weak_set) ty end in fun env acc ty -> let _, result = loop env (TypeSet.empty, acc) ty in result (* Return all non-generic variables of [ty]. *) let nongen_vars_in_schema env ty = let result = add_nongen_vars_in_schema env TypeSet.empty ty in if TypeSet.is_empty result then None else Some result (* Check that all type variables are generalizable *) (* Use Env.empty to prevent expansion of recursively defined object types; cf. typing-poly/poly.ml *) let nongen_class_type = let add_nongen_vars_in_schema' ty weak_set = add_nongen_vars_in_schema Env.empty weak_set ty in let add_nongen_vars_in_schema_fold fold m weak_set = let f _key (_,_,ty) weak_set = add_nongen_vars_in_schema Env.empty weak_set ty in fold f m weak_set in let rec nongen_class_type cty weak_set = match cty with | Cty_constr (_, params, _) -> List.fold_left (add_nongen_vars_in_schema Env.empty) weak_set params | Cty_signature sign -> weak_set |> add_nongen_vars_in_schema' sign.csig_self |> add_nongen_vars_in_schema' sign.csig_self_row |> add_nongen_vars_in_schema_fold Meths.fold sign.csig_meths |> add_nongen_vars_in_schema_fold Vars.fold sign.csig_vars | Cty_arrow (_, ty, cty) -> add_nongen_vars_in_schema' ty weak_set |> nongen_class_type cty in nongen_class_type let nongen_class_declaration cty = List.fold_left (add_nongen_vars_in_schema Env.empty) TypeSet.empty cty.cty_params |> nongen_class_type cty.cty_type let nongen_vars_in_class_declaration cty = let result = nongen_class_declaration cty in if TypeSet.is_empty result then None else Some result (* Normalize a type before printing, saving... *) (* Cannot use mark_type because deep_occur uses it too *) let rec normalize_type_rec mark ty = if try_mark_node mark ty then begin let tm = row_of_type ty in begin if not (is_Tconstr ty) && is_constr_row ~allow_ident:false tm then match get_desc tm with (* PR#7348 *) Tconstr (Path.Pdot(m,i), tl, _abbrev) -> let i' = String.sub i 0 (String.length i - 4) in set_type_desc ty (Tconstr(Path.Pdot(m,i'), tl, ref Mnil)) | _ -> assert false else match get_desc ty with | Tvariant row -> let Row {fields = orig_fields; more; name; fixed; closed} = row_repr row in let fields = List.map (fun (l,f) -> l, match row_field_repr f with Reither(b, ty::(_::_ as tyl), m) -> let tyl' = List.fold_left (fun tyl ty -> if List.exists (fun ty' -> is_equal Env.empty false [ty] [ty']) tyl then tyl else ty::tyl) [ty] tyl in if List.length tyl' <= List.length tyl then rf_either (List.rev tyl') ~use_ext_of:f ~no_arg:b ~matched:m else f | _ -> f) orig_fields in let fields = List.sort (fun (p,_) (q,_) -> compare p q) (List.filter (fun (_,fi) -> row_field_repr fi <> Rabsent) fields) in set_type_desc ty (Tvariant (create_row ~fields ~more ~name ~fixed ~closed)) | Tobject (fi, nm) -> begin match !nm with | None -> () | Some (n, v :: l) -> if deep_occur ty (newgenty (Ttuple l)) then (* The abbreviation may be hiding something, so remove it *) set_name nm None else begin match get_desc v with | Tvar _ | Tunivar _ -> () | Tnil -> set_type_desc ty (Tconstr (n, l, ref Mnil)) | _ -> set_name nm None end | _ -> fatal_error "Ctype.normalize_type_rec" end; let level = get_level fi in if level < lowest_level then () else let fields, row = flatten_fields fi in let fi' = build_fields level fields row in set_type_desc fi (get_desc fi') | _ -> () end; iter_type_expr (normalize_type_rec mark) ty; end let normalize_type ty = with_type_mark (fun mark -> normalize_type_rec mark ty) (*************************) (* Remove dependencies *) (*************************) (* Variables are left unchanged. Other type nodes are duplicated, with levels set to generic level. We cannot use Tsubst here, because unification may be called by expand_abbrev. *) let nondep_hash = TypeHash.create 47 let nondep_variants = TypeHash.create 17 let clear_hash () = TypeHash.clear nondep_hash; TypeHash.clear nondep_variants let rec nondep_type_rec ?(expand_private=false) env ids ty = let try_expand env t = if expand_private then try_expand_safe_opt env t else try_expand_safe env t in match get_desc ty with Tvar _ | Tunivar _ -> ty | _ -> try TypeHash.find nondep_hash ty with Not_found -> let ty' = newgenstub ~scope:(get_scope ty) in TypeHash.add nondep_hash ty ty'; match match get_desc ty with | Tconstr(p, tl, _abbrev) as desc -> begin try (* First, try keeping the same type constructor p *) match Path.find_free_opt ids p with | Some id -> raise (Nondep_cannot_erase id) | None -> Tconstr(p, List.map (nondep_type_rec env ids) tl, ref Mnil) with (Nondep_cannot_erase _) as exn -> (* If that doesn't work, try expanding abbrevs *) try Tlink (nondep_type_rec ~expand_private env ids (try_expand env (newty2 ~level:(get_level ty) desc))) (* The [Tlink] is important. The expanded type may be a variable, or may not be completely copied yet (recursive type), so one cannot just take its description. *) with Cannot_expand -> raise exn end | Tpackage(p, fl) when Path.exists_free ids p -> let p' = normalize_package_path env p in begin match Path.find_free_opt ids p' with | Some id -> raise (Nondep_cannot_erase id) | None -> let nondep_field_rec (n, ty) = (n, nondep_type_rec env ids ty) in Tpackage (p', List.map nondep_field_rec fl) end | Tobject (t1, name) -> Tobject (nondep_type_rec env ids t1, ref (match !name with None -> None | Some (p, tl) -> if Path.exists_free ids p then None else Some (p, List.map (nondep_type_rec env ids) tl))) | Tvariant row -> let more = row_more row in (* We must keep sharing according to the row variable *) begin try let ty2 = TypeHash.find nondep_variants more in (* This variant type has been already copied *) TypeHash.add nondep_hash ty ty2; Tlink ty2 with Not_found -> (* Register new type first for recursion *) TypeHash.add nondep_variants more ty'; let static = static_row row in let more' = if static then newgenty Tnil else nondep_type_rec env ids more in (* Return a new copy *) let row = copy_row (nondep_type_rec env ids) true row true more' in match row_name row with Some (p, _tl) when Path.exists_free ids p -> Tvariant (set_row_name row None) | _ -> Tvariant row end | desc -> copy_type_desc (nondep_type_rec env ids) desc with | desc -> Transient_expr.set_stub_desc ty' desc; ty' | exception e -> TypeHash.remove nondep_hash ty; raise e let nondep_type env id ty = try let ty' = nondep_type_rec env id ty in clear_hash (); ty' with Nondep_cannot_erase _ as exn -> clear_hash (); raise exn let () = nondep_type' := nondep_type (* Preserve sharing inside type declarations. *) let nondep_type_decl env mid is_covariant decl = try let params = List.map (nondep_type_rec env mid) decl.type_params in let tk = try map_kind (nondep_type_rec env mid) decl.type_kind with Nondep_cannot_erase _ when is_covariant -> Type_abstract Definition and tm, priv = match decl.type_manifest with | None -> None, decl.type_private | Some ty -> try Some (nondep_type_rec env mid ty), decl.type_private with Nondep_cannot_erase _ when is_covariant -> clear_hash (); try Some (nondep_type_rec ~expand_private:true env mid ty), Private with Nondep_cannot_erase _ -> None, decl.type_private in clear_hash (); let priv = match tm with | Some ty when Btype.has_constr_row ty -> Private | _ -> priv in { type_params = params; type_arity = decl.type_arity; type_kind = tk; type_manifest = tm; type_private = priv; type_variance = decl.type_variance; type_separability = decl.type_separability; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = decl.type_loc; type_attributes = decl.type_attributes; type_immediate = decl.type_immediate; type_unboxed_default = decl.type_unboxed_default; type_uid = decl.type_uid; } with Nondep_cannot_erase _ as exn -> clear_hash (); raise exn (* Preserve sharing inside extension constructors. *) let nondep_extension_constructor env ids ext = try let type_path, type_params = match Path.find_free_opt ids ext.ext_type_path with | Some id -> begin let ty = newgenty (Tconstr(ext.ext_type_path, ext.ext_type_params, ref Mnil)) in let ty' = nondep_type_rec env ids ty in match get_desc ty' with Tconstr(p, tl, _) -> p, tl | _ -> raise (Nondep_cannot_erase id) end | None -> let type_params = List.map (nondep_type_rec env ids) ext.ext_type_params in ext.ext_type_path, type_params in let args = map_type_expr_cstr_args (nondep_type_rec env ids) ext.ext_args in let ret_type = Option.map (nondep_type_rec env ids) ext.ext_ret_type in clear_hash (); { ext_type_path = type_path; ext_type_params = type_params; ext_args = args; ext_ret_type = ret_type; ext_private = ext.ext_private; ext_attributes = ext.ext_attributes; ext_loc = ext.ext_loc; ext_uid = ext.ext_uid; } with Nondep_cannot_erase _ as exn -> clear_hash (); raise exn (* Preserve sharing inside class types. *) let nondep_class_signature env id sign = { csig_self = nondep_type_rec env id sign.csig_self; csig_self_row = nondep_type_rec env id sign.csig_self_row; csig_vars = Vars.map (function (m, v, t) -> (m, v, nondep_type_rec env id t)) sign.csig_vars; csig_meths = Meths.map (function (p, v, t) -> (p, v, nondep_type_rec env id t)) sign.csig_meths } let rec nondep_class_type env ids = function Cty_constr (p, _, cty) when Path.exists_free ids p -> nondep_class_type env ids cty | Cty_constr (p, tyl, cty) -> Cty_constr (p, List.map (nondep_type_rec env ids) tyl, nondep_class_type env ids cty) | Cty_signature sign -> Cty_signature (nondep_class_signature env ids sign) | Cty_arrow (l, ty, cty) -> Cty_arrow (l, nondep_type_rec env ids ty, nondep_class_type env ids cty) let nondep_class_declaration env ids decl = assert (not (Path.exists_free ids decl.cty_path)); let decl = { cty_params = List.map (nondep_type_rec env ids) decl.cty_params; cty_variance = decl.cty_variance; cty_type = nondep_class_type env ids decl.cty_type; cty_path = decl.cty_path; cty_new = begin match decl.cty_new with None -> None | Some ty -> Some (nondep_type_rec env ids ty) end; cty_loc = decl.cty_loc; cty_attributes = decl.cty_attributes; cty_uid = decl.cty_uid; } in clear_hash (); decl let nondep_cltype_declaration env ids decl = assert (not (Path.exists_free ids decl.clty_path)); let decl = { clty_params = List.map (nondep_type_rec env ids) decl.clty_params; clty_variance = decl.clty_variance; clty_type = nondep_class_type env ids decl.clty_type; clty_path = decl.clty_path; clty_hash_type = nondep_type_decl env ids false decl.clty_hash_type ; clty_loc = decl.clty_loc; clty_attributes = decl.clty_attributes; clty_uid = decl.clty_uid; } in clear_hash (); decl (* collapse conjunctive types in class parameters *) let rec collapse_conj env visited ty = let id = get_id ty in if List.memq id visited then () else let visited = id :: visited in match get_desc ty with Tvariant row -> List.iter (fun (_l,fi) -> match row_field_repr fi with Reither (_c, t1::(_::_ as tl), _m) -> List.iter (unify env t1) tl | _ -> ()) (row_fields row); iter_row (collapse_conj env visited) row | _ -> iter_type_expr (collapse_conj env visited) ty let collapse_conj_params env params = List.iter (collapse_conj env []) params let same_constr env t1 t2 = let t1 = expand_head env t1 in let t2 = expand_head env t2 in match get_desc t1, get_desc t2 with | Tconstr (p1, _, _), Tconstr (p2, _, _) -> Path.same p1 p2 | _ -> false let () = Env.same_constr := same_constr let immediacy env typ = match get_desc typ with | Tconstr(p, _args, _abbrev) -> begin try let type_decl = Env.find_type p env in type_decl.type_immediate with Not_found -> Type_immediacy.Unknown (* This can happen due to e.g. missing -I options, causing some .cmi files to be unavailable. Maybe we should emit a warning. *) end | Tvariant row -> (* if all labels are devoid of arguments, not a pointer *) if not (row_closed row) || List.exists (fun (_, f) -> match row_field_repr f with | Rpresent (Some _) | Reither (false, _, _) -> true | _ -> false) (row_fields row) then Type_immediacy.Unknown else Type_immediacy.Always | _ -> Type_immediacy.Unknown
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>