package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.3-502.tbz
sha256=2cea46f12397fa6e31ef0c0d4f5e11c1cfd916ee49420694005c95ebb3aa24bc
sha512=e94abb9ae38149245337db033e2c3891c7ec772168e99abf1bda0216a894c0854e7170b56fe88eba83ec98f2ebc0f5c7c723e8db14f59eeb6dd348bec12c6d62
doc/src/merlin-lib.ocaml_typing/printtyp.ml.html
Source file printtyp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Printing functions *) module M = Misc.String.Map module S = Misc.String.Set open Misc open Ctype open Format open Longident open Path open Asttypes open Types open Btype open Outcometree module Sig_component_kind = Shape.Sig_component_kind module Style = Misc.Style (* Print a long identifier *) let longident = Pprintast.longident let () = Env.print_longident := longident (* Print an identifier avoiding name collisions *) module Out_name = struct let create x = { printed_name = x } let print x = x.printed_name end (** Some identifiers may require hiding when printing *) type bound_ident = { hide:bool; ident:Ident.t } (* printing environment for path shortening and naming *) let printing_env = ref Env.empty (* When printing, it is important to only observe the current printing environment, without reading any new cmi present on the file system *) let in_printing_env f = Env.without_cmis f !printing_env type namespace = Shape.Sig_component_kind.t = | Value | Type | Constructor | Label | Module | Module_type | Extension_constructor | Class | Class_type module Namespace = struct let id = function | Type -> 0 | Module -> 1 | Module_type -> 2 | Class -> 3 | Class_type -> 4 | Extension_constructor | Value | Constructor | Label -> 5 (* we do not handle those component *) let size = 1 + id Value let pp ppf x = Format.pp_print_string ppf (Shape.Sig_component_kind.to_string x) let lookup = let to_lookup f lid = fst @@ in_printing_env (f (Lident lid)) in function | Some Type -> to_lookup Env.find_type_by_name | Some Module -> to_lookup Env.find_module_by_name | Some Module_type -> to_lookup Env.find_modtype_by_name | Some Class -> to_lookup Env.find_class_by_name | Some Class_type -> to_lookup Env.find_cltype_by_name | None | Some(Value|Extension_constructor|Constructor|Label) -> fun _ -> raise Not_found let location namespace id = let path = Path.Pident id in try Some ( match namespace with | Some Type -> (in_printing_env @@ Env.find_type path).type_loc | Some Module -> (in_printing_env @@ Env.find_module path).md_loc | Some Module_type -> (in_printing_env @@ Env.find_modtype path).mtd_loc | Some Class -> (in_printing_env @@ Env.find_class path).cty_loc | Some Class_type -> (in_printing_env @@ Env.find_cltype path).clty_loc | Some (Extension_constructor|Value|Constructor|Label) | None -> Location.none ) with Not_found -> None let best_class_namespace = function | Papply _ | Pdot _ -> Some Module | Pextra_ty _ -> assert false (* Only in type path *) | Pident c -> match location (Some Class) c with | Some _ -> Some Class | None -> Some Class_type end (** {2 Conflicts printing} Conflicts arise when multiple items are attributed the same name, the following module stores the global conflict references and provides the printing functions for explaining the source of the conflicts. *) module Conflicts = struct type explanation = { kind: namespace; name:string; root_name:string; location:Location.t} let explanations = ref M.empty let add namespace name id = match Namespace.location (Some namespace) id with | None -> () | Some location -> let explanation = { kind = namespace; location; name; root_name=Ident.name id} in explanations := M.add name explanation !explanations let collect_explanation namespace id ~name = let root_name = Ident.name id in (* if [name] is of the form "root_name/%d", we register both [id] and the identifier in scope for [root_name]. *) if root_name <> name && not (M.mem name !explanations) then begin add namespace name id; if not (M.mem root_name !explanations) then (* lookup the identifier in scope with name [root_name] and add it too *) match Namespace.lookup (Some namespace) root_name with | Pident root_id -> add namespace root_name root_id | exception Not_found | _ -> () end let pp_explanation ppf r= Format.fprintf ppf "@[<v 2>%a:@,Definition of %s %a@]" Location.print_loc r.location (Sig_component_kind.to_string r.kind) Style.inline_code r.name let print_located_explanations ppf l = Format.fprintf ppf "@[<v>%a@]" (Format.pp_print_list pp_explanation) l let reset () = explanations := M.empty let list_explanations () = let c = !explanations in reset (); c |> M.bindings |> List.map snd |> List.sort Stdlib.compare let print_toplevel_hint ppf l = let conj ppf () = Format.fprintf ppf " and@ " in let pp_namespace_plural ppf n = Format.fprintf ppf "%as" Namespace.pp n in let root_names = List.map (fun r -> r.kind, r.root_name) l in let unique_root_names = List.sort_uniq Stdlib.compare root_names in let submsgs = Array.make Namespace.size [] in let () = List.iter (fun (n,_ as x) -> submsgs.(Namespace.id n) <- x :: submsgs.(Namespace.id n) ) unique_root_names in let pp_submsg ppf names = match names with | [] -> () | [namespace, a] -> Format.fprintf ppf "@ \ @[<2>@{<hint>Hint@}: The %a %a has been defined multiple times@ \ in@ this@ toplevel@ session.@ \ Some toplevel values still refer to@ old@ versions@ of@ this@ %a.\ @ Did you try to redefine them?@]" Namespace.pp namespace Style.inline_code a Namespace.pp namespace | (namespace, _) :: _ :: _ -> Format.fprintf ppf "@ \ @[<2>@{<hint>Hint@}: The %a %a have been defined multiple times@ \ in@ this@ toplevel@ session.@ \ Some toplevel values still refer to@ old@ versions@ of@ those@ %a.\ @ Did you try to redefine them?@]" pp_namespace_plural namespace Format.(pp_print_list ~pp_sep:conj Style.inline_code) (List.map snd names) pp_namespace_plural namespace in Array.iter (pp_submsg ppf) submsgs let print_explanations ppf = let ltop, l = (* isolate toplevel locations, since they are too imprecise *) let from_toplevel a = a.location.Location.loc_start.Lexing.pos_fname = "//toplevel//" in List.partition from_toplevel (list_explanations ()) in begin match l with | [] -> () | l -> Format.fprintf ppf "@,%a" print_located_explanations l end; (* if there are name collisions in a toplevel session, display at least one generic hint by namespace *) print_toplevel_hint ppf ltop let exists () = M.cardinal !explanations >0 end module Naming_context = struct let enabled = ref true let enable b = enabled := b (* Names bound in recursive definitions should be considered as bound in the environment when printing identifiers but not when trying to find shortest path. For instance, if we define [{ module Avoid__me = struct type t = A end type t = X type u = [` A of t * t ] module M = struct type t = A of [ u | `B ] type r = Avoid__me.t end }] It is is important that in the definition of [t] that the outer type [t] is printed as [t/2] reserving the name [t] to the type being defined in the current recursive definition. Contrarily, in the definition of [r], one should not shorten the path [Avoid__me.t] to [r] until the end of the definition of [r]. The [bound_in_recursion] bridges the gap between those two slightly different notions of printing environment. *) let bound_in_recursion = ref M.empty (* When dealing with functor arguments, identity becomes fuzzy because the same syntactic argument may be represented by different identifiers during the error processing, we are thus disabling disambiguation on the argument name *) let fuzzy = ref S.empty let with_arg id f = protect_refs [ R(fuzzy, S.add (Ident.name id) !fuzzy) ] f let fuzzy_id namespace id = namespace = Module && S.mem (Ident.name id) !fuzzy let ids f = let update m id = M.add (Ident.name id.ident) id.ident m in let updated = List.fold_left update !bound_in_recursion ids in protect_refs [ R(bound_in_recursion, updated )] f let human_id id index = (* The identifier with index [k] is the (k+1)-th most recent identifier in the printing environment. We print them as [name/(k+1)] except for [k=0] which is printed as [name] rather than [name/1]. *) if index = 0 then Ident.name id else let ordinal = index + 1 in String.concat "/" [Ident.name id; string_of_int ordinal] let indexed_name namespace id = let find namespace id env = match namespace with | Type -> Env.find_type_index id env | Module -> Env.find_module_index id env | Module_type -> Env.find_modtype_index id env | Class -> Env.find_class_index id env | Class_type-> Env.find_cltype_index id env | Value | Extension_constructor | Constructor | Label -> None in let index = match M.find_opt (Ident.name id) !bound_in_recursion with | Some rec_bound_id -> (* the identifier name appears in the current group of recursive definition *) if Ident.same rec_bound_id id then Some 0 else (* the current recursive definition shadows one more time the previously existing identifier with the same name *) Option.map succ (in_printing_env (find namespace id)) | None -> in_printing_env (find namespace id) in let index = (* If [index] is [None] at this point, it might indicate that the identifier id is not defined in the environment, while there are other identifiers in scope that share the same name. Currently, this kind of partially incoherent environment happens within functor error messages where the left and right hand side have a different views of the environment at the source level. Printing the source-level by using a default index of `0` seems like a reasonable compromise in this situation however.*) Option.value index ~default:0 in human_id id index let ident_name namespace id = match namespace, !enabled with | None, _ | _, false -> Out_name.create (Ident.name id) | Some namespace, true -> if fuzzy_id namespace id then Out_name.create (Ident.name id) else let name = indexed_name namespace id in Conflicts.collect_explanation namespace id ~name; Out_name.create name end let ident_name = Naming_context.ident_name let ident ppf id = pp_print_string ppf (Out_name.print (Naming_context.ident_name None id)) let namespaced_ident namespace id = Out_name.print (Naming_context.ident_name (Some namespace) id) (* Print a path *) let ident_stdlib = Ident.create_persistent "Stdlib" let non_shadowed_stdlib namespace = function | Pdot(Pident id, s) as path -> Ident.same id ident_stdlib && (match Namespace.lookup namespace s with | path' -> Path.same path path' | exception Not_found -> true) | _ -> false let find_double_underscore s = let len = String.length s in let rec loop i = if i + 1 >= len then None else if s.[i] = '_' && s.[i + 1] = '_' then Some i else loop (i + 1) in loop 0 let rec module_path_is_an_alias_of env path ~alias_of = match Env.find_module path env with | { md_type = Mty_alias path'; _ } -> Path.same path' alias_of || module_path_is_an_alias_of env path' ~alias_of | _ -> false | exception Not_found -> false (* Simple heuristic to print Foo__bar.* as Foo.Bar.* when Foo.Bar is an alias for Foo__bar. This pattern is used by the stdlib. *) let rec rewrite_double_underscore_paths env p = match p with | Pdot (p, s) -> Pdot (rewrite_double_underscore_paths env p, s) | Papply (a, b) -> Papply (rewrite_double_underscore_paths env a, rewrite_double_underscore_paths env b) | Pextra_ty (p, extra) -> Pextra_ty (rewrite_double_underscore_paths env p, extra) | Pident id -> let name = Ident.name id in match find_double_underscore name with | None -> p | Some i -> let better_lid = Ldot (Lident (String.sub name 0 i), Unit_info.modulize (String.sub name (i + 2) (String.length name - i - 2))) in match Env.find_module_by_name better_lid env with | exception Not_found -> p | p', _ -> if module_path_is_an_alias_of env p' ~alias_of:p then p' else p let rewrite_double_underscore_paths env p = if env == Env.empty then p else rewrite_double_underscore_paths env p let rec tree_of_path ?(disambiguation=true) namespace p = let tree_of_path namespace p = tree_of_path ~disambiguation namespace p in let namespace = if disambiguation then namespace else None in match p with | Pident id -> Oide_ident (ident_name namespace id) | Pdot(_, s) as path when non_shadowed_stdlib namespace path -> Oide_ident (Out_name.create s) | Pdot(p, s) -> Oide_dot (tree_of_path (Some Module) p, s) | Papply(p1, p2) -> let t1 = tree_of_path (Some Module) p1 in let t2 = tree_of_path (Some Module) p2 in Oide_apply (t1, t2) | Pextra_ty (p, extra) -> begin (* inline record types are syntactically prevented from escaping their binding scope, and are never shown to users. *) match extra with Pcstr_ty s -> Oide_dot (tree_of_path (Some Type) p, s) | Pext_ty -> tree_of_path None p end let tree_of_path ?disambiguation namespace p = tree_of_path ?disambiguation namespace (rewrite_double_underscore_paths !printing_env p) let path ppf p = !Oprint.out_ident ppf (tree_of_path None p) let string_of_path p = Format.asprintf "%a" path p let strings_of_paths namespace p = let trees = List.map (tree_of_path namespace) p in List.map (Format.asprintf "%a" !Oprint.out_ident) trees let () = Env.print_path := path (* Print a recursive annotation *) let tree_of_rec = function | Trec_not -> Orec_not | Trec_first -> Orec_first | Trec_next -> Orec_next (* Print a raw type expression, with sharing *) let raw_list pr ppf = function [] -> fprintf ppf "[]" | a :: l -> fprintf ppf "@[<1>[%a%t]@]" pr a (fun ppf -> List.iter (fun x -> fprintf ppf ";@,%a" pr x) l) let kind_vars = ref [] let kind_count = ref 0 let string_of_field_kind v = match field_kind_repr v with | Fpublic -> "Fpublic" | Fabsent -> "Fabsent" | Fprivate -> "Fprivate" let rec safe_repr v t = match Transient_expr.coerce t with {desc = Tlink t} when not (List.memq t v) -> safe_repr (t::v) t | t' -> t' let rec list_of_memo = function Mnil -> [] | Mcons (_priv, p, _t1, _t2, rem) -> p :: list_of_memo rem | Mlink rem -> list_of_memo !rem let print_name ppf = function None -> fprintf ppf "None" | Some name -> fprintf ppf "\"%s\"" name let string_of_label = function Nolabel -> "" | Labelled s -> s | Optional s -> "?"^s let visited = ref [] let rec raw_type ppf ty = let ty = safe_repr [] ty in if List.memq ty !visited then fprintf ppf "{id=%d}" ty.id else begin visited := ty :: !visited; fprintf ppf "@[<1>{id=%d;level=%d;scope=%d;desc=@,%a}@]" ty.id ty.level ty.scope raw_type_desc ty.desc end and raw_type_list tl = raw_list raw_type tl and raw_lid_type_list tl = raw_list (fun ppf (lid, typ) -> fprintf ppf "(@,%a,@,%a)" longident lid raw_type typ) tl and raw_type_desc ppf = function Tvar name -> fprintf ppf "Tvar %a" print_name name | Tarrow(l,t1,t2,c) -> fprintf ppf "@[<hov1>Tarrow(\"%s\",@,%a,@,%a,@,%s)@]" (string_of_label l) raw_type t1 raw_type t2 (if is_commu_ok c then "Cok" else "Cunknown") | Ttuple tl -> fprintf ppf "@[<1>Ttuple@,%a@]" raw_type_list tl | Tconstr (p, tl, abbrev) -> fprintf ppf "@[<hov1>Tconstr(@,%a,@,%a,@,%a)@]" path p raw_type_list tl (raw_list path) (list_of_memo !abbrev) | Tobject (t, nm) -> fprintf ppf "@[<hov1>Tobject(@,%a,@,@[<1>ref%t@])@]" raw_type t (fun ppf -> match !nm with None -> fprintf ppf " None" | Some(p,tl) -> fprintf ppf "(Some(@,%a,@,%a))" path p raw_type_list tl) | Tfield (f, k, t1, t2) -> fprintf ppf "@[<hov1>Tfield(@,%s,@,%s,@,%a,@;<0 -1>%a)@]" f (string_of_field_kind k) raw_type t1 raw_type t2 | Tnil -> fprintf ppf "Tnil" | Tlink t -> fprintf ppf "@[<1>Tlink@,%a@]" raw_type t | Tsubst (t, None) -> fprintf ppf "@[<1>Tsubst@,(%a,None)@]" raw_type t | Tsubst (t, Some t') -> fprintf ppf "@[<1>Tsubst@,(%a,@ Some%a)@]" raw_type t raw_type t' | Tunivar name -> fprintf ppf "Tunivar %a" print_name name | Tpoly (t, tl) -> fprintf ppf "@[<hov1>Tpoly(@,%a,@,%a)@]" raw_type t raw_type_list tl | Tvariant row -> let Row {fields; more; name; fixed; closed} = row_repr row in fprintf ppf "@[<hov1>{@[%s@,%a;@]@ @[%s@,%a;@]@ %s%B;@ %s%a;@ @[<1>%s%t@]}@]" "row_fields=" (raw_list (fun ppf (l, f) -> fprintf ppf "@[%s,@ %a@]" l raw_field f)) fields "row_more=" raw_type more "row_closed=" closed "row_fixed=" raw_row_fixed fixed "row_name=" (fun ppf -> match name with None -> fprintf ppf "None" | Some(p,tl) -> fprintf ppf "Some(@,%a,@,%a)" path p raw_type_list tl) | Tpackage (p, fl) -> fprintf ppf "@[<hov1>Tpackage(@,%a,@,%a)@]" path p raw_lid_type_list fl and raw_row_fixed ppf = function | None -> fprintf ppf "None" | Some Types.Fixed_private -> fprintf ppf "Some Fixed_private" | Some Types.Rigid -> fprintf ppf "Some Rigid" | Some Types.Univar t -> fprintf ppf "Some(Univar(%a))" raw_type t | Some Types.Reified p -> fprintf ppf "Some(Reified(%a))" path p and raw_field ppf rf = match_row_field ~absent:(fun _ -> fprintf ppf "RFabsent") ~present:(function | None -> fprintf ppf "RFpresent None" | Some t -> fprintf ppf "@[<1>RFpresent(Some@,%a)@]" raw_type t) ~either:(fun c tl m e -> fprintf ppf "@[<hov1>RFeither(%B,@,%a,@,%B,@,@[<1>ref%t@])@]" c raw_type_list tl m (fun ppf -> match e with None -> fprintf ppf " RFnone" | Some f -> fprintf ppf "@,@[<1>(%a)@]" raw_field f)) rf let raw_type_expr ppf t = visited := []; kind_vars := []; kind_count := 0; raw_type ppf t; visited := []; kind_vars := [] let () = Btype.print_raw := raw_type_expr (* Normalize paths *) let set_printing_env env = printing_env := if !Clflags.real_paths then Env.empty else env let wrap_printing_env env f = set_printing_env (Env.update_short_paths env); try_finally f ~always:(fun () -> set_printing_env Env.empty) let wrap_printing_env ?error:_ env f = Env.without_cmis (wrap_printing_env env) f type type_result = Short_paths.type_result = | Nth of int | Path of int list option * Path.t type type_resolution = Short_paths.type_resolution = | Nth of int | Subst of int list | Id let apply_subst ns args = List.map (List.nth args) ns let apply_subst_opt nso args = match nso with | None -> args | Some ns -> apply_subst ns args let apply_nth n args = List.nth args n let best_type_path p = if !Clflags.real_paths || !printing_env == Env.empty then Path(None, p) else Short_paths.find_type (Env.short_paths !printing_env) p let best_type_path_resolution p = if !Clflags.real_paths || !printing_env == Env.empty then Id else Short_paths.find_type_resolution (Env.short_paths !printing_env) p let best_type_path_simple p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_type_simple (Env.short_paths !printing_env) p let best_module_type_path p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_module_type (Env.short_paths !printing_env) p let best_module_path p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_module (Env.short_paths !printing_env) p let best_class_type_path p = if !Clflags.real_paths || !printing_env == Env.empty then None, p else Short_paths.find_class_type (Env.short_paths !printing_env) p let best_class_type_path_simple p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_class_type_simple (Env.short_paths !printing_env) p (* When building a tree for a best type path, we should not disambiguate identifiers whenever the short-path algorithm detected a better path than the original one.*) let tree_of_best_type_path p p' = if Path.same p p' then tree_of_path (Some Type) p' else tree_of_path ~disambiguation:false None p' (* Print a type expression *) let proxy ty = Transient_expr.repr (proxy ty) (* When printing a type scheme, we print weak names. When printing a plain type, we do not. This type controls that behavior *) type type_or_scheme = Type | Type_scheme let is_non_gen mode ty = match mode with | Type_scheme -> is_Tvar ty && get_level ty <> generic_level | Type -> false let nameable_row row = row_name row <> None && List.for_all (fun (_, f) -> match row_field_repr f with | Reither(c, l, _) -> row_closed row && if c then l = [] else List.length l = 1 | _ -> true) (row_fields row) (* This specialized version of [Btype.iter_type_expr] normalizes and short-circuits the traversal of the [type_expr], so that it covers only the subterms that would be printed by the type printer. *) let printer_iter_type_expr f ty = match get_desc ty with | Tconstr(p, tyl, _) -> begin match best_type_path_resolution p with | Nth n -> f (apply_nth n tyl) | Subst ns -> List.iter f (apply_subst ns tyl) | Id -> List.iter f tyl end | Tvariant row -> begin match row_name row with | Some(_p, tyl) when nameable_row row -> List.iter f tyl | _ -> iter_row f row end | Tobject (fi, nm) -> begin match !nm with | None -> let fields, _ = flatten_fields fi in List.iter (fun (_, kind, ty) -> if field_kind_repr kind = Fpublic then f ty) fields | Some (_, l) -> List.iter f (List.tl l) end | Tfield(_, kind, ty1, ty2) -> if field_kind_repr kind = Fpublic then f ty1; f ty2 | _ -> Btype.iter_type_expr f ty module Internal_names : sig val reset : unit -> unit val add : Path.t -> unit val print_explanations : Env.t -> Format.formatter -> unit end = struct let names = ref Ident.Set.empty let reset () = names := Ident.Set.empty let add p = match p with | Pident id -> let name = Ident.name id in if String.length name > 0 && name.[0] = '$' then begin names := Ident.Set.add id !names end | Pdot _ | Papply _ | Pextra_ty _ -> () let print_explanations env ppf = let constrs = Ident.Set.fold (fun id acc -> let p = Pident id in match Env.find_type p env with | exception Not_found -> acc | decl -> match type_origin decl with | Existential constr -> let prev = String.Map.find_opt constr acc in let prev = Option.value ~default:[] prev in String.Map.add constr (tree_of_path None p :: prev) acc | Definition | Rec_check_regularity -> acc) !names String.Map.empty in String.Map.iter (fun constr out_idents -> match out_idents with | [] -> () | [out_ident] -> fprintf ppf "@ @[<2>@{<hint>Hint@}:@ %a@ is an existential type@ \ bound by the constructor@ %a.@]" (Style.as_inline_code !Oprint.out_ident) out_ident Style.inline_code constr | out_ident :: out_idents -> fprintf ppf "@ @[<2>@{<hint>Hint@}:@ %a@ and %a@ are existential types@ \ bound by the constructor@ %a.@]" (Format.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf ",@ ") (Style.as_inline_code !Oprint.out_ident)) (List.rev out_idents) (Style.as_inline_code !Oprint.out_ident) out_ident Style.inline_code constr) constrs end module Names : sig val reset_names : unit -> unit val add_named_vars : type_expr -> unit val add_subst : (type_expr * type_expr) list -> unit val new_name : unit -> string val new_var_name : non_gen:bool -> type_expr -> unit -> string val name_of_type : (unit -> string) -> transient_expr -> string val check_name_of_type : non_gen:bool -> transient_expr -> unit val remove_names : transient_expr list -> unit val with_local_names : (unit -> 'a) -> 'a (* Refresh the weak variable map in the toplevel; for [print_items], which is itself for the toplevel *) val refresh_weak : unit -> unit end = struct (* We map from types to names, but not directly; we also store a substitution, which maps from types to types. The lookup process is "type -> apply substitution -> find name". The substitution is presumed to be acyclic. *) let names = ref ([] : (transient_expr * string) list) let name_subst = ref ([] : (transient_expr * transient_expr) list) let name_counter = ref 0 let named_vars = ref ([] : string list) let visited_for_named_vars = ref ([] : transient_expr list) let weak_counter = ref 1 let weak_var_map = ref TypeMap.empty let named_weak_vars = ref String.Set.empty let reset_names () = names := []; name_subst := []; name_counter := 0; named_vars := []; visited_for_named_vars := [] let add_named_var tty = match tty.desc with Tvar (Some name) | Tunivar (Some name) -> if List.mem name !named_vars then () else named_vars := name :: !named_vars | _ -> () let rec add_named_vars ty = let tty = Transient_expr.repr ty in let px = proxy ty in if not (List.memq px !visited_for_named_vars) then begin visited_for_named_vars := px :: !visited_for_named_vars; match tty.desc with | Tvar _ | Tunivar _ -> add_named_var tty | _ -> printer_iter_type_expr add_named_vars ty end let rec substitute ty = match List.assq ty !name_subst with | ty' -> substitute ty' | exception Not_found -> ty let add_subst subst = name_subst := List.map (fun (t1,t2) -> Transient_expr.repr t1, Transient_expr.repr t2) subst @ !name_subst let name_is_already_used name = List.mem name !named_vars || List.exists (fun (_, name') -> name = name') !names || String.Set.mem name !named_weak_vars let rec new_name () = let name = Misc.letter_of_int !name_counter in incr name_counter; if name_is_already_used name then new_name () else name let rec new_weak_name ty () = let name = "weak" ^ Int.to_string !weak_counter in incr weak_counter; if name_is_already_used name then new_weak_name ty () else begin named_weak_vars := String.Set.add name !named_weak_vars; weak_var_map := TypeMap.add ty name !weak_var_map; name end let new_var_name ~non_gen ty () = if non_gen then new_weak_name ty () else new_name () let name_of_type name_generator t = (* We've already been through repr at this stage, so t is our representative of the union-find class. *) let t = substitute t in try List.assq t !names with Not_found -> try TransientTypeMap.find t !weak_var_map with Not_found -> let name = match t.desc with Tvar (Some name) | Tunivar (Some name) -> (* Some part of the type we've already printed has assigned another * unification variable to that name. We want to keep the name, so * try adding a number until we find a name that's not taken. *) let available name = List.for_all (fun (_, name') -> name <> name') !names in if available name then name else let suffixed i = name ^ Int.to_string i in let i = Misc.find_first_mono (fun i -> available (suffixed i)) in suffixed i | _ -> (* No name available, create a new one *) name_generator () in (* Exception for type declarations *) if name <> "_" then names := (t, name) :: !names; name let check_name_of_type ~non_gen px = let name_gen = new_var_name ~non_gen (Transient_expr.type_expr px) in ignore(name_of_type name_gen px) let remove_names tyl = let tyl = List.map substitute tyl in names := List.filter (fun (ty,_) -> not (List.memq ty tyl)) !names let with_local_names f = let old_names = !names in let old_subst = !name_subst in names := []; name_subst := []; try_finally ~always:(fun () -> names := old_names; name_subst := old_subst) f let refresh_weak () = let refresh t name (m,s) = if is_non_gen Type_scheme t then begin TypeMap.add t name m, String.Set.add name s end else m, s in let m, s = TypeMap.fold refresh !weak_var_map (TypeMap.empty ,String.Set.empty) in named_weak_vars := s; weak_var_map := m end let reserve_names ty = normalize_type ty; Names.add_named_vars ty let visited_objects = ref ([] : transient_expr list) let aliased = ref ([] : transient_expr list) let delayed = ref ([] : transient_expr list) let printed_aliases = ref ([] : transient_expr list) (* [printed_aliases] is a subset of [aliased] that records only those aliased types that have actually been printed; this allows us to avoid naming loops that the user will never see. *) let add_delayed t = if not (List.memq t !delayed) then delayed := t :: !delayed let is_aliased_proxy px = List.memq px !aliased let add_alias_proxy px = if not (is_aliased_proxy px) then aliased := px :: !aliased let add_alias ty = add_alias_proxy (proxy ty) let add_printed_alias_proxy ~non_gen px = Names.check_name_of_type ~non_gen px; printed_aliases := px :: !printed_aliases let add_printed_alias ty = add_printed_alias_proxy (proxy ty) let aliasable ty = match get_desc ty with Tvar _ | Tunivar _ | Tpoly _ -> false | Tconstr (p, _, _) -> begin match best_type_path_resolution p with | Nth _ -> false | Subst _ | Id -> true end | _ -> true (* let namable_row row = row.row_name <> None && List.for_all (fun (_, f) -> match row_field_repr f with | Reither(c, l, _, _) -> row.row_closed && if c then l = [] else List.length l = 1 | _ -> true) row.row_fields *) let should_visit_object ty = match get_desc ty with | Tvariant row -> not (static_row row) | Tobject _ -> opened_object ty | _ -> false (*let rec mark_loops_rec visited ty = let ty = repr ty in let px = proxy ty in if List.memq px visited && aliasable ty then add_alias px else let visited = px :: visited in match ty.desc with | Tvar _ -> add_named_var ty | Tarrow(_, ty1, ty2, _) -> mark_loops_rec visited ty1; mark_loops_rec visited ty2 | Ttuple tyl -> List.iter (mark_loops_rec visited) tyl | Tconstr(p, tyl, _) -> begin match best_type_path_resolution p with | Nth n -> mark_loops_rec visited (apply_nth n tyl) | Subst ns -> List.iter (mark_loops_rec visited) (apply_subst ns tyl) | Id -> List.iter (mark_loops_rec visited) tyl end | Tpackage (_, fl) -> List.iter (fun (_n, ty) -> mark_loops_rec visited ty) fl | Tvariant row -> if List.memq px !visited_objects then add_alias px else begin let row = row_repr row in if not (static_row row) then visited_objects := px :: !visited_objects; match row.row_name with | Some(_p, tyl) when namable_row row -> List.iter (mark_loops_rec visited) tyl | _ -> iter_row (mark_loops_rec visited) row end | Tobject (fi, nm) -> if List.memq px !visited_objects then add_alias px else begin if opened_object ty then visited_objects := px :: !visited_objects; begin match !nm with | None -> let fields, _ = flatten_fields fi in List.iter (fun (_, kind, ty) -> if field_kind_repr kind = Fpresent then mark_loops_rec visited ty) fields | Some (_, l) -> List.iter (mark_loops_rec visited) (List.tl l) end end | Tfield(_, kind, ty1, ty2) when field_kind_repr kind = Fpresent -> mark_loops_rec visited ty1; mark_loops_rec visited ty2 | Tfield(_, _, _, ty2) -> mark_loops_rec visited ty2 | Tnil -> () | Tsubst _ -> () (* we do not print arguments *) | Tlink _ -> fatal_error "Printtyp.mark_loops_rec (2)" | Tpoly (ty, tyl) -> List.iter (fun t -> add_alias t) tyl; mark_loops_rec visited ty | Tunivar _ -> add_named_var ty *) let rec mark_loops_rec visited ty = let px = proxy ty in if List.memq px visited && aliasable ty then add_alias_proxy px else let tty = Transient_expr.repr ty in let visited = px :: visited in match tty.desc with | Tvariant _ | Tobject _ -> if List.memq px !visited_objects then add_alias_proxy px else begin if should_visit_object ty then visited_objects := px :: !visited_objects; printer_iter_type_expr (mark_loops_rec visited) ty end | Tpoly(ty, tyl) -> List.iter add_alias tyl; mark_loops_rec visited ty | _ -> printer_iter_type_expr (mark_loops_rec visited) ty let mark_loops ty = mark_loops_rec [] ty;; let prepare_type ty = reserve_names ty; mark_loops ty;; let reset_loop_marks () = visited_objects := []; aliased := []; delayed := []; printed_aliases := [] let reset_except_context () = Names.reset_names (); reset_loop_marks (); Internal_names.reset () let reset () = Conflicts.reset (); reset_except_context () let prepare_for_printing tyl = reset_except_context (); List.iter prepare_type tyl let add_type_to_preparation = prepare_type (* Disabled in classic mode when printing an unification error *) let print_labels = ref true let alias_nongen_row mode px ty = match get_desc ty with | Tvariant _ | Tobject _ -> if is_non_gen mode (Transient_expr.type_expr px) then add_alias_proxy px | _ -> () let rec tree_of_typexp mode ty = let px = proxy ty in if List.memq px !printed_aliases && not (List.memq px !delayed) then let non_gen = is_non_gen mode (Transient_expr.type_expr px) in let name = Names.name_of_type (Names.new_var_name ~non_gen ty) px in Otyp_var (non_gen, name) else let pr_typ () = let tty = Transient_expr.repr ty in match tty.desc with | Tvar _ -> let non_gen = is_non_gen mode ty in let name_gen = Names.new_var_name ~non_gen ty in Otyp_var (non_gen, Names.name_of_type name_gen tty) | Tarrow(l, ty1, ty2, _) -> let lab = if !print_labels || is_optional l then l else Nolabel in let t1 = if is_optional l then match get_desc ty1 with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp mode ty | _ -> Otyp_stuff "<hidden>" else tree_of_typexp mode ty1 in Otyp_arrow (lab, t1, tree_of_typexp mode ty2) | Ttuple tyl -> Otyp_tuple (tree_of_typlist mode tyl) | Tconstr(p, tyl, _abbrev) -> begin match best_type_path p with | Nth n -> tree_of_typexp mode (apply_nth n tyl) | Path(nso, p') -> Internal_names.add p'; let tyl' = apply_subst_opt nso tyl in Otyp_constr (tree_of_path (Some Type) p', tree_of_typlist mode tyl') end | Tvariant row -> let Row {fields; name; closed; _} = row_repr row in let fields = if closed then List.filter (fun (_, f) -> row_field_repr f <> Rabsent) fields else fields in let present = List.filter (fun (_, f) -> match row_field_repr f with | Rpresent _ -> true | _ -> false) fields in let all_present = List.length present = List.length fields in begin match name with | Some(p, tyl) when nameable_row row -> let out_variant = match best_type_path p with | Nth n -> tree_of_typexp mode (apply_nth n tyl) | Path(s, p) -> let id = tree_of_path (Some Type) p in let args = tree_of_typlist mode (apply_subst_opt s tyl) in Otyp_constr (id, args) in if closed && all_present then out_variant else let = if all_present then None else Some (List.map fst present) in Otyp_variant (Ovar_typ out_variant, closed, tags) | _ -> let fields = List.map (tree_of_row_field mode) fields in let = if all_present then None else Some (List.map fst present) in Otyp_variant (Ovar_fields fields, closed, tags) end | Tobject (fi, nm) -> tree_of_typobject mode fi !nm | Tnil | Tfield _ -> tree_of_typobject mode ty None | Tsubst _ -> (* This case should only happen when debugging the compiler *) Otyp_stuff "<Tsubst>" | Tlink _ -> fatal_error "Printtyp.tree_of_typexp" | Tpoly (ty, []) -> tree_of_typexp mode ty | Tpoly (ty, tyl) -> (*let print_names () = List.iter (fun (_, name) -> prerr_string (name ^ " ")) !names; prerr_string "; " in *) if tyl = [] then tree_of_typexp mode ty else begin let tyl = List.map Transient_expr.repr tyl in let old_delayed = !delayed in (* Make the names delayed, so that the real type is printed once when used as proxy *) List.iter add_delayed tyl; let tl = List.map (Names.name_of_type Names.new_name) tyl in let tr = Otyp_poly (tl, tree_of_typexp mode ty) in (* Forget names when we leave scope *) Names.remove_names tyl; delayed := old_delayed; tr end | Tunivar _ -> Otyp_var (false, Names.name_of_type Names.new_name tty) | Tpackage (p, fl) -> let p = best_module_type_path p in let fl = List.map (fun (li, ty) -> ( String.concat "." (Longident.flatten li), tree_of_typexp mode ty )) fl in Otyp_module (tree_of_path (Some Module_type) p, fl) in if List.memq px !delayed then delayed := List.filter ((!=) px) !delayed; alias_nongen_row mode px ty; if is_aliased_proxy px && aliasable ty then begin let non_gen = is_non_gen mode (Transient_expr.type_expr px) in add_printed_alias_proxy ~non_gen px; (* add_printed_alias chose a name, thus the name generator doesn't matter.*) let alias = Names.name_of_type (Names.new_var_name ~non_gen ty) px in Otyp_alias {non_gen; aliased = pr_typ (); alias } end else pr_typ () and tree_of_row_field mode (l, f) = match row_field_repr f with | Rpresent None | Reither(true, [], _) -> (l, false, []) | Rpresent(Some ty) -> (l, false, [tree_of_typexp mode ty]) | Reither(c, tyl, _) -> if c (* contradiction: constant constructor with an argument *) then (l, true, tree_of_typlist mode tyl) else (l, false, tree_of_typlist mode tyl) | Rabsent -> (l, false, [] (* actually, an error *)) and tree_of_typlist mode tyl = List.map (tree_of_typexp mode) tyl and tree_of_typobject mode fi nm = begin match nm with | None -> let pr_fields fi = let (fields, rest) = flatten_fields fi in let present_fields = List.fold_right (fun (n, k, t) l -> match field_kind_repr k with | Fpublic -> (n, t) :: l | _ -> l) fields [] in let sorted_fields = List.sort (fun (n, _) (n', _) -> String.compare n n') present_fields in tree_of_typfields mode rest sorted_fields in let (fields, open_row) = pr_fields fi in Otyp_object {fields; open_row} | Some (p, _ty :: tyl) -> let args = tree_of_typlist mode tyl in let p' = best_type_path_simple p in Otyp_class (tree_of_best_type_path p p', args) | _ -> fatal_error "Printtyp.tree_of_typobject" end and tree_of_typfields mode rest = function | [] -> let open_row = match get_desc rest with | Tvar _ | Tunivar _ | Tconstr _-> true | Tnil -> false | _ -> fatal_error "typfields (1)" in ([], open_row) | (s, t) :: l -> let field = (s, tree_of_typexp mode t) in let (fields, rest) = tree_of_typfields mode rest l in (field :: fields, rest) let typexp mode ppf ty = !Oprint.out_type ppf (tree_of_typexp mode ty) let prepared_type_expr ppf ty = typexp Type ppf ty let prepared_type_scheme ppf ty = typexp Type_scheme ppf ty let type_expr ppf ty = (* [type_expr] is used directly by error message printers, we mark eventual loops ourself to avoid any misuse and stack overflow *) prepare_for_printing [ty]; prepared_type_expr ppf ty (* "Half-prepared" type expression: [ty] should have had its names reserved, but should not have had its loops marked. *) let type_expr_with_reserved_names ppf ty = reset_loop_marks (); mark_loops ty; prepared_type_expr ppf ty let ppf ty = prepare_type ty; typexp Type_scheme ppf ty let type_scheme ppf ty = prepare_for_printing [ty]; prepared_type_scheme ppf ty let type_path ppf p = let p = best_class_type_path_simple p in let t = tree_of_path (Some Type) p in !Oprint.out_ident ppf t let tree_of_type_scheme ty = prepare_for_printing [ty]; tree_of_typexp Type_scheme ty (* Print one type declaration *) let tree_of_constraints params = List.fold_right (fun ty list -> let ty' = unalias ty in if proxy ty != proxy ty' then let tr = tree_of_typexp Type_scheme ty in (tr, tree_of_typexp Type_scheme ty') :: list else list) params [] let filter_params tyl = let params = List.fold_left (fun tyl ty -> if List.exists (eq_type ty) tyl then newty2 ~level:generic_level (Ttuple [ty]) :: tyl else ty :: tyl) (* Two parameters might be identical due to a constraint but we need to print them differently in order to make the output syntactically valid. We use [Ttuple [ty]] because it is printed as [ty]. *) (* Replacing fold_left by fold_right does not work! *) [] tyl in List.rev params let prepare_type_constructor_arguments = function | Cstr_tuple l -> List.iter prepare_type l | Cstr_record l -> List.iter (fun l -> prepare_type l.ld_type) l let tree_of_label l = (Ident.name l.ld_id, l.ld_mutable = Mutable, tree_of_typexp Type l.ld_type) let tree_of_constructor_arguments = function | Cstr_tuple l -> tree_of_typlist Type l | Cstr_record l -> [ Otyp_record (List.map tree_of_label l) ] let tree_of_single_constructor cd = let name = Ident.name cd.cd_id in let ret = Option.map (tree_of_typexp Type) cd.cd_res in let args = tree_of_constructor_arguments cd.cd_args in { ocstr_name = name; ocstr_args = args; ocstr_return_type = ret; } (* When printing GADT constructor, we need to forget the naming decision we took for the type parameters and constraints. Indeed, in {[ type 'a t = X: 'a -> 'b t ]} It is fine to print both the type parameter ['a] and the existentially quantified ['a] in the definition of the constructor X as ['a] *) let tree_of_constructor_in_decl cd = match cd.cd_res with | None -> tree_of_single_constructor cd | Some _ -> Names.with_local_names (fun () -> tree_of_single_constructor cd) let prepare_decl id decl = let params = filter_params decl.type_params in begin match decl.type_manifest with | Some ty -> let vars = free_variables ty in List.iter (fun ty -> if get_desc ty = Tvar (Some "_") && List.exists (eq_type ty) vars then set_type_desc ty (Tvar None)) params | None -> () end; List.iter add_alias params; List.iter prepare_type params; List.iter (add_printed_alias ~non_gen:false) params; let ty_manifest = match decl.type_manifest with | None -> None | Some ty -> let ty = (* Special hack to hide variant name *) match get_desc ty with Tvariant row -> begin match row_name row with Some (Pident id', _) when Ident.same id id' -> newgenty (Tvariant (set_row_name row None)) | _ -> ty end | _ -> ty in prepare_type ty; Some ty in begin match decl.type_kind with | Type_abstract _ -> () | Type_variant (cstrs, _rep) -> List.iter (fun c -> prepare_type_constructor_arguments c.cd_args; Option.iter prepare_type c.cd_res) cstrs | Type_record(l, _rep) -> List.iter (fun l -> prepare_type l.ld_type) l | Type_open -> () end; ty_manifest, params let tree_of_type_decl id decl = let ty_manifest, params = prepare_decl id decl in let type_param ot_variance = function | Otyp_var (ot_non_gen, ot_name) -> {ot_non_gen; ot_name; ot_variance} | _ -> {ot_non_gen=false; ot_name="?"; ot_variance} in let type_defined decl = let abstr = match decl.type_kind with Type_abstract _ -> decl.type_manifest = None || decl.type_private = Private | Type_record _ -> decl.type_private = Private | Type_variant (tll, _rep) -> decl.type_private = Private || List.exists (fun cd -> cd.cd_res <> None) tll | Type_open -> decl.type_manifest = None in let vari = List.map2 (fun ty v -> let is_var = is_Tvar ty in if abstr || not is_var then let inj = type_kind_is_abstract decl && Variance.mem Inj v && match decl.type_manifest with | None -> true | Some ty -> (* only abstract or private row types *) decl.type_private = Private && Btype.is_constr_row ~allow_ident:true (Btype.row_of_type ty) and (co, cn) = Variance.get_upper v in (if not cn then Covariant else if not co then Contravariant else NoVariance), (if inj then Injective else NoInjectivity) else (NoVariance, NoInjectivity)) decl.type_params decl.type_variance in (Ident.name id, List.map2 (fun ty cocn -> type_param cocn (tree_of_typexp Type ty)) params vari) in let tree_of_manifest ty1 = match ty_manifest with | None -> ty1 | Some ty -> Otyp_manifest (tree_of_typexp Type ty, ty1) in let (name, args) = type_defined decl in let constraints = tree_of_constraints params in let ty, priv, unboxed = match decl.type_kind with | Type_abstract _ -> begin match ty_manifest with | None -> (Otyp_abstract, Public, false) | Some ty -> tree_of_typexp Type ty, decl.type_private, false end | Type_variant (cstrs, rep) -> tree_of_manifest (Otyp_sum (List.map tree_of_constructor_in_decl cstrs)), decl.type_private, (rep = Variant_unboxed) | Type_record(lbls, rep) -> tree_of_manifest (Otyp_record (List.map tree_of_label lbls)), decl.type_private, (match rep with Record_unboxed _ -> true | _ -> false) | Type_open -> tree_of_manifest Otyp_open, decl.type_private, false in { otype_name = name; otype_params = args; otype_type = ty; otype_private = priv; otype_immediate = Type_immediacy.of_attributes decl.type_attributes; otype_unboxed = unboxed; otype_cstrs = constraints } let add_type_decl_to_preparation id decl = ignore @@ prepare_decl id decl let tree_of_prepared_type_decl id decl = tree_of_type_decl id decl let tree_of_type_decl id decl = reset_except_context(); tree_of_type_decl id decl let add_constructor_to_preparation c = prepare_type_constructor_arguments c.cd_args; Option.iter prepare_type c.cd_res let prepared_constructor ppf c = !Oprint.out_constr ppf (tree_of_single_constructor c) let constructor ppf c = reset_except_context (); add_constructor_to_preparation c; prepared_constructor ppf c let label ppf l = reset_except_context (); prepare_type l.ld_type; !Oprint.out_label ppf (tree_of_label l) let tree_of_type_declaration id decl rs = Osig_type (tree_of_type_decl id decl, tree_of_rec rs) let tree_of_prepared_type_declaration id decl rs = Osig_type (tree_of_prepared_type_decl id decl, tree_of_rec rs) let type_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_type_declaration id decl Trec_first) let add_type_declaration_to_preparation id decl = add_type_decl_to_preparation id decl let prepared_type_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_prepared_type_declaration id decl Trec_first) let constructor_arguments ppf a = let tys = tree_of_constructor_arguments a in !Oprint.out_type ppf (Otyp_tuple tys) (* Print an extension declaration *) let extension_constructor_args_and_ret_type_subtree ext_args ext_ret_type = let ret = Option.map (tree_of_typexp Type) ext_ret_type in let args = tree_of_constructor_arguments ext_args in (args, ret) (* When printing extension constructor, it is important to ensure that after printing the constructor, we are still in the scope of the constructor. For GADT constructor, this can be done by printing the type parameters inside their own isolated scope. This ensures that in {[ type 'b t += A: 'b -> 'b any t ]} the type parameter `'b` is not bound when printing the type variable `'b` from the constructor definition from the type parameter. Contrarily, for non-gadt constructor, we must keep the same scope for the type parameters and the constructor because a type constraint may have changed the name of the type parameter: {[ type -'a t = .. constraint <x:'a. 'a t -> 'a> = 'a (* the universal 'a is here to steal the name 'a from the type parameter *) type 'a t = X of 'a ]} *) let add_extension_constructor_to_preparation ext = let ty_params = filter_params ext.ext_type_params in List.iter add_alias ty_params; List.iter prepare_type ty_params; prepare_type_constructor_arguments ext.ext_args; Option.iter prepare_type ext.ext_ret_type let prepared_tree_of_extension_constructor id ext es = let type_path = best_type_path_simple ext.ext_type_path in let ty_name = Path.name type_path in let ty_params = filter_params ext.ext_type_params in let type_param = function | Otyp_var (_, id) -> id | _ -> "?" in let param_scope f = match ext.ext_ret_type with | None -> (* normal constructor: same scope for parameters and the constructor *) f () | Some _ -> (* gadt constructor: isolated scope for the type parameters *) Names.with_local_names f in let ty_params = param_scope (fun () -> List.iter (add_printed_alias ~non_gen:false) ty_params; List.map (fun ty -> type_param (tree_of_typexp Type ty)) ty_params ) in let name = Ident.name id in let args, ret = extension_constructor_args_and_ret_type_subtree ext.ext_args ext.ext_ret_type in let ext = { oext_name = name; oext_type_name = ty_name; oext_type_params = ty_params; oext_args = args; oext_ret_type = ret; oext_private = ext.ext_private } in let es = match es with Text_first -> Oext_first | Text_next -> Oext_next | Text_exception -> Oext_exception in Osig_typext (ext, es) let tree_of_extension_constructor id ext es = reset_except_context (); add_extension_constructor_to_preparation ext; prepared_tree_of_extension_constructor id ext es let extension_constructor id ppf ext = !Oprint.out_sig_item ppf (tree_of_extension_constructor id ext Text_first) let prepared_extension_constructor id ppf ext = !Oprint.out_sig_item ppf (prepared_tree_of_extension_constructor id ext Text_first) let extension_only_constructor id ppf ext = reset_except_context (); prepare_type_constructor_arguments ext.ext_args; Option.iter prepare_type ext.ext_ret_type; let name = Ident.name id in let args, ret = extension_constructor_args_and_ret_type_subtree ext.ext_args ext.ext_ret_type in Format.fprintf ppf "@[<hv>%a@]" !Oprint.out_constr { ocstr_name = name; ocstr_args = args; ocstr_return_type = ret; } (* Print a value declaration *) let tree_of_value_description id decl = (* Format.eprintf "@[%a@]@." raw_type_expr decl.val_type; *) let id = Ident.name id in let ty = tree_of_type_scheme decl.val_type in let vd = { oval_name = id; oval_type = ty; oval_prims = []; oval_attributes = [] } in let vd = match decl.val_kind with | Val_prim p -> Primitive.print p vd | _ -> vd in Osig_value vd let value_description id ppf decl = !Oprint.out_sig_item ppf (tree_of_value_description id decl) (* Print a class type *) let method_type priv ty = match priv, get_desc ty with | Mpublic, Tpoly(ty, tyl) -> (ty, tyl) | _ , _ -> (ty, []) let prepare_method _lab (priv, _virt, ty) = let ty, _ = method_type priv ty in prepare_type ty let tree_of_method mode (lab, priv, virt, ty) = let (ty, tyl) = method_type priv ty in let tty = tree_of_typexp mode ty in Names.remove_names (List.map Transient_expr.repr tyl); let priv = priv <> Mpublic in let virt = virt = Virtual in Ocsg_method (lab, priv, virt, tty) let rec prepare_class_type params = function | Cty_constr (_p, tyl, cty) -> let row = Btype.self_type_row cty in if List.memq (proxy row) !visited_objects || not (List.for_all is_Tvar params) || List.exists (deep_occur row) tyl then prepare_class_type params cty else List.iter prepare_type tyl | Cty_signature sign -> (* Self may have a name *) let px = proxy sign.csig_self_row in if List.memq px !visited_objects then add_alias_proxy px else visited_objects := px :: !visited_objects; Vars.iter (fun _ (_, _, ty) -> prepare_type ty) sign.csig_vars; Meths.iter prepare_method sign.csig_meths | Cty_arrow (_, ty, cty) -> prepare_type ty; prepare_class_type params cty let rec tree_of_class_type mode params = function | Cty_constr (p, tyl, cty) -> let row = Btype.self_type_row cty in if List.memq (proxy row) !visited_objects || not (List.for_all is_Tvar params) then tree_of_class_type mode params cty else begin let nso, p = best_class_type_path p in let tyl = apply_subst_opt nso tyl in let namespace = Namespace.best_class_namespace p in Octy_constr (tree_of_path namespace p, tree_of_typlist Type_scheme tyl) end | Cty_signature sign -> let px = proxy sign.csig_self_row in let self_ty = if is_aliased_proxy px then Some (Otyp_var (false, Names.name_of_type Names.new_name px)) else None in let csil = [] in let csil = List.fold_left (fun csil (ty1, ty2) -> Ocsg_constraint (ty1, ty2) :: csil) csil (tree_of_constraints params) in let all_vars = Vars.fold (fun l (m, v, t) all -> (l, m, v, t) :: all) sign.csig_vars [] in (* Consequence of PR#3607: order of Map.fold has changed! *) let all_vars = List.rev all_vars in let csil = List.fold_left (fun csil (l, m, v, t) -> Ocsg_value (l, m = Mutable, v = Virtual, tree_of_typexp mode t) :: csil) csil all_vars in let all_meths = Meths.fold (fun l (p, v, t) all -> (l, p, v, t) :: all) sign.csig_meths [] in let all_meths = List.rev all_meths in let csil = List.fold_left (fun csil meth -> tree_of_method mode meth :: csil) csil all_meths in Octy_signature (self_ty, List.rev csil) | Cty_arrow (l, ty, cty) -> let lab = if !print_labels || is_optional l then l else Nolabel in let tr = if is_optional l then match get_desc ty with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp mode ty | _ -> Otyp_stuff "<hidden>" else tree_of_typexp mode ty in Octy_arrow (lab, tr, tree_of_class_type mode params cty) let class_type ppf cty = reset (); prepare_class_type [] cty; !Oprint.out_class_type ppf (tree_of_class_type Type [] cty) let tree_of_class_param param variance = let ot_variance = if is_Tvar param then Asttypes.(NoVariance, NoInjectivity) else variance in match tree_of_typexp Type_scheme param with Otyp_var (ot_non_gen, ot_name) -> {ot_non_gen; ot_name; ot_variance} | _ -> {ot_non_gen=false; ot_name="?"; ot_variance} let class_variance = let open Variance in let open Asttypes in List.map (fun v -> (if not (mem May_pos v) then Contravariant else if not (mem May_neg v) then Covariant else NoVariance), NoInjectivity) let tree_of_class_declaration id cl rs = let params = filter_params cl.cty_params in reset_except_context (); List.iter add_alias params; prepare_class_type params cl.cty_type; let px = proxy (Btype.self_type_row cl.cty_type) in List.iter prepare_type params; List.iter (add_printed_alias ~non_gen:false) params; if is_aliased_proxy px then add_printed_alias_proxy ~non_gen:false px; let vir_flag = cl.cty_new = None in Osig_class (vir_flag, Ident.name id, List.map2 tree_of_class_param params (class_variance cl.cty_variance), tree_of_class_type Type_scheme params cl.cty_type, tree_of_rec rs) let class_declaration id ppf cl = !Oprint.out_sig_item ppf (tree_of_class_declaration id cl Trec_first) let tree_of_cltype_declaration id cl rs = let params = cl.clty_params in reset_except_context (); List.iter add_alias params; prepare_class_type params cl.clty_type; let px = proxy (Btype.self_type_row cl.clty_type) in List.iter prepare_type params; List.iter (add_printed_alias ~non_gen:false) params; if is_aliased_proxy px then (add_printed_alias_proxy ~non_gen:false) px; let sign = Btype.signature_of_class_type cl.clty_type in let has_virtual_vars = Vars.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.csig_vars false in let has_virtual_meths = Meths.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.csig_meths false in Osig_class_type (has_virtual_vars || has_virtual_meths, Ident.name id, List.map2 tree_of_class_param params (class_variance cl.clty_variance), tree_of_class_type Type_scheme params cl.clty_type, tree_of_rec rs) let cltype_declaration id ppf cl = !Oprint.out_sig_item ppf (tree_of_cltype_declaration id cl Trec_first) (* Print a module type *) let wrap_env fenv ftree arg = let env = !printing_env in let env' = Env.update_short_paths (fenv env) in set_printing_env env'; let tree = ftree arg in set_printing_env env; tree let dummy = { type_params = []; type_arity = 0; type_kind = Type_abstract Definition; type_private = Public; type_manifest = None; type_variance = []; type_separability = []; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = Location.none; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.internal_not_actually_unique; } (** we hide items being defined from short-path to avoid shortening [type t = Path.To.t] into [type t = t]. *) let ident_sigitem = function | Types.Sig_type(ident,_,_,_) -> {hide=true;ident} | Types.Sig_class(ident,_,_,_) | Types.Sig_class_type (ident,_,_,_) | Types.Sig_module(ident,_, _,_,_) | Types.Sig_value (ident,_,_) | Types.Sig_modtype (ident,_,_) | Types.Sig_typext (ident,_,_,_) -> {hide=false; ident } let hide ids env = let hide_id id env = (* Global idents cannot be renamed *) if id.hide && not (Ident.global id.ident) then Env.add_type ~check:false (Ident.rename_no_exn id.ident) dummy env else env in List.fold_right hide_id ids env let ids f = let ids f = wrap_env (hide ids) (Naming_context.with_hidden ids) f in if not !Clflags.real_paths then with_hidden_in_printing_env ids f else Naming_context.with_hidden ids f let add_sigitem env x = Env.add_signature (Signature_group.flatten x) env let rec tree_of_modtype ?(ellipsis=false) = function | Mty_ident p -> let p = best_module_type_path p in Omty_ident (tree_of_path (Some Module_type) p) | Mty_signature sg -> Omty_signature (if ellipsis then [Osig_ellipsis] else tree_of_signature sg) | Mty_functor(param, ty_res) -> let param, env = tree_of_functor_parameter param in let res = wrap_env env (tree_of_modtype ~ellipsis) ty_res in Omty_functor (param, res) | Mty_alias p -> let p = best_module_path p in Omty_alias (tree_of_path (Some Module) p) | Mty_for_hole -> Omty_hole and tree_of_functor_parameter = function | Unit -> None, fun k -> k | Named (param, ty_arg) -> let name, env = match param with | None -> None, fun env -> env | Some id -> Some (Ident.name id), Env.add_module ~arg:true id Mp_present ty_arg in Some (name, tree_of_modtype ~ellipsis:false ty_arg), env and tree_of_signature sg = wrap_env (fun env -> env)(fun sg -> let tree_groups = tree_of_signature_rec !printing_env sg in List.concat_map (fun (_env,l) -> List.map snd l) tree_groups ) sg and tree_of_signature_rec env' sg = let structured = List.of_seq (Signature_group.seq sg) in let collect_trees_of_rec_group group = let env = !printing_env in let env', group_trees = trees_of_recursive_sigitem_group env group in set_printing_env env'; (env, group_trees) in set_printing_env env'; List.map collect_trees_of_rec_group structured and trees_of_recursive_sigitem_group env (syntactic_group: Signature_group.rec_group) = let display (x:Signature_group.sig_item) = x.src, tree_of_sigitem x.src in let env = Env.add_signature syntactic_group.pre_ghosts env in match syntactic_group.group with | Not_rec x -> add_sigitem env x, [display x] | Rec_group items -> let ids = List.map (fun x -> ident_sigitem x.Signature_group.src) items in List.fold_left add_sigitem env items, with_hidden_items ids (fun () -> List.map display items) and tree_of_sigitem = function | Sig_value(id, decl, _) -> tree_of_value_description id decl | Sig_type(id, decl, rs, _) -> tree_of_type_declaration id decl rs | Sig_typext(id, ext, es, _) -> tree_of_extension_constructor id ext es | Sig_module(id, _, md, rs, _) -> let ellipsis = List.exists (function | Parsetree.{attr_name = {txt="..."}; attr_payload = PStr []} -> true | _ -> false) md.md_attributes in tree_of_module id md.md_type rs ~ellipsis | Sig_modtype(id, decl, _) -> tree_of_modtype_declaration id decl | Sig_class(id, decl, rs, _) -> tree_of_class_declaration id decl rs | Sig_class_type(id, decl, rs, _) -> tree_of_cltype_declaration id decl rs and tree_of_modtype_declaration id decl = let mty = match decl.mtd_type with | None -> Omty_abstract | Some mty -> tree_of_modtype mty in Osig_modtype (Ident.name id, mty) and tree_of_module id ?ellipsis mty rs = Osig_module (Ident.name id, tree_of_modtype ?ellipsis mty, tree_of_rec rs) let rec functor_parameters ~sep custom_printer = function | [] -> ignore | [id,param] -> Format.dprintf "%t%t" (custom_printer param) (functor_param ~sep ~custom_printer id []) | (id,param) :: q -> Format.dprintf "%t%a%t" (custom_printer param) sep () (functor_param ~sep ~custom_printer id q) and functor_param ~sep ~custom_printer id q = match id with | None -> functor_parameters ~sep custom_printer q | Some id -> Naming_context.with_arg id (fun () -> functor_parameters ~sep custom_printer q) let modtype ppf mty = !Oprint.out_module_type ppf (tree_of_modtype mty) let modtype_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_modtype_declaration id decl) (* For the toplevel: merge with tree_of_signature? *) let print_items showval env x = Names.refresh_weak(); Conflicts.reset (); let extend_val env (sigitem,outcome) = outcome, showval env sigitem in let post_process (env,l) = List.map (extend_val env) l in List.concat_map post_process @@ tree_of_signature_rec env x (* Print a signature body (used by -i when compiling a .ml) *) let print_signature ppf tree = fprintf ppf "@[<v>%a@]" !Oprint.out_signature tree let signature ppf sg = fprintf ppf "%a" print_signature (tree_of_signature sg) (* Print a signature body (used by -i when compiling a .ml) *) let printed_signature sourcefile ppf sg = (* we are tracking any collision event for warning 63 *) Conflicts.reset (); let t = tree_of_signature sg in if Warnings.(is_active @@ Erroneous_printed_signature "") && Conflicts.exists () then begin let conflicts = Format.asprintf "%t" Conflicts.print_explanations in Location.prerr_warning (Location.in_file sourcefile) (Warnings.Erroneous_printed_signature conflicts); Warnings.check_fatal () end; fprintf ppf "%a" print_signature t (* Trace-specific printing *) (* A configuration type that controls which trace we print. This could be exposed, but we instead expose three separate [report_{unification,equality,moregen}_error] functions. This also lets us give the unification case an extra optional argument without adding it to the equality and moregen cases. *) type 'variety trace_format = | Unification : Errortrace.unification trace_format | Equality : Errortrace.comparison trace_format | Moregen : Errortrace.comparison trace_format let incompatibility_phrase (type variety) : variety trace_format -> string = function | Unification -> "is not compatible with type" | Equality -> "is not equal to type" | Moregen -> "is not compatible with type" (* Print a unification error *) let same_path t t' = eq_type t t' || match get_desc t, get_desc t' with | Tconstr(p,tl,_), Tconstr(p',tl',_) -> begin match best_type_path p, best_type_path p' with | Nth n, Nth n' when n = n' -> true | Path(nso, p), Path(nso', p') when Path.same p p' -> let tl = apply_subst_opt nso tl in let tl' = apply_subst_opt nso' tl' in List.length tl = List.length tl' && List.for_all2 eq_type tl tl' | _ -> false end | _ -> false type 'a diff = Same of 'a | Diff of 'a * 'a let trees_of_type_expansion mode Errortrace.{ty = t; expanded = t'} = reset_loop_marks (); mark_loops t; if same_path t t' then begin add_delayed (proxy t); Same (tree_of_typexp mode t) end else begin mark_loops t'; let t' = if proxy t == proxy t' then unalias t' else t' in (* beware order matter due to side effect, e.g. when printing object types *) let first = tree_of_typexp mode t in let second = tree_of_typexp mode t' in if first = second then Same first else Diff(first,second) end let type_expansion ppf = function | Same t -> Style.as_inline_code !Oprint.out_type ppf t | Diff(t,t') -> fprintf ppf "@[<2>%a@ =@ %a@]" (Style.as_inline_code !Oprint.out_type) t (Style.as_inline_code !Oprint.out_type) t' let trees_of_trace mode = List.map (Errortrace.map_diff (trees_of_type_expansion mode)) let trees_of_type_path_expansion (tp,tp') = if Path.same tp tp' then Same(tree_of_path (Some Type) tp) else Diff(tree_of_path (Some Type) tp, tree_of_path (Some Type) tp') let type_path_expansion ppf = function | Same p -> Style.as_inline_code !Oprint.out_ident ppf p | Diff(p,p') -> fprintf ppf "@[<2>%a@ =@ %a@]" (Style.as_inline_code !Oprint.out_ident) p (Style.as_inline_code !Oprint.out_ident) p' let rec trace fst txt ppf = function | {Errortrace.got; expected} :: rem -> if not fst then fprintf ppf "@,"; fprintf ppf "@[Type@;<1 2>%a@ %s@;<1 2>%a@]%a" type_expansion got txt type_expansion expected (trace false txt) rem | _ -> () type printing_status = | Discard | Keep | Optional_refinement (** An [Optional_refinement] printing status is attributed to trace elements that are focusing on a new subpart of a structural type. Since the whole type should have been printed earlier in the trace, we only print those elements if they are the last printed element of a trace, and there is no explicit explanation for the type error. *) let diff_printing_status Errortrace.{ got = {ty = t1; expanded = t1'}; expected = {ty = t2; expanded = t2'} } = if is_constr_row ~allow_ident:true t1' || is_constr_row ~allow_ident:true t2' then Discard else if same_path t1 t1' && same_path t2 t2' then Optional_refinement else Keep let printing_status = function | Errortrace.Diff d -> diff_printing_status d | Errortrace.Escape {kind = Constraint} -> Keep | _ -> Keep (** Flatten the trace and remove elements that are always discarded during printing *) (* Takes [printing_status] to change behavior for [Subtype] *) let prepare_any_trace printing_status tr = let clean_trace x l = match printing_status x with | Keep -> x :: l | Optional_refinement when l = [] -> [x] | Optional_refinement | Discard -> l in match tr with | [] -> [] | elt :: rem -> elt :: List.fold_right clean_trace rem [] let prepare_trace f tr = prepare_any_trace printing_status (Errortrace.map f tr) (** Keep elements that are [Diff _ ] and take the decision for the last element, require a prepared trace *) let rec filter_trace keep_last = function | [] -> [] | [Errortrace.Diff d as elt] when printing_status elt = Optional_refinement -> if keep_last then [d] else [] | Errortrace.Diff d :: rem -> d :: filter_trace keep_last rem | _ :: rem -> filter_trace keep_last rem let type_path_list = Format.pp_print_list ~pp_sep:(fun ppf () -> Format.pp_print_break ppf 2 0) type_path_expansion (* Hide variant name and var, to force printing the expanded type *) let hide_variant_name t = match get_desc t with | Tvariant row -> let Row {fields; more; name; fixed; closed} = row_repr row in if name = None then t else newty2 ~level:(get_level t) (Tvariant (create_row ~fields ~fixed ~closed ~name:None ~more:(newvar2 (get_level more)))) | _ -> t let prepare_expansion Errortrace.{ty; expanded} = let expanded = hide_variant_name expanded in reserve_names ty; if not (same_path ty expanded) then reserve_names expanded; Errortrace.{ty; expanded} let may_prepare_expansion compact (Errortrace.{ty; expanded} as ty_exp) = match get_desc expanded with Tvariant _ | Tobject _ when compact -> reserve_names ty; Errortrace.{ty; expanded = ty} | _ -> prepare_expansion ty_exp let print_path p = Format.dprintf "%a" !Oprint.out_ident (tree_of_path (Some Type) p) let print_tag ppf s = Style.inline_code ppf ("`" ^ s) let = let comma ppf () = Format.fprintf ppf ",@ " in Format.pp_print_list ~pp_sep:comma print_tag let is_unit env ty = match get_desc (Ctype.expand_head env ty) with | Tconstr (p, _, _) -> Path.same p Predef.path_unit | _ -> false let unifiable env ty1 ty2 = let snap = Btype.snapshot () in let res = try Ctype.unify env ty1 ty2; true with Unify _ -> false in Btype.backtrack snap; res let explanation_diff env t3 t4 : (Format.formatter -> unit) option = match get_desc t3, get_desc t4 with | Tarrow (_, ty1, ty2, _), _ when is_unit env ty1 && unifiable env ty2 t4 -> Some (fun ppf -> fprintf ppf "@,@[@{<hint>Hint@}: Did you forget to provide %a as argument?@]" Style.inline_code "()" ) | _, Tarrow (_, ty1, ty2, _) when is_unit env ty1 && unifiable env t3 ty2 -> Some (fun ppf -> fprintf ppf "@,@[@{<hint>Hint@}: Did you forget to wrap the expression using \ %a?@]" Style.inline_code "fun () ->" ) | _ -> None let explain_fixed_row_case ppf = function | Errortrace.Cannot_be_closed -> fprintf ppf "it cannot be closed" | Errortrace.Cannot_add_tags -> fprintf ppf "it may not allow the tag(s) %a" print_tags tags let explain_fixed_row pos expl = match expl with | Fixed_private -> dprintf "The %a variant type is private" Errortrace.print_pos pos | Univar x -> reserve_names x; dprintf "The %a variant type is bound to the universal type variable %a" Errortrace.print_pos pos (Style.as_inline_code type_expr_with_reserved_names) x | Reified p -> dprintf "The %a variant type is bound to %a" Errortrace.print_pos pos (Style.as_inline_code (fun ppf p -> Internal_names.add p; print_path p ppf)) p | Rigid -> ignore let explain_variant (type variety) : variety Errortrace.variant -> _ = function (* Common *) | Errortrace.Incompatible_types_for s -> Some(dprintf "@,Types for tag %a are incompatible" print_tag s ) (* Unification *) | Errortrace.No_intersection -> Some(dprintf "@,These two variant types have no intersection") | Errortrace.No_tags(pos,fields) -> Some( dprintf "@,@[The %a variant type does not allow tag(s)@ @[<hov>%a@]@]" Errortrace.print_pos pos print_tags (List.map fst fields) ) | Errortrace.Fixed_row (pos, k, (Univar _ | Reified _ | Fixed_private as e)) -> Some ( dprintf "@,@[%t,@ %a@]" (explain_fixed_row pos e) explain_fixed_row_case k ) | Errortrace.Fixed_row (_,_, Rigid) -> (* this case never happens *) None (* Equality & Moregen *) | Errortrace.Presence_not_guaranteed_for (pos, s) -> Some( dprintf "@,@[The tag %a is guaranteed to be present in the %a variant type,\ @ but not in the %a@]" print_tag s Errortrace.print_pos (Errortrace.swap_position pos) Errortrace.print_pos pos ) | Errortrace.Openness pos -> Some(dprintf "@,The %a variant type is open and the %a is not" Errortrace.print_pos pos Errortrace.print_pos (Errortrace.swap_position pos)) let explain_escape pre = function | Errortrace.Univ u -> reserve_names u; Some( dprintf "%t@,The universal variable %a would escape its scope" pre (Style.as_inline_code type_expr_with_reserved_names) u ) | Errortrace.Constructor p -> Some( dprintf "%t@,@[The type constructor@;<1 2>%a@ would escape its scope@]" pre (Style.as_inline_code path) p ) | Errortrace.Module_type p -> Some( dprintf "%t@,@[The module type@;<1 2>%a@ would escape its scope@]" pre (Style.as_inline_code path) p ) | Errortrace.Equation Errortrace.{ty = _; expanded = t} -> reserve_names t; Some( dprintf "%t @,@[<hov>This instance of %a is ambiguous:@ %s@]" pre (Style.as_inline_code type_expr_with_reserved_names) t "it would escape the scope of its equation" ) | Errortrace.Self -> Some (dprintf "%t@,Self type cannot escape its class" pre) | Errortrace.Constraint -> None let explain_object (type variety) : variety Errortrace.obj -> _ = function | Errortrace.Missing_field (pos,f) -> Some( dprintf "@,@[The %a object type has no method %a@]" Errortrace.print_pos pos Style.inline_code f ) | Errortrace.Abstract_row pos -> Some( dprintf "@,@[The %a object type has an abstract row, it cannot be closed@]" Errortrace.print_pos pos ) | Errortrace.Self_cannot_be_closed -> Some (dprintf "@,Self type cannot be unified with a closed object type") let explain_incompatible_fields name (diff: Types.type_expr Errortrace.diff) = reserve_names diff.got; reserve_names diff.expected; dprintf "@,@[The method %a has type@ %a,@ \ but the expected method type was@ %a@]" Style.inline_code name (Style.as_inline_code type_expr_with_reserved_names) diff.got (Style.as_inline_code type_expr_with_reserved_names) diff.expected let explanation (type variety) intro prev env : (Errortrace.expanded_type, variety) Errortrace.elt -> _ = function | Errortrace.Diff {got; expected} -> explanation_diff env got.expanded expected.expanded | Errortrace.Escape {kind; context} -> let pre = match context, kind, prev with | Some ctx, _, _ -> reserve_names ctx; dprintf "@[%t@;<1 2>%a@]" intro (Style.as_inline_code type_expr_with_reserved_names) ctx | None, Univ _, Some(Errortrace.Incompatible_fields {name; diff}) -> explain_incompatible_fields name diff | _ -> ignore in explain_escape pre kind | Errortrace.Incompatible_fields { name; diff} -> Some(explain_incompatible_fields name diff) | Errortrace.Variant v -> explain_variant v | Errortrace.Obj o -> explain_object o | Errortrace.Rec_occur(x,y) -> reserve_names x; reserve_names y; begin match get_desc x with | Tvar _ | Tunivar _ -> Some(fun ppf -> reset_loop_marks (); mark_loops x; mark_loops y; dprintf "@,@[<hov>The type variable %a occurs inside@ %a@]" (Style.as_inline_code prepared_type_expr) x (Style.as_inline_code prepared_type_expr) y ppf) | _ -> (* We had a delayed unification of the type variable with a non-variable after the occur check. *) Some ignore (* There is no need to search further for an explanation, but we don't want to print a message of the form: {[ The type int occurs inside int list -> 'a |} *) end let mismatch intro env trace = Errortrace.explain trace (fun ~prev h -> explanation intro prev env h) let explain mis ppf = match mis with | None -> () | Some explain -> explain ppf let warn_on_missing_def env ppf t = match get_desc t with | Tconstr (p,_,_) -> begin match Env.find_type p env with | exception Not_found -> fprintf ppf "@,@[<hov>Type %a is abstract because@ no corresponding\ @ cmi file@ was found@ in path.@]" (Style.as_inline_code path) p | { type_manifest = Some _; _ } -> () | { type_manifest = None; _ } as decl -> match type_origin decl with | Rec_check_regularity -> fprintf ppf "@,@[<hov>Type %a was considered abstract@ when checking\ @ constraints@ in this@ recursive type definition.@]" (Style.as_inline_code path) p | Definition | Existential _ -> () end | _ -> () let prepare_expansion_head empty_tr = function | Errortrace.Diff d -> Some (Errortrace.map_diff (may_prepare_expansion empty_tr) d) | _ -> None let head_error_printer mode txt_got txt_but = function | None -> ignore | Some d -> let d = Errortrace.map_diff (trees_of_type_expansion mode) d in dprintf "%t@;<1 2>%a@ %t@;<1 2>%a" txt_got type_expansion d.Errortrace.got txt_but type_expansion d.Errortrace.expected let warn_on_missing_defs env ppf = function | None -> () | Some Errortrace.{got = {ty=te1; expanded=_}; expected = {ty=te2; expanded=_} } -> warn_on_missing_def env ppf te1; warn_on_missing_def env ppf te2 (* [subst] comes out of equality, and is [[]] otherwise *) let error trace_format mode subst env tr txt1 ppf txt2 ty_expect_explanation = reset (); (* We want to substitute in the opposite order from [Eqtype] *) Names.add_subst (List.map (fun (ty1,ty2) -> ty2,ty1) subst); let tr = prepare_trace (fun ty_exp -> Errortrace.{ty_exp with expanded = hide_variant_name ty_exp.expanded}) tr in let mis = mismatch txt1 env tr in match tr with | [] -> assert false | elt :: tr -> try print_labels := not !Clflags.classic; let tr = filter_trace (mis = None) tr in let head = prepare_expansion_head (tr=[]) elt in let tr = List.map (Errortrace.map_diff prepare_expansion) tr in let head_error = head_error_printer mode txt1 txt2 head in let tr = trees_of_trace mode tr in fprintf ppf "@[<v>\ @[%t%t@]%a%t\ @]" head_error ty_expect_explanation (trace false (incompatibility_phrase trace_format)) tr (explain mis); if env <> Env.empty then warn_on_missing_defs env ppf head; Internal_names.print_explanations env ppf; Conflicts.print_explanations ppf; print_labels := true with exn -> print_labels := true; raise exn let report_error trace_format ppf mode env tr ?(subst = []) ?(type_expected_explanation = fun _ -> ()) txt1 txt2 = wrap_printing_env ~error:true env (fun () -> error trace_format mode subst env tr txt1 ppf txt2 type_expected_explanation) let report_unification_error ppf env ({trace} : Errortrace.unification_error) = report_error Unification ppf Type env ?subst:None trace let report_equality_error ppf mode env ({subst; trace} : Errortrace.equality_error) = report_error Equality ppf mode env ~subst ?type_expected_explanation:None trace let report_moregen_error ppf mode env ({trace} : Errortrace.moregen_error) = report_error Moregen ppf mode env ?subst:None ?type_expected_explanation:None trace let report_comparison_error ppf mode env = function | Errortrace.Equality_error error -> report_equality_error ppf mode env error | Errortrace.Moregen_error error -> report_moregen_error ppf mode env error module Subtype = struct (* There's a frustrating amount of code duplication between this module and the outside code, particularly in [prepare_trace] and [filter_trace]. Unfortunately, [Subtype] is *just* similar enough to have code duplication, while being *just* different enough (it's only [Diff]) for the abstraction to be nonobvious. Someday, perhaps... *) let printing_status = function | Errortrace.Subtype.Diff d -> diff_printing_status d let prepare_unification_trace = prepare_trace let prepare_trace f tr = prepare_any_trace printing_status (Errortrace.Subtype.map f tr) let trace filter_trace get_diff fst keep_last txt ppf tr = print_labels := not !Clflags.classic; try match tr with | elt :: tr' -> let diffed_elt = get_diff elt in let tr = trees_of_trace Type @@ List.map (Errortrace.map_diff prepare_expansion) @@ filter_trace keep_last tr' in let tr = match fst, diffed_elt with | true, Some elt -> elt :: tr | _, _ -> tr in trace fst txt ppf tr; print_labels := true | _ -> () with exn -> print_labels := true; raise exn let rec filter_subtype_trace keep_last = function | [] -> [] | [Errortrace.Subtype.Diff d as elt] when printing_status elt = Optional_refinement -> if keep_last then [d] else [] | Errortrace.Subtype.Diff d :: rem -> d :: filter_subtype_trace keep_last rem let unification_get_diff = function | Errortrace.Diff diff -> Some (Errortrace.map_diff (trees_of_type_expansion Type) diff) | _ -> None let subtype_get_diff = function | Errortrace.Subtype.Diff diff -> Some (Errortrace.map_diff (trees_of_type_expansion Type) diff) let report_error ppf env (Errortrace.Subtype.{trace = tr_sub; unification_trace = tr_unif}) txt1 = wrap_printing_env ~error:true env (fun () -> reset (); let tr_sub = prepare_trace prepare_expansion tr_sub in let tr_unif = prepare_unification_trace prepare_expansion tr_unif in let keep_first = match tr_unif with | [Obj _ | Variant _ | Escape _ ] | [] -> true | _ -> false in fprintf ppf "@[<v>%a" (trace filter_subtype_trace subtype_get_diff true keep_first txt1) tr_sub; if tr_unif = [] then fprintf ppf "@]" else let mis = mismatch (dprintf "Within this type") env tr_unif in fprintf ppf "%a%t%t@]" (trace filter_trace unification_get_diff false (mis = None) "is not compatible with type") tr_unif (explain mis) Conflicts.print_explanations ) end let report_ambiguous_type_error ppf env tp0 tpl txt1 txt2 txt3 = wrap_printing_env ~error:true env (fun () -> reset (); let tp0 = trees_of_type_path_expansion tp0 in match tpl with [] -> assert false | [tp] -> fprintf ppf "@[%t@;<1 2>%a@ \ %t@;<1 2>%a\ @]" txt1 type_path_expansion (trees_of_type_path_expansion tp) txt3 type_path_expansion tp0 | _ -> fprintf ppf "@[%t@;<1 2>@[<hv>%a@]\ @ %t@;<1 2>%a\ @]" txt2 type_path_list (List.map trees_of_type_path_expansion tpl) txt3 type_path_expansion tp0) (* Adapt functions to exposed interface *) let tree_of_path = tree_of_path None let tree_of_modtype = tree_of_modtype ~ellipsis:false let type_expansion mode ppf ty_exp = type_expansion ppf (trees_of_type_expansion mode ty_exp) let tree_of_type_declaration ident td rs = with_hidden_items [{hide=true; ident}] (fun () -> tree_of_type_declaration ident td rs) let shorten_type_path env p = wrap_printing_env env (fun () -> best_type_path_simple p) let shorten_module_type_path env p = wrap_printing_env env (fun () -> best_module_type_path p) let shorten_module_path env p = wrap_printing_env env (fun () -> best_module_path p) let shorten_class_type_path env p = wrap_printing_env env (fun () -> best_class_type_path_simple p) let () = Env.shorten_module_path := shorten_module_path
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>