package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-4.14-500.tbz
sha256=ec23f324f875520cd8897f303cc6d4e595f3d7000914d410729f16b86ad1d70e
sha512=8db22100cc0af65b08f456a2a7af84e75396f5869ee7552f1f5888a1c0279d1d85e6eecb3a677ae6f0973a99823cddba0563843ce216197255667342ef161885
doc/src/merlin-lib.ocaml_typing/typetexp.ml.html
Source file typetexp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* typetexp.ml,v 1.34.4.9 2002/01/07 08:39:16 garrigue Exp *) (* Typechecking of type expressions for the core language *) open Asttypes open Misc open Parsetree open Typedtree open Types open Ctype exception Already_bound type error = Unbound_type_variable of string | Undefined_type_constructor of Path.t | Type_arity_mismatch of Longident.t * int * int | Bound_type_variable of string | Recursive_type | Unbound_row_variable of Longident.t | Type_mismatch of Errortrace.unification_error | Alias_type_mismatch of Errortrace.unification_error | Present_has_conjunction of string | Present_has_no_type of string | Constructor_mismatch of type_expr * type_expr | Not_a_variant of type_expr | Invalid_variable_name of string | Cannot_quantify of string * type_expr | Multiple_constraints_on_type of Longident.t | Method_mismatch of string * type_expr * type_expr | Opened_object of Path.t option | Not_an_object of type_expr exception Error of Location.t * Env.t * error exception Error_forward of Location.error (** Map indexed by type variable names. *) module TyVarMap = Misc.String.Map type variable_context = int * type_expr TyVarMap.t (* Support for first-class modules. *) let transl_modtype_longident = ref (fun _ -> assert false) let transl_modtype = ref (fun _ -> assert false) let create_package_mty fake loc env (p, l) = let l = List.sort (fun (s1, _t1) (s2, _t2) -> if s1.txt = s2.txt then raise (Error (loc, env, Multiple_constraints_on_type s1.txt)); compare s1.txt s2.txt) l in l, List.fold_left (fun mty (s, t) -> let d = {ptype_name = mkloc (Longident.last s.txt) s.loc; ptype_params = []; ptype_cstrs = []; ptype_kind = Ptype_abstract; ptype_private = Asttypes.Public; ptype_manifest = if fake then None else Some t; ptype_attributes = []; ptype_loc = loc} in Ast_helper.Mty.mk ~loc (Pmty_with (mty, [ Pwith_type ({ txt = s.txt; loc }, d) ])) ) (Ast_helper.Mty.mk ~loc (Pmty_ident p)) l (* Translation of type expressions *) let type_variables = ref (TyVarMap.empty : type_expr TyVarMap.t) let univars = ref ([] : (string * type_expr) list) let pre_univars = ref ([] : type_expr list) let used_variables = ref (TyVarMap.empty : (type_expr * Location.t) TyVarMap.t) let reset_type_variables () = reset_global_level (); Ctype.reset_reified_var_counter (); type_variables := TyVarMap.empty let narrow () = (increase_global_level (), !type_variables) let widen (gl, tv) = restore_global_level gl; type_variables := tv let strict_ident c = (c = '_' || c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z') let validate_name = function None -> None | Some name as s -> if name <> "" && strict_ident name.[0] then s else None let new_global_var ?name () = new_global_var ?name:(validate_name name) () let newvar ?name () = newvar ?name:(validate_name name) () let type_variable loc name = try TyVarMap.find name !type_variables with Not_found -> raise(Error(loc, Env.empty, Unbound_type_variable ("'" ^ name))) let valid_tyvar_name name = name <> "" && name.[0] <> '_' let transl_type_param env styp = let loc = styp.ptyp_loc in match styp.ptyp_desc with Ptyp_any -> let ty = new_global_var ~name:"_" () in { ctyp_desc = Ttyp_any; ctyp_type = ty; ctyp_env = env; ctyp_loc = loc; ctyp_attributes = styp.ptyp_attributes; } | Ptyp_var name -> let ty = try if not (valid_tyvar_name name) then raise (Error (loc, Env.empty, Invalid_variable_name ("'" ^ name))); ignore (TyVarMap.find name !type_variables); raise Already_bound with Not_found -> let v = new_global_var ~name () in type_variables := TyVarMap.add name v !type_variables; v in { ctyp_desc = Ttyp_var name; ctyp_type = ty; ctyp_env = env; ctyp_loc = loc; ctyp_attributes = styp.ptyp_attributes; } | _ -> assert false let transl_type_param env styp = (* Currently useless, since type parameters cannot hold attributes (but this could easily be lifted in the future). *) Builtin_attributes.warning_scope styp.ptyp_attributes (fun () -> transl_type_param env styp) let new_pre_univar ?name () = let v = newvar ?name () in pre_univars := v :: !pre_univars; v type poly_univars = (string * type_expr) list let make_poly_univars vars = List.map (fun name -> name, newvar ~name ()) vars let check_poly_univars env loc vars = vars |> List.iter (fun (_, v) -> generalize v); vars |> List.map (fun (name, ty1) -> let v = Btype.proxy ty1 in begin match get_desc v with | Tvar name when get_level v = Btype.generic_level -> set_type_desc v (Tunivar name) | _ -> raise (Error (loc, env, Cannot_quantify(name, v))) end; v) let instance_poly_univars env loc vars = let vs = check_poly_univars env loc vars in vs |> List.iter (fun v -> match get_desc v with | Tunivar name -> set_type_desc v (Tvar name) | _ -> assert false); vs type policy = Fixed | Extensible | Univars let rec transl_type env policy styp = Msupport.with_saved_types ~warning_attribute:styp.ptyp_attributes ?save_part:None (fun () -> try transl_type_aux env policy styp with exn -> let ty = new_global_var () in Msupport.erroneous_type_register ty; Msupport.raise_error exn; { ctyp_desc = Ttyp_any; ctyp_type = ty; ctyp_env = env; ctyp_loc = styp.ptyp_loc; ctyp_attributes = []; } ) and transl_type_aux env policy styp = let loc = styp.ptyp_loc in let ctyp ctyp_desc ctyp_type = { ctyp_desc; ctyp_type; ctyp_env = env; ctyp_loc = loc; ctyp_attributes = styp.ptyp_attributes } in match styp.ptyp_desc with Ptyp_any -> let ty = if policy = Univars then new_pre_univar () else if policy = Fixed then raise (Error (styp.ptyp_loc, env, Unbound_type_variable "_")) else newvar () in ctyp Ttyp_any ty | Ptyp_var name -> let ty = if not (valid_tyvar_name name) then raise (Error (styp.ptyp_loc, env, Invalid_variable_name ("'" ^ name))); begin try instance (List.assoc name !univars) with Not_found -> try instance (fst (TyVarMap.find name !used_variables)) with Not_found -> let v = if policy = Univars then new_pre_univar ~name () else newvar ~name () in used_variables := TyVarMap.add name (v, styp.ptyp_loc) !used_variables; v end in ctyp (Ttyp_var name) ty | Ptyp_arrow(l, st1, st2) -> let cty1 = transl_type env policy st1 in let cty2 = transl_type env policy st2 in let ty1 = cty1.ctyp_type in let ty1 = if Btype.is_optional l then newty (Tconstr(Predef.path_option,[ty1], ref Mnil)) else ty1 in let ty = newty (Tarrow(l, ty1, cty2.ctyp_type, commu_ok)) in ctyp (Ttyp_arrow (l, cty1, cty2)) ty | Ptyp_tuple stl -> assert (List.length stl >= 2); let ctys = List.map (transl_type env policy) stl in let ty = newty (Ttuple (List.map (fun ctyp -> ctyp.ctyp_type) ctys)) in ctyp (Ttyp_tuple ctys) ty | Ptyp_constr(lid, stl) -> let (path, decl) = Env.lookup_type ~loc:lid.loc lid.txt env in let stl = match stl with | [ {ptyp_desc=Ptyp_any} as t ] when decl.type_arity > 1 -> List.map (fun _ -> t) decl.type_params | _ -> stl in if List.length stl <> decl.type_arity then raise(Error(styp.ptyp_loc, env, Type_arity_mismatch(lid.txt, decl.type_arity, List.length stl))); let args = List.map (transl_type env policy) stl in let params = instance_list decl.type_params in let unify_param = match decl.type_manifest with None -> unify_var | Some ty -> if get_level ty = Btype.generic_level then unify_var else unify in List.iter2 (fun (sty, cty) ty' -> try unify_param env ty' cty.ctyp_type with Unify err -> let err = Errortrace.swap_unification_error err in raise (Error(sty.ptyp_loc, env, Type_mismatch err)) ) (List.combine stl args) params; let constr = newconstr path (List.map (fun ctyp -> ctyp.ctyp_type) args) in ctyp (Ttyp_constr (path, lid, args)) constr | Ptyp_object (fields, o) -> let ty, fields = transl_fields env policy o fields in ctyp (Ttyp_object (fields, o)) (newobj ty) | Ptyp_class(lid, stl) -> let (path, decl, _is_variant) = try let path, decl = Env.find_type_by_name lid.txt env in let rec check decl = match decl.type_manifest with None -> raise Not_found | Some ty -> match get_desc ty with Tvariant row when Btype.static_row row -> () | Tconstr (path, _, _) -> check (Env.find_type path env) | _ -> raise Not_found in check decl; Location.deprecated styp.ptyp_loc "old syntax for polymorphic variant type"; ignore(Env.lookup_type ~loc:lid.loc lid.txt env); (path, decl,true) with Not_found -> try let lid2 = match lid.txt with Longident.Lident s -> Longident.Lident ("#" ^ s) | Longident.Ldot(r, s) -> Longident.Ldot (r, "#" ^ s) | Longident.Lapply(_, _) -> fatal_error "Typetexp.transl_type" in let path, decl = Env.find_type_by_name lid2 env in ignore(Env.lookup_cltype ~loc:lid.loc lid.txt env); (path, decl, false) with Not_found -> ignore (Env.lookup_cltype ~loc:lid.loc lid.txt env); assert false in if List.length stl <> decl.type_arity then raise(Error(styp.ptyp_loc, env, Type_arity_mismatch(lid.txt, decl.type_arity, List.length stl))); let args = List.map (transl_type env policy) stl in let params = instance_list decl.type_params in List.iter2 (fun (sty, cty) ty' -> try unify_var env ty' cty.ctyp_type with Unify err -> let err = Errortrace.swap_unification_error err in raise (Error(sty.ptyp_loc, env, Type_mismatch err)) ) (List.combine stl args) params; let ty_args = List.map (fun ctyp -> ctyp.ctyp_type) args in let ty = Ctype.expand_head env (newconstr path ty_args) in let ty = match get_desc ty with Tvariant row -> let fields = List.map (fun (l,f) -> l, match row_field_repr f with | Rpresent oty -> rf_either_of oty | _ -> f) (row_fields row) in (* NB: row is always non-static here; more is thus never Tnil *) let more = if policy = Univars then new_pre_univar () else newvar () in let row = create_row ~fields ~more ~closed:true ~fixed:None ~name:(Some (path, ty_args)) in newty (Tvariant row) | Tobject (fi, _) -> let _, tv = flatten_fields fi in if policy = Univars then pre_univars := tv :: !pre_univars; ty | _ -> assert false in ctyp (Ttyp_class (path, lid, args)) ty | Ptyp_alias(st, alias) -> let cty = try let t = try List.assoc alias !univars with Not_found -> instance (fst(TyVarMap.find alias !used_variables)) in let ty = transl_type env policy st in begin try unify_var env t ty.ctyp_type with Unify err -> let err = Errortrace.swap_unification_error err in raise(Error(styp.ptyp_loc, env, Alias_type_mismatch err)) end; ty with Not_found -> if !Clflags.principal then begin_def (); let t = newvar () in used_variables := TyVarMap.add alias (t, styp.ptyp_loc) !used_variables; let ty = transl_type env policy st in begin try unify_var env t ty.ctyp_type with Unify err -> let err = Errortrace.swap_unification_error err in raise(Error(styp.ptyp_loc, env, Alias_type_mismatch err)) end; if !Clflags.principal then begin end_def (); generalize_structure t; end; let t = instance t in let px = Btype.proxy t in begin match get_desc px with | Tvar None -> set_type_desc px (Tvar (Some alias)) | Tunivar None -> set_type_desc px (Tunivar (Some alias)) | _ -> () end; { ty with ctyp_type = t } in ctyp (Ttyp_alias (cty, alias)) cty.ctyp_type | Ptyp_variant(fields, closed, present) -> let name = ref None in let mkfield l f = newty (Tvariant (create_row ~fields:[l,f] ~more:(newvar()) ~closed:true ~fixed:None ~name:None)) in let hfields = Hashtbl.create 17 in let add_typed_field loc l f = let h = Btype.hash_variant l in try let (l',f') = Hashtbl.find hfields h in (* Check for tag conflicts *) if l <> l' then raise(Error(styp.ptyp_loc, env, Variant_tags(l, l'))); let ty = mkfield l f and ty' = mkfield l f' in if is_equal env false [ty] [ty'] then () else try unify env ty ty' with Unify _trace -> raise(Error(loc, env, Constructor_mismatch (ty,ty'))) with Not_found -> Hashtbl.add hfields h (l,f) in let add_field field = let rf_loc = field.prf_loc in let rf_attributes = field.prf_attributes in let rf_desc = match field.prf_desc with | Rtag (l, c, stl) -> name := None; let tl = Builtin_attributes.warning_scope rf_attributes (fun () -> List.map (transl_type env policy) stl) in let f = match present with Some present when not (List.mem l.txt present) -> let ty_tl = List.map (fun cty -> cty.ctyp_type) tl in rf_either ty_tl ~no_arg:c ~matched:false | _ -> if List.length stl > 1 || c && stl <> [] then raise(Error(styp.ptyp_loc, env, Present_has_conjunction l.txt)); match tl with [] -> rf_present None | st :: _ -> rf_present (Some st.ctyp_type) in add_typed_field styp.ptyp_loc l.txt f; Ttag (l,c,tl) | Rinherit sty -> let cty = transl_type env policy sty in let ty = cty.ctyp_type in let nm = match get_desc cty.ctyp_type with Tconstr(p, tl, _) -> Some(p, tl) | _ -> None in name := if Hashtbl.length hfields <> 0 then None else nm; let fl = match get_desc (expand_head env cty.ctyp_type), nm with Tvariant row, _ when Btype.static_row row -> row_fields row | Tvar _, Some(p, _) -> raise(Error(sty.ptyp_loc, env, Undefined_type_constructor p)) | _ -> raise(Error(sty.ptyp_loc, env, Not_a_variant ty)) in List.iter (fun (l, f) -> let f = match present with Some present when not (List.mem l present) -> begin match row_field_repr f with Rpresent oty -> rf_either_of oty | _ -> assert false end | _ -> f in add_typed_field sty.ptyp_loc l f) fl; Tinherit cty in { rf_desc; rf_loc; rf_attributes; } in let tfields = List.map add_field fields in let fields = List.rev (Hashtbl.fold (fun _ p l -> p :: l) hfields []) in begin match present with None -> () | Some present -> List.iter (fun l -> if not (List.mem_assoc l fields) then raise(Error(styp.ptyp_loc, env, Present_has_no_type l))) present end; let name = !name in let make_row more = create_row ~fields ~more ~closed:(closed = Closed) ~fixed:None ~name in let more = if Btype.static_row (make_row (newvar ())) then newty Tnil else if policy = Univars then new_pre_univar () else newvar () in let ty = newty (Tvariant (make_row more)) in ctyp (Ttyp_variant (tfields, closed, present)) ty | Ptyp_poly(vars, st) -> let vars = List.map (fun v -> v.txt) vars in begin_def(); let new_univars = make_poly_univars vars in let old_univars = !univars in univars := new_univars @ !univars; let cty = transl_type env policy st in let ty = cty.ctyp_type in univars := old_univars; end_def(); generalize ty; let ty_list = check_poly_univars env styp.ptyp_loc new_univars in let ty_list = List.filter (fun v -> deep_occur v ty) ty_list in let ty' = Btype.newgenty (Tpoly(ty, ty_list)) in unify_var env (newvar()) ty'; ctyp (Ttyp_poly (vars, cty)) ty' | Ptyp_package (p, l) -> let l, mty = create_package_mty true styp.ptyp_loc env (p, l) in let z = narrow () in let mty = !transl_modtype env mty in widen z; let ptys = List.map (fun (s, pty) -> s, transl_type env policy pty ) l in let path = !transl_modtype_longident styp.ptyp_loc env p.txt in let ty = newty (Tpackage (path, List.map (fun (s, cty) -> (s.txt, cty.ctyp_type)) ptys)) in ctyp (Ttyp_package { pack_path = path; pack_type = mty.mty_type; pack_fields = ptys; pack_txt = p; }) ty | Ptyp_extension ext -> raise (Error_forward (Builtin_attributes.error_of_extension ext)) and transl_fields env policy o fields = let hfields = Hashtbl.create 17 in let add_typed_field loc l ty = try let ty' = Hashtbl.find hfields l in if is_equal env false [ty] [ty'] then () else try unify env ty ty' with Unify _trace -> raise(Error(loc, env, Method_mismatch (l, ty, ty'))) with Not_found -> Hashtbl.add hfields l ty in let add_field {pof_desc; pof_loc; pof_attributes;} = let of_loc = pof_loc in let of_attributes = pof_attributes in let of_desc = match pof_desc with | Otag (s, ty1) -> begin let ty1 = Builtin_attributes.warning_scope of_attributes (fun () -> transl_type env policy (Ast_helper.Typ.force_poly ty1)) in let field = OTtag (s, ty1) in add_typed_field ty1.ctyp_loc s.txt ty1.ctyp_type; field end | Oinherit sty -> begin let cty = transl_type env policy sty in let nm = match get_desc cty.ctyp_type with Tconstr(p, _, _) -> Some p | _ -> None in let t = expand_head env cty.ctyp_type in match get_desc t, nm with Tobject (tf, _), _ when (match get_desc tf with Tfield _ | Tnil -> true | _ -> false) -> begin if opened_object t then raise (Error (sty.ptyp_loc, env, Opened_object nm)); let rec iter_add ty = match get_desc ty with | Tfield (s, _k, ty1, ty2) -> add_typed_field sty.ptyp_loc s ty1; iter_add ty2 | Tnil -> () | _ -> assert false in iter_add tf; OTinherit cty end | Tvar _, Some p -> raise (Error (sty.ptyp_loc, env, Undefined_type_constructor p)) | _ -> raise (Error (sty.ptyp_loc, env, Not_an_object t)) end in { of_desc; of_loc; of_attributes; } in let object_fields = List.map add_field fields in let fields = Hashtbl.fold (fun s ty l -> (s, ty) :: l) hfields [] in let ty_init = match o, policy with | Closed, _ -> newty Tnil | Open, Univars -> new_pre_univar () | Open, _ -> newvar () in let ty = List.fold_left (fun ty (s, ty') -> newty (Tfield (s, field_public, ty', ty))) ty_init fields in ty, object_fields (* Make the rows "fixed" in this type, to make universal check easier *) let rec make_fixed_univars ty = if Btype.try_mark_node ty then begin match get_desc ty with | Tvariant row -> let Row {fields; more; name; closed} = row_repr row in if Btype.is_Tunivar more then let fields = List.map (fun (s,f as p) -> match row_field_repr f with Reither (no_arg, tl, _m) -> s, rf_either tl ~use_ext_of:f ~no_arg ~matched:true | _ -> p) fields in set_type_desc ty (Tvariant (create_row ~fields ~more ~name ~closed ~fixed:(Some (Univar more)))); Btype.iter_row make_fixed_univars row | _ -> Btype.iter_type_expr make_fixed_univars ty end let make_fixed_univars ty = make_fixed_univars ty; Btype.unmark_type ty let create_package_mty = create_package_mty false let globalize_used_variables env fixed = let r = ref [] in TyVarMap.iter (fun name (ty, loc) -> let v = new_global_var () in let snap = Btype.snapshot () in if try unify env v ty; true with _ -> Btype.backtrack snap; false then try r := (loc, v, TyVarMap.find name !type_variables) :: !r with Not_found -> if fixed && Btype.is_Tvar ty then raise(Error(loc, env, Unbound_type_variable ("'"^name))); let v2 = new_global_var () in r := (loc, v, v2) :: !r; type_variables := TyVarMap.add name v2 !type_variables) !used_variables; used_variables := TyVarMap.empty; fun () -> List.iter (function (loc, t1, t2) -> try unify env t1 t2 with Unify err -> raise (Error(loc, env, Type_mismatch err))) !r let transl_simple_type env ?univars:(uvs=[]) fixed styp = univars := uvs; used_variables := TyVarMap.empty; let typ = transl_type env (if fixed then Fixed else Extensible) styp in globalize_used_variables env fixed (); make_fixed_univars typ.ctyp_type; typ let transl_simple_type_univars env styp = univars := []; used_variables := TyVarMap.empty; pre_univars := []; begin_def (); let typ = transl_type env Univars styp in (* Only keep already global variables in used_variables *) let new_variables = !used_variables in used_variables := TyVarMap.empty; TyVarMap.iter (fun name p -> if TyVarMap.mem name !type_variables then used_variables := TyVarMap.add name p !used_variables) new_variables; globalize_used_variables env false (); end_def (); generalize typ.ctyp_type; let univs = List.fold_left (fun acc v -> match get_desc v with Tvar name when get_level v = Btype.generic_level -> set_type_desc v (Tunivar name); v :: acc | _ -> acc) [] !pre_univars in make_fixed_univars typ.ctyp_type; { typ with ctyp_type = instance (Btype.newgenty (Tpoly (typ.ctyp_type, univs))) } let transl_simple_type_delayed env styp = univars := []; used_variables := TyVarMap.empty; begin_def (); let typ = transl_type env Extensible styp in end_def (); make_fixed_univars typ.ctyp_type; (* This brings the used variables to the global level, but doesn't link them to their other occurrences just yet. This will be done when [force] is called. *) let force = globalize_used_variables env false in (* Generalizes everything except the variables that were just globalized. *) generalize typ.ctyp_type; (typ, instance typ.ctyp_type, force) let transl_type_scheme env styp = reset_type_variables(); match styp.ptyp_desc with | Ptyp_poly (vars, st) -> begin_def(); let vars = List.map (fun v -> v.txt) vars in let univars = make_poly_univars vars in let typ = transl_simple_type env ~univars true st in end_def(); generalize typ.ctyp_type; let _ = instance_poly_univars env styp.ptyp_loc univars in { ctyp_desc = Ttyp_poly (vars, typ); ctyp_type = typ.ctyp_type; ctyp_env = env; ctyp_loc = styp.ptyp_loc; ctyp_attributes = styp.ptyp_attributes } | _ -> begin_def(); let typ = transl_simple_type env false styp in end_def(); generalize typ.ctyp_type; typ (* Error report *) open Format open Printtyp let report_error env ppf = function | Unbound_type_variable name -> let add_name name _ l = if name = "_" then l else ("'" ^ name) :: l in let names = TyVarMap.fold add_name !type_variables [] in fprintf ppf "The type variable %s is unbound in this type declaration.@ %a" name did_you_mean (fun () -> Misc.spellcheck names name ) | Undefined_type_constructor p -> fprintf ppf "The type constructor@ %a@ is not yet completely defined" path p | Type_arity_mismatch(lid, expected, provided) -> fprintf ppf "@[The type constructor %a@ expects %i argument(s),@ \ but is here applied to %i argument(s)@]" longident lid expected provided | Bound_type_variable name -> fprintf ppf "Already bound type parameter %a" Pprintast.tyvar name | Recursive_type -> fprintf ppf "This type is recursive" | Unbound_row_variable lid -> (* we don't use "spellcheck" here: this error is not raised anywhere so it's unclear how it should be handled *) fprintf ppf "Unbound row variable in #%a" longident lid | Type_mismatch trace -> Printtyp.report_unification_error ppf Env.empty trace (function ppf -> fprintf ppf "This type") (function ppf -> fprintf ppf "should be an instance of type") | Alias_type_mismatch trace -> Printtyp.report_unification_error ppf Env.empty trace (function ppf -> fprintf ppf "This alias is bound to type") (function ppf -> fprintf ppf "but is used as an instance of type") | Present_has_conjunction l -> fprintf ppf "The present constructor %s has a conjunctive type" l | Present_has_no_type l -> fprintf ppf "@[<v>@[The constructor %s is missing from the upper bound@ \ (between '<'@ and '>')@ of this polymorphic variant@ \ but is present in@ its lower bound (after '>').@]@,\ @[Hint: Either add `%s in the upper bound,@ \ or remove it@ from the lower bound.@]@]" l l | Constructor_mismatch (ty, ty') -> wrap_printing_env ~error:true env (fun () -> Printtyp.prepare_for_printing [ty; ty']; fprintf ppf "@[<hov>%s %a@ %s@ %a@]" "This variant type contains a constructor" !Oprint.out_type (tree_of_typexp Type ty) "which should be" !Oprint.out_type (tree_of_typexp Type ty')) | Not_a_variant ty -> fprintf ppf "@[The type %a@ does not expand to a polymorphic variant type@]" Printtyp.type_expr ty; begin match get_desc ty with | Tvar (Some s) -> (* PR#7012: help the user that wrote 'Foo instead of `Foo *) Misc.did_you_mean ppf (fun () -> ["`" ^ s]) | _ -> () end | Variant_tags (lab1, lab2) -> fprintf ppf "@[Variant tags `%s@ and `%s have the same hash value.@ %s@]" lab1 lab2 "Change one of them." | Invalid_variable_name name -> fprintf ppf "The type variable name %s is not allowed in programs" name | Cannot_quantify (name, v) -> fprintf ppf "@[<hov>The universal type variable %a cannot be generalized:@ " Pprintast.tyvar name; if Btype.is_Tvar v then fprintf ppf "it escapes its scope" else if Btype.is_Tunivar v then fprintf ppf "it is already bound to another variable" else fprintf ppf "it is bound to@ %a" Printtyp.type_expr v; fprintf ppf ".@]"; | Multiple_constraints_on_type s -> fprintf ppf "Multiple constraints for type %a" longident s | Method_mismatch (l, ty, ty') -> wrap_printing_env ~error:true env (fun () -> fprintf ppf "@[<hov>Method '%s' has type %a,@ which should be %a@]" l Printtyp.type_expr ty Printtyp.type_expr ty') | Opened_object nm -> fprintf ppf "Illegal open object type%a" (fun ppf -> function Some p -> fprintf ppf "@ %a" path p | None -> fprintf ppf "") nm | Not_an_object ty -> fprintf ppf "@[The type %a@ is not an object type@]" Printtyp.type_expr ty let () = Location.register_error_of_exn (function | Error (loc, env, err) -> Some (Location.error_of_printer ~loc (report_error env) err) | Error_forward err -> Some err | _ -> None )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>